表面特征对滴状冷凝初始液滴的形成及传热影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴状冷凝初始液滴形成机理一直是悬而未决的问题。从形成新相的热力学计算可知,初始液核的尺寸应该在纳米尺度,所以要彻底解决这个难题,必须在纳米尺度上对初始冷凝过程进行研究。由于目前的仪器设备尚不能在线观察到纳米尺度液滴初始形成的过程,所以本文采用间接的方法来实现这个过程。以能与热水(冷凝液)反应的镁表面作为冷凝表面,在实验中通过控制过冷度和冷凝时间来实现水蒸汽在镁表面的初始冷凝。由于镁与冷凝液反应后必然会留下产物“痕迹”,可以事后应用电子探针和扫描电镜分析冷凝前后试件表面化学成分及其分布的变化,用于推断蒸汽的初始冷凝状态是核状还是薄膜状。
     本文首先以机械抛光和磁控溅射两种方法制备镁表面,用原子力显微镜检测两种方法制备的冷凝材料表面的形貌和粗糙度,结果表明机械抛光表面粗糙度在几百纳米左右,磁控溅射所得镁膜表面平均粗糙度小于23nm。通过电子探针检测磁控溅射制备的镁膜厚度为21μm,这说明衬底完全被镁覆盖。由于初始液滴的尺寸在纳米级,所以对冷凝材料表面的光洁度要求很高,因此,磁控溅射法制备的镁膜适宜作为本实验用的冷凝表面,并能满足冷凝实验后电子探针面扫描的要求。
     进而在初始冷凝实验中,通过控制过冷度和冷凝时间来实现镁表面初始冷凝液核的形成,然后利用电子探针和扫描电镜进行检测,结果显示初始冷凝后镁表面上氧元素的含量随着过冷度和冷凝时间的增加而增加,并且氧元素在表面上的分布是不均匀的。而且电子探针和扫描电镜两种方法所检测的得结果基本吻合,充分说明了本研究方法和结果的可靠性,即凝液与镁表面反应所留下的“痕迹”能真实的反应初始凝液的形成状态。因此,本研究的结果一致表明,初始凝液只在部分区域、而不是在整个冷凝表面形成,并且得到初始液核的尺寸在3到10纳米,从而首次在纳米尺度上证实滴状冷凝初始液滴形成的机理符合固定成核中心假说。
     之后,鉴于滴状冷凝表面的传热性能与表面几何结构特征有密切联系这一事实,而前人尚未研究滴状冷凝初始液核数与材料表面形貌之间的定量关系这一现状,本文进一步利用扫描电子显微镜拍摄不同磁控溅射条件下制备的镁膜表面的形貌图象,运用分形理论对镁膜表面冷凝前表面形貌的复杂程度进行量化研究,选用差分计盒维数法计算镁膜表面冷凝前表面形貌的分形维数。然后在相近的冷凝条件下,通过控制过冷度和冷凝时间而实现水蒸汽在这些镁膜表面的初始冷凝,再应用电子探针分析冷凝前后试件表面化学成分的变化,运用数字化图象处理技术对冷凝后镁膜表面上的氧元素分布图进行分析,从而获得表面上的液滴成核密度,并关联出冷凝材料表面形貌特征与滴状冷凝成核中心密度之间的定量关系式。
     关联结果表明,冷凝试件的表面形貌特征对滴状冷凝的成核密度有较大影响,其分形维数不同,冷凝后镁表面初始液核数也不同。同时理论和实验结果均表明,冷凝表面的分形维数越大,相应的滴状冷凝热通量也越大。
     最后,针对液固界面相互作用对滴状冷凝传热的影响,以液滴数平衡概念为基础,考虑表面形貌和表观接触角对冷凝传热的作用,建立了新的滴状冷凝传热模型。模型计算结果表明,表面形貌和表观接触角对滴状冷凝传热均有很大影响。在相同过冷度下,表面分形维数越大,成核中心密度越大,热通量也越大,随着过冷度的增加,分形维数对成核中心密度和热通量的影响更加明显;相同半径液滴的传热速率随接触角的改变而有明显变化,并且均存在适宜接触角使该尺度的液滴传热量达到最大。从单个液滴传热分析得到,对于半径小于1微米的单个液滴,其适宜接触角随着液滴半径的增加而略有减小,但变化极不明显,均在120度左右。液滴半径等于1微米时,适宜接触角为119.1度。但当液滴半径大于1微米后,对应的适宜接触角开始随液滴半径的增加而明显降低。对于考虑了表面液滴脱落的动态滴状冷凝过程,整个冷凝表面的热通量仍随接触角而变化,并且对应热通量最高的适宜接触角为87.6度。本文从传热学角度分析和证明了滴状冷凝传热过程并不是接触角越大越好。
The mechanism of the formation of initial condensate droplets for dropwise condensation is still in suspense. To solve the problem, we must understand if the initial condensation is in nucleus or in thin film in nanometer scale, since the calculation of the thermodynamics for new phase formation indicates that the size of the initial condensate nucleus is in nano-scale. Magnesium was applied as the condensation surfaces in this study since it can react with hot water (condensate) and thus leave marks of initial condensate state on the surface. In the experiment, the subcooling and reaction time were controlled to realized the initial condensation on the surfaces, and then an electron probe microanalyzer (EPMA) and scanning electron microscope(SEM)were used to scan the variations of the chemical compositions as well as their distribution on the surfaces before and after the initial condensation. These consequences were used to deduce whether the initial condensate state is in nuclei or in film.
     In this paper, mechanically polishing and magnetic-control sputtering (MCS) were used firstly to prepare the magnesium surfaces. The topography and surface roughness of the magnesium surfaces were characterized with the atomic force microscope and the results show that the average roughness of the mechanically polishing surface is about 100nm, while that of the MCS surface is about 23nm. The thickness of the magnesium film plated with MCS method was also measured with the electron probe microanalyzer, and the thickness of the plated film is 23μm, which meant that silicon substrates were covered by magnesium completely. So the films of magnesium were feasible for this condensation experiment, and they can meet the requirements of surface scan by electron probe microanalyzer.
