华南泥盆纪地层与化石中的莓状黄铁矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了不同成因莓状黄铁矿的矿物学判别依据,使一直模糊的莓状黄铁矿成因学更加清晰、明朗。发现并详细论述了莓状黄铁矿演化成自形晶、莓体粒径变大、被氧化或被其他矿物交代所需的环境因素,为莓状黄铁矿的形成和演化提供了证据和理论基础。通过广西桂林杨堤泥盆系剖面莓状黄铁矿与碳、硫循环关系的讨论,认为其生物大灭绝可能与脉动式的海底热液活动有关,海底热液活动造成深部和中部水体升温,水体中的H2S气体由于升温而发生去气作用上涌至表层,消耗了表层水体中大量的氧,导致浅海生物因缺氧和有毒气体的伤害而灭绝,为泥盆纪生物大灭绝提供了新的证据。
     莓状黄铁矿是由形态和大小一致的黄铁矿微晶组成的球状体,是黄铁矿在沉积岩中最普遍存在的形态之一,表明其有着比较宽广的形成条件。虽然莓状黄铁矿至今仍有生物与非生物成因的争论,但是不同特征莓状黄铁矿的成因和成莓机理可能应归因于不同的生物和非生物过程。莓状黄铁矿的形成和形态对氧化还原条件很敏感,其粒径经常被用来指示沉积过程中古氧相,区分上覆水柱中的静海环境(厌氧环境)和有氧环境,并且其物理及化学特征提供了地质历史时期海洋对环境变化响应的重要记录以及与全球铁、硫、碳和氧循环的联系。本次研究主要以华南泥盆系地层与化石中的莓状黄铁矿为对象,对不同载体如围岩、实体化石及遗迹化石Zoophycos中莓状黄铁矿进行扫描电镜扫描并结合能谱分析,并且将不同载体中莓状黄铁矿的矿物学特征进行综合对比及系统分析,提出莓状黄铁矿的成因矿物学识别标志,为生物成因和非生物成因的莓状黄铁矿提供关键判据和成莓机理。并且发现了莓状黄铁矿存在向不同方向演变的中间状态,通过分析在演变过程中周围环境对它的影响,为莓状黄铁矿的演化揭示环境控制因素。以杨堤剖面为例,通过测量全岩微量元素、全岩无机碳碳同位素数据及碳酸岩晶格硫酸根硫同位素数据,结合莓状黄铁矿的赋存状态、讨论了莓状黄铁矿与碳、硫循环的关系,为泥盆纪生物大灭绝提供了可靠证据。
     通过刘不同载体如围岩、实体化石和Zoophycos中莓状黄铁矿的扫描电镜结合能谱分析,计算每个载体中莓状黄铁矿的莓体直径D、微晶直径d、以及莓体直径与微晶直径之比D/d,莓体中的微晶个数、微晶形态、微晶间的杂质情况得出了以下结果:非生物成因莓状黄铁矿与生物和非生物共同作用形成的莓状黄铁矿差别不大,莓状黄铁矿间的差别仅和其所形成微环境的无机化学条件有关,即氧化还原速率、成核时间以及微晶生长速率有关;生物成因莓状黄铁矿的莓体直径和微晶直径变化范围较小且值也都偏小,莓体直径变化有限,不受环境氧化还原条件影响,仅与所形成的微环境有关,莓体直径/微晶直径(D/d)大多小于10,且微晶为立方体的莓状黄铁矿极有可能是生物成因莓状黄铁矿,有“膜”莓状黄铁矿为生物成因莓状黄铁矿;而生物和非生物共同作用形成莓状黄铁矿及非生物成因莓状黄铁矿莓体直径和微晶直径变化范围较大,莓体直径能反映环境的氧化还原条件,莓体直径/微晶直径(D/d)大多大于10,未见立方体微晶,莓体表层无“膜”。zoophycos中莓状黄铁矿的形成是主要是微生物活动的结果,微生物富集围岩中的Fe质,形成胞外及胞内莓状黄铁矿,zoophycos中深色蹼层比浅色蹼层更具还原性,且微生物活动更强烈。
     此外,我们还发现莓状黄铁矿在不同的环境条件下,可能会向不同的方向演化。在碱性氧化条件下,莓状黄铁矿可能会被氧化交代,形成磁铁矿、赤铁矿、闪锌矿或黄铜矿等莓状体假晶;在酸性弱氧化条件且[Fe][S]饱和度较高的条件下,莓状黄铁矿中黄铁矿微晶的粒径会慢慢长大,从而导致整个黄铁矿莓状体的粒径也随之变大;在酸性氧化程度较低甚至较缺氧且[Fe][S]饱和度较低的条件下,莓状黄铁矿会逐渐向自形方向演化,首先是有微晶的自形黄铁矿直至完全重结晶融合成黄铁矿自形单晶,如立方体、八面体或五角十二面体单晶。