     In the followed experiment, the initial condensation process was realized by controlling the subcooling and reaction time, and then, EPMA and SEM were used to scan the variation of the chemical compositions on the magnesium surfaces. The results showed that the oxygen contents on the test surfaces increased with subcooling and condensation time obviously after the initial condensation, and the oxygen on the test surface distributed non-uniformly. Moreover the results from the scan of EPMA and SEM were nearly identical, which implys that the method presented in the paper is reliable. Therefore, the reaction marks on the surface are the true display of initial condensate state. Meanwhile, the reaction dynamic equation of magnesium and water was set up and used to calculate the area occupied by initial condensate, which was well agreed with the measured results of EPMA. All these consequences indicate that the initial condensate forms in the nucleus state on solid surfaces, not in the state of thin film, and the size of the initinal droplet is 3 to 10nm. This is the first investigation that the initial condensation droplets in nanometer scale were displayed and the mechanism of initial droplet formation for dropwise condensation in nano size was confirmed.
     Furthermore, in view of the fact that there's close relation between the geometry structure characteristic of a condensation surface and its heat transfer performance for dropwise condensation, but there is no qutantative relation yet between surface topography and nucleation site density, SEM was used again to obtain the topography photographs of magnesium surfaces with different surface characteristics prepared with distinct MCS parameters. Then fractal theory was applied to describe the irregularity and complexity of magnesium surfaces quantitatively. And the differential box-counting was used to calculate the fractal dimension of these magnesium surfaces before condensation experiment. The initial dropwise condensation on these magnesium surfaces was then achieved by controlling the subcooling and the contacting time between the steam and the magnesium surfaces. The nucleation site density can then be obtained after the oxygen element distribution was analyzed with EPMA and the image processing technology. And the quantitative relation between the nucleation site density and surface fractal dimension was thus correlated.
     The results show that the surface topography effects the initial dropwise condensation significantly. When the surface fractal dimensions are different, the number of nucleation sites for dropwise condensation on the surfaces is distinct. And both the theoretical and the experimental results indicated that the larger the surface fractal dimension, the greater the heat flux of dropwise condensation.
     Finally, in consideration of the interfacial interaction between liquid and solid, a new model for dropwise condensation heat transfer was proposed by using the population balance concept and considering the effect of surface topography and contact angle. The calculation results indicate that dropwise concdensation can be influenced considerably by surface topography and contact angle. Under the same subcooling, the greater the surface fractal dimension, the larger the nucleation site density and the higher the heat flux of dropwise condensation. Also the effect of fractal dimension on nucleation site density and heat flux becomes more obvious as subcooling increases. Meanwhile the heat transfer rate through a single droplet increases with contact angle firstly and then decreases, i.e. there is an optimum contact angle to make the heat transfer rate of the droplet maximum. The optimum contact angle is about 120°for the droplets with radius less than 1 micron, and the value almost does not vary with the increase of radius. The optimum contact angle is 119.1°for the droplet with radius 1 microns. When the droplet radius is larger than 1 micron however, the optimum contact angle decreases with the increase of droplet radius obviously. Moreover, the heat flux of dropwise condensation on an entire surface also varies obviously with contact angle when the departure of condensed drops is considered. And the optimum contact angle value becomes 87.6°in this case. Our resutls show that there exists a proper contact angle for dropwise condensation, and it is not true that the larger the contact angle, the higher the heat flux of dropwise condensation.
引文
[1]Umur A,Griffith P.Mechanism of Dropwise condensation.Journal of Heat Transfer.1965,87:275-282.
    [2]McCormick J L,Westwater J W.Nucleation sites for dropwise condensation.Chemical Engineering Science.1965,20:1021-1036.
    [3]Graham C,Griffith P.Drop size distributions and heat transfer in drnpwise condensation.International Journal Heat Transfer.1973,16:337-346.
    [4]Tadao Haraguchi.Microscope observations of the initial droplet formation mechanism in dropwise condensation.Heat Transfer Japanese Research.1992,21(6):573-585.
    [5]Liu Tianqing,Xu Dunqi,Lin Jifang.Analogy Between Boiling and Condensation Process.3rd International Symposium on Multiphase Flow and HeatTransfer,SEP19-21,1994,Multiphase flow and heat transfer.1994,1:1096-1102.
    [6]董连科.分形理论及应用.沈阳:辽宁科学出版社,1991.
    [7]葛副鼎,王兵等.两种纳米磁性颗粒的不同分形聚集特性.金属功能材料.1995,4(5):36-138.
    [8]李启楷,王琛等.纳米度域材料断口的分形结构与分维测量.中国科学.1999,29(4):349-355.
    [9]杨春信,王立刚,袁修干等.珠状凝结是一种典型的分形生长.航空动力学报.1998,13(3):272-276.
    [10]Wu Yuting,Yang Chunxin,Yuan Xiugan.Drop distributions and numerical simulation of dropwise condensation heat transfer.International Journal of Heat and Mass Transfer.2001,44(23):4455-4464.
    [11]宋永吉.蒸汽冷凝过程成滴机理的研究及实现滴状冷凝方法的改进:(博士学位论文).大连:大连理工大学,1991.
    [12]曹治觉,郭遇.冷凝器壁面滴状冷凝的热力学机理及最佳接触角.物理学报.1999,48(10):1823-1830.
    [13]曹治觉.冷凝器滴状冷凝的动态描述及接触角的选择.物理学报.2002,51(1):25-30.
    [14]闵敬春.滴状冷凝中液滴的内外压差及临界半径.物理学报.2002,51:2730-2732.
    [15]Wayner J P C.Nucleation,Growth and Surface Movement of a Condensing Sessile Droplet.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002,206(1-3):157-165.
    [16]Schmidt E,Schurig W,Sellschop W.Versuche uber die condensation yon wasserdampf in film-undtropemform.Tech.Mech.Thermodyn.1930,1:53-63.
    [17]Jakob M.Heat transfer in evaporation and condensation.Mech.Eng..1936,58:729-739.