     通过对广西桂林杨堤泥盆系剖面弗拉期-法门期(F-F)事件层及其附近的莓状黄铁矿、微量元素、C-S同位素变化关系进行分析(其中C为全岩无机碳同位素、S为碳酸岩晶格硫酸根CAS硫同位素),我们发现F-F之交研究区36层-39层C-S同位素表现出同步变化的耦合关系:在事件层即40层C、S同位素整体上都呈现出正漂移的特征,但各自又分别表现出几次不太同步的振荡现象;在F-F界限之后C-S同位素先表现出不同步变化的不耦合关系,即C同位素还在继续正漂移,至41层顶部才开始出现慢慢回落的趋势,而硫同位素已经开始负漂移了。而后即从41层顶部开始C-S同位素表现为同步负漂的耦合关系。莓状黄铁矿在36-39层数最很少,到40层开始增多,但总体上含量还是比较少,粒径都不大,小于10μm,有少数几层粒径达到15μm,到40层顶部粒径开始慢慢变大,大多都达10μm,到41层莓状黄铁矿数最开始急剧增多,到42层粒径甚至达到30um以上。通过分析微量元素数据及莓状黄铁矿的赋存状态,我们排除了火山、陆源等因素,认为C、S同位素的短暂振荡可能与脉动式的海底热液活动有关,其生物大灭绝也可能与脉动式的海底热液活动有关,海底热液活动造成深部和中部水体升温,水体中的H2S气体由于升温而发生去气作用上涌至表层,消耗了表层水体中大量的氧,导致浅海生物因缺氧和有毒气体的伤害而灭绝,随后深部热水也上升至表层,导致事件层S同位素出现快速负漂而后又快速恢复。热液活动还可能造成研究区的有机物热解和氧化还原特征的变化,这些都是C、S同位素出现短暂振荡的原因。这与事件层出现的莓状黄铁矿最大粒径及黄铁矿的溶蚀和氧化状况相一致,同时也与微最元素所显示的氧化还原状态相一致,即总体上处于弱氧化环境,但存在弱氧化到还原环境之间的来回波动。在F-F界线之上硫同位素开始负偏,而碳同位素继续正偏而后才开始慢慢回落,这可能与当时海水的氧化还原状态有关即氧化性逐渐增强有关。氧化性增强表层海水中含硫细菌或其他硫化物被氧化生成具低δ34s值的硫酸根进入海水中,使得δ34SCAs负偏,同时氧化性增强海水生态系统得到修复,微生物活动减弱,宏体生物开始复苏,可能也有些陆源物质的输入,莓状黄铁矿的含量增大可以说明这一点,此时海洋初级生产力减小,这些因素使得事件层之上硫同位素负偏,C同位素正偏之后也开始负偏。
This paper has proposed identifying criteria of different genetic pyrite framboids in mineralogy. The research makes the faint genesis of pyrite framboids clearer and obviouser. At the same time, we find and detailedly discuss environmental conditions when pyrite framboids evolve into euhedral crystals, or framboid diameter is bigger, or pyrite framboids are oxidized into other minerals. These results provide evidences and theoretical basis for the formation and development of pyrite framboids. By studying pyrite framboids, trace element, the coupling of the high-resolution C-S isotope records across the Frasnian-Famennian boundary in Guilin, Guangxi, we considered that the Frasnian-Famennian mass extinction can be related to pulsatile hydrothermal activity. Because hydrothermal activity leaded to deep and middle water heated, degasification of heated water made H2S removed from water and upwell to surface water, the