    [18]Majumdar A,Mezic I.Instability of ultra-thin water films and the Mechanism of droplet on hydrophilic surface.Transaction of the A SME,J Heat Transfer.1999,121:964-971.
    [19]Haraguchi T,Schinada R,Takayama T.Drop formation mechanism in dropwise condensation on the phoyvinylidene chloride surface.JSME(B).1989,55:3472-3478.
    [20] Hijikata K, Fukasaku Y, Nakabeppu O. Theoretical and experimental studies on the pseudo-dropwise condensation of a binary vapor mixture. Transaction of the ASME, J Heat Transfer. 1996, 118: 140-147.
    [21] Ruckenstein E, Metiu H, On dropwise condensation on the solid surface. Chemical Engineering Science. 1965,20: 173-179.
    [22] Tammann G, Boehme W. Die Zahl der wassertrcpfchen bei der kondensation auf verschiedenen festen stiffen. Ann. Physik. 1935, 5: 77-80.
    [23] McCormick J L, Westwater J W. Drop dynamics and heat transfer during dropwise condensation of water vapor. Chem. Eng Prog. Symp. Ser.. 1966,62(64): 120-134.
    
    [24] LeFevre E J, Westwater J W. Dropwise condensation. Heat Mass Transfer. 1965, 8:11-17.
    [25] McCormick J L, Baer. Nucleation sites for dropwise condensation. Chem. Eng. Prog, Symposium Series. 1996,62:120.
    [26] Song Yongji, Xu Dunqi, Lin Jifang. A study on the mechanism of dropwise condensation. Int. J. Heat Mass Transfer. 1991,34(11):2827-2832.
    
    [27] 马学虎,徐敦硕,林纪方.滴膜共存表面强化冷凝传热.化工学报.1999,50(4):535-540.
    [28] Ma Xuehu, Wang Buxuan, XU Dunqi. Filmwise condensation heat transfer enhancement with dropwise and filmwise coexisting condensation surfaces. Chin. chem. eng.. 1998, 6:95-102.
    [29] Yamauchi A, Kumagai S, Takeyama T. Condensation heat transfer on various drcpwise-filmwise coexisting surfaces. Heat transfer Jap-Res. 1986,15(5):50-64.
    [30] Rose E E, Mucciardi N, Baer E. Model for dropwise condensation on randomly distributed sites. Int.J. Heat Mass Transfer. 1967,10:15-22.
    [31] Tanasawa, Tachibana F, Ochiai. Dropwise condensation-the way to practical application. Proc.of 6th Int. Heat Transfer Conf, Toronto, Canada, 1978,6:393-405.
    
    [32] Fatica N, Katz D L. Dropwise condensation. Chemical Engineering Science, 1949,45:661-674.
    [33] Tanasawa I, Tachibana F. A synthesis of the total process of dropwise condensation using the method of computer simulation. Proc.of 4th Int.Heat Transfer conference, Versailles, France, 1970,6:Cs1.3.
    [34] Maiti N, Desai U B, Ray A K. Application of mathematical morphology in measurement of droplet size distribution in dropwise condensation. Thin Solid Films. 2000, 376:16-25.
    [35] Burnside B M, Hadi H A. Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int.J.Heat Mass Transfer. 1999,42(16): 3137-3146.
    [36] Glicksaman R L. Hunt J W. A. Numerical simulation of dropwise condensation. Int.J.Heat Mass Transfer. 1972, 15:2251-2269.
    [37] Hurst C J, Olson D R. Dropwise condensation-further heat transfer measurement. Proc.4th Int. Heat Transfer Conf, Versailles, France, 1970, 52.
    [38] Tanaka H. Further development of dropwise condensation theory. Heat Transfer. 1979,101, 603-611.
    [39] Sadhal S S, Martin W W. Heat transfer through dropwise condensation using difefrtial inequalities. Int.J.Heat Mass Transfer. 1977,20:1401.
    [40] MacDougall G, Ockrent C. Proc. Roy. Soc., London, 1982,180A. 151.
    [41]Tower R E,Westwater J W.Effect of plate inclination on heat transfer during dropwise condensation of steam.Chem.Eng.Prog,Symposium Series.1970,66:21-25.
    [42]Hosokawa T,Kawai T,Kamatsu G,et al.Heat transfer in dropwise condensation on the upper surface of a horizontal tube.Trans.JSME.1983,24-78.
    [43]Tanasawa I,Ochiai.Experiment study of dropwise condensation.Bull of JSME.1973,16.1184.
    [44]费千,岳丹婷.液体从固体壁面脱落条件的分析.大连海事大学学报,1997,23(3):92-95.
    [45]闵敬春,彭晓峰,王晓东.竖壁上液滴的脱落直径.中国工程热物理学年会第十届年会论文集,青岛,2001:337-341.
    [46]Sugawara S,Michiyoshi I.Dropwise condensation Mem.Fac.Eng.,Kyoto Univ..1965,18:84-111.
    [47]Tanasawa I,Ochial J,Funawatashi Y.Experimental study on dropwise condensation effect of maximum dropsize upon the heat transfer coefficient.Proc of the 6~(th)Int Heat Transfer Conference,Toronto,Canada,1978,2:477-482.
    [48]Tsuruta T,Tanaka H.A theoretical study on the constriction resistance in dropwise condensation.International Journal of Heat Mass Transfer.I991,34(11):2779-2786.
    [49]Rose J W.Dropwise condensation theory.International Journal of Heat Mass Transfer.1981,24(1):191-194.
    [50]Koutsky J A,Walton A G,Baer E.Heterogeneous nucleation of water vapor on high and low energy surfaces.Surface Science.1965,3(2):165-174.
    [51]Erb R A,Thelen E.Promoting permanent dropwise condensation.Industry Engneering Chemical.1965,57(10):49-52.
    [52]Wilkins D G,Bromley L A.Dropwise condensation phenomena.AIChE Journal,1973,19:839-845.
    [53]Westwater J W.Condensation on gold tube.Proc 5th Int Heat Transfer Conf,T okio,Bd,1974,6:190.
    [54]Rose J W.Dropwise condensation theory.Int.J Heat Mass Transfer.1981,24:191-194.
    [55]Woodruff D W,Westwater J W.Steam condensation on various gold surface.Heat Mass Transfer.1981,103:685-692.
    [56]Tanaka H,Hatamiya S.Drop-size distributionsand heat transfer in dropwise condensation coefficient of water at low pressure.Proc 8~(th)Int Heat Transfer Conf,San Francisco,California,1986,2:362-375.
    [57]Tanaka H,Tsuruta T.A microscopic study of dropwise condensation.Int J Heat Mass Transfer.1984,27(3):327-335.
    [58]Hatamiya S,Tanaka H.Dropwise condensation of steam at low pressure,Int J Heat Mass Transfer.1987,30:497-507.
    [59]O'neil G A,Westwater J W.Dropwise condensation of steam on electroplated silver surfaces.Int J Heat Mass Transfer.1984,27(9):1539-1549.
    [60]Tanaka H.Measurements of drop-size distribution during transient dropwise condensation.Transaction of the ASME,J Heat Transfer.1975,97(3):341-346.
    [61]Tsuruta T,Tanaka H.A theoretical study on the constriction resistance in dropwise condensation.Heat and Mass Transfer.1991,34:2779-2786.
    [62]Zhang D C,Zhao Q,Lin J F.New surface for dropwise condensation.Proc of 8~(th)Int Heat Transfer Conf,San Francisco,California,1986,4:1677-1682.
    [63]胡国强,宋永吉,徐敦颀等.水蒸气在铬表面上的冷凝传热.辽阳石油化工高等专科学校学报.1998,14(4):1-7.
    [64]Tanner D W,Potter C J,Poper D et al.Heat transfer in dropwise condensation(part Ⅰ and Ⅱ).Heat Mass Transfer.1965,8:419-436.
    [65]Finnicum S S,Westwater J W.Dropwise vs filmwise condensation of steam on chromium,Int J of Heat and Mass Transfer.1989,32(8):1541-1549.
    [66]赵起,张东昌,朱晓波等.滴状冷凝应用研究进展.第九届传热学会议文集,1990,4:391-394.
    [67]Zhao Q,Zhang D C,Lin J F.Surface materials with dropwise condensation made by ion implantation technology,Int J Heat Mass Transfer.1991,34:2833-2835.
    [68]赵启,林纪方.滴状冷凝工业应用研究进展.化工进展.1991,2:17-20.
    [69]Song Yongji,Ma Xuehu,Xu Dunqi et al.Condensation of steam on chromium.Proc of China-Japan Chem Eng Conf,Tianjin,1991:688-695.
    [70]Hijikata K,Fukasaku Y,Nakabeppu O.Theoretical and experimental studies on the pseudo-dropwise condensation of a binary vapor mixture.Transaction of the ASME,J Heat Transfer.1996,118:140-147.
    [71]Izumi M,Oh-uchi M,Takahashi S et al.Int Chem Eng.1990,30(2):289-296.
    [72]Rose J W.Dropwise condensation theory and experiment:a review.Proc Instn Mech Engrs,Part A:J Power and Enery.2002,216:115-128.
    [73]Wu W H,Maa J R.On the transfer in dropwise condensation.The Chemical Engineering Journal.1976,12:225-231.
    [74]Tanasawa I,Ochiiai J,Utaka Y et al.Dropwise condensation.Preprint 11~(th)Japanese Heat Transfer Symposium.Japanese,1974,229.
    [75]葛世荣,珠华.摩擦学的分形.北京:机械工业出版社,2005.
    [76]Mandelbrot B B.Fractals:form,chance and dimension.California:Freeman,1977.
    [77]Mandelbrot B B.The Fractal Geometry of Nature.California:Freeman,1982.
    [78]肯尼思法尔科内.分形几何--数学基础及其应用.沈阳:东北大学,2001.
    [79]Khalid D,Jacques L.Signal representation and segmentation based on multifractal stationarity.Signal Processing.2002,82:2015-2024.
    [80]Siddiqui S,Kinsner W.Multifractal modeling of arbitrary object boundaries in image segmentation.Electrical and Computer Engineering,IEEE CCECE 2002,Canadian Conference on.2002,2:950-956.
    [81]Pesque,Vehel J L.Stochastic fractal models for image processing.Singnal Processing Magaxine,IEEE.2002,19(5):48-62.
    [82]张济忠.分形.北京:清华大学出版社,1995.
    [83]Pentland A P.Fractal based description of natural scenes.IEEE Trans Pattern Anal Machine Intell,PAMI-6.1984,6:661-674.
    [84]Manjunath B S,R Chellappa.Unsupervised texture segmentation using Markov random field models.IEEE Trans Pattern Anal Machine Intell.I991,13(5):478-482.
    [85]Derin H,Elliott H.Modeling and segmentation of noisy and textured images using Gibbs random fields.IEEE Trans Pattern Anal Machine Intell,PAMI-9.1987,1:39-55.
    [86]Sarkar N,Chaudhuri B B.An efficient approach to estimate fractal dimension of textural images.Pattern Recognition.1992,25(9):1035-1041.
    [87]Chaudhuri B B,Sarkar N.An efficient differential box-counting approach to compute fractal dimension of image.IEEE Trans.On SMC.1994:115-120.
    [88]施明恒,甘永平,马重芳编.沸腾和凝结.高等教育出版社,1995.
    [89]Rose J W.Further aspects of dropwise condensation theory.International Journal of Heat and Mass Transfer.1976,19(12):1363-1370.
    [90]Mousa A O.Modeling of heat transfer in dropwise condensation.Int J Heat Mass Transfer.1998,41(1):81-87.
    [91]Maa J R.Drop size-distribution and heat flux of dropwise condensation.Chem.Engr.J.1978,16:171-176.
    [92]Tanasawa I,Tachibana F,Ochiai J.A study on the process of drop growth by coalescence during Dropwise condensation.Bull of JSME.1973,16(99):1367-1375.
    [93]Rose J W,Glickman L R.Dropwise condensation-The distribution of drop sizes.International Journal of Heat and Mass Transfer.1973,16:411-425.
    [94]吴玉庭,杨春信,袁修玉,王安良.限制热阻对珠状凝结换热的影响.化工学报.2001,52(10):896-901.
    [95]Vemuri S,Kim K J.An experimental and theoretical study on the concept of dropwise condensation.International Journal of Heat and Mass Transfer.2006,49:649-657.
    [96]Rose J W.Interphase matter transfer,the condensation coefficient and dropwise condensation.Proc.of 11th International Heat Transfer Conf.,Korea,1998,1:89-104.
    [97]Le Fevre E J,Rose J W.A theory of heat transfer by dropwise condensation.In Proceeding of 3~(rd)International Heat Transfer Conference,Chicago,1966,2:362-375.
    [98]Le Ferve E J.Rose J W.An experimental study of heat transfer by dropwise condensation,Int J Heat Mass Transfer.1965,14(8):1117-1133.
    [99]Leach R N,Stevens F,Langford S C et al.Dropwise condensation:Experiments and simulations of nucleation and growth of water drops in a cooling system.Langmuir.2006,22:8864-8872.
    [100]Yamali C,Metre J H.A theory of dropwise condensation at large sub-cooling including the effect of the sweeping.Heat Mass Transfer.2002,38:191-202.
    [101]LeFevre E J,Rose J W.A theory of heat transfer by dropwsie condensation.Proceedings of the 3~(rd)International Heat Transfer Conference.AICHE,New York,1966,2:362-373.
    [102]Nabavian K,Bromley L A.Condensation coefficient of water.Chemical Engineering Science.1963,18:651-660.
    [103]Marmur,Abraham.Equilibrium contact angles:theory and measurement.Colloids and Surfaces A:Physicochemical and Engineering Aspects.1996,116(1-2):55-61.
    [104]Kamusewitz H,Possart W,Paul D.The relation between Young's equilibrium contact angle and the hysteresis on rough paraffin wax surfaces.Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,156(1-3):271-279.
    [105]Bartell F E,Shepard J W.Surface roughness as related to hysteresis of contact angle,Part Ⅰ:The system-water-air.The Journal of Physical Chemistry.1953,57:211-215.
    [106]Huh C,Mason S G.Effects of surface roughness on wetting(theoretical).Journal of Colloid and Interface Science.1977,60:11-38.
    [107]Schwartz L W,Garoff S.Contact angle hysteresis on heterogeneous surface.Langmuir.1985,1(2):219-230.
    [108]Marmur A.Contact angle hysteresis on heterogeneous smooth surfaces.Journal of Colloid and Interface Science.1994,168:40-46.
    [109]Extrand C W,Kumagai Y.An Experimental Study of Contact Angle Hysteresis.Journal of Colloid and Interface Science.1997,191(2):378-383.
    [110]Brandon S,Amarmur.Simulation of contact angle hysteresis on chemically heterogeneous surfaces.Journal of Colloid and Interface Science.1996,183:351-355.
    [111]Sedev R V,Petrov J G,Neumann A W.Effect of Swelling of a Polymer Surface on Advancing and Receding Contact Angles.Journal of Colloid and Interface Science.1996,180(1):36-42.
    [112]Lam C N C,Kim N,Hui D et al.The effect of liquid properties to contact angle hysteresis.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,189(1-3)265-278.
    [113]戴锅生.传热学.北京:高等教育出版社,1999:168-169.
    [114]Min J C,Webb R L.Condensate formation and drainage on typical fin materials.Experimental Thermal and Fluid Science.2001,25(3-4):101-111.
    [115]Drelich J,Miller J D,Good R J.The Effect of Drop(Bubble)Size on Advancing and Receding Contact Angles for Heterogeneous and Rough Solid Surfaces as Observed with Sessile-Drop and Captive-Bubble Techniques.Journal of Colloid and Interface Science.1996,179(1):37-50.
    [116]岳丹婷,李品芳,李青等.滚动脱落实现滴状冷凝的分析.大连海事大学学报.1999,25(1):25-26.
    [117]Dettre R H,Johnson R E.Contact angle hysteresis.The Journal of Physical Chemistry.1965,69:1507-1514.
    [118]Schwartz L W,Groff S.Contact angle hysteresis and the shape of the three phase line.Jorunal of Colloid and Interface Science.1985,106:422-437.
    [119]Nakae H,Inui R,Hirata Y et al.Effects of surface roughness on wettability.Acta Materialia.1998,46(7):2313-2318.
    [120]Nishioka G M,Wesson S P.A computer model for wetting hysteresis Wetting behavior of spatially encoded heterogeneous surfaces.Colloids and Surfaces A:Physicochemical and Engineering Aspects.1996,118(3):247-256.
    [121]兰忠,马学虎,张宇等.引入液固界面效应的滴状冷凝模型.化工学报.2005,56(9);1626-1631.
    [122]Koch G,Kraft K,Leipertz A.Parameter study on the performance of dropwise condensation.Revue Generale De Thermioue.1998,37(7):539-548.
    [123]熊志斌.滴状冷凝的最小静接触角.湖南文理学院学报.2005,17(4):15-16.
    [124]Walpot R J E,Ganzevles F L A,van der Gel C W M.Effects of contact angle on condensate topology,drainage and efficiency of a condenser with minichannels.Experimental Thermal and Fluid Science.2007,31:1033-1042.
    [125]Tanasawa I.Recent advances in condensation heat transfer.Proceedings of the 10~(th)International Heat Transfer Conference,Bristol,PA,1994,1:197-212.
    [126]Westwater J W.Condensation,heat transfer in energy problems.US-Japan Cooperative Science Program,Hemisphere Publ Corp,1983:81-92.
    [127]Peterson A C,Westwater J W.Dropwise condensation of ethylene glycol.Chem.Engng Prog.Symp.Ser.1966,62(64):135-142.
    [128]Song Yongji,Xu Dunqi,Lin Jifang.Study on dropwise condensation mechanism.Journal of chemical engineering of Chinese universities.1990,4(3):240-246.
    [129]李云奇.真空镀膜技术与设备.沈阳:东北工学院出版社,1989.
    [130]张建民,王立,梁昌慧.磁控溅射靶源设计及溅射工艺研究.陕西师范大学学报.1999,27(1):36-38.
    [131]白春礼.扫描力显微术.北京:科学出版社,2000.
    [132]周玉.材料分析方法.北京:机械工业出版社,2000.
    [133]刘天庆,夏松柏,穆春丰,张庆瑜,陆巧羽,孙相彧.蒸汽冷凝初始液滴形成机理的研究,大连理工大学学报,2008,已接收.
    [134]閤松柏.滴状冷凝初始液滴形成机理的研究:(硕士学位论文).大连:大连理工大学,2007.
    [135]宋永吉,熊杰明.滴状冷凝传热的理论模型与计算.计算机与应用化学,2002,6(19):771-774.
    [136]兰忠.界面效应影响冷凝传热过程的研究:(博士学位论文).大连:大连理工大学,2006.
    [137]Mikic B B.On the mechanism of dropwise condensation.International Journal of Heat and Mass Transfer.1969,12:1311-1323.
    [138]闵敬春,彭晓峰,王晓东.竖壁上液滴的脱落直径.应用基础与工程科学学报,2002,10:57-62.
    [139]Tanner D W,Pope D,Potter C J et al.Heat transfer in dropwise condensation at low steam pressures in the absence and presence of non-condensable gas.International Journal of Heat and Mass Transfer.1968,11:181-190.
    [140]Akson S N,Rose J W.Dropwise condensation the effect of thermal properties of the condenser material.International Journal of Heat and Mass Transfer.1973,16:461-467.
    [141]Citakoglu E,Rose J W.Dropwise condensation some factors influencing the validity of heat transfer measurements.International Journal of Heat and Mass Transfer.1968,11:523-537.
    [142]Blossey R.Self-cleaning surfaces-virtual realities.Nature Materials.2003,2:301-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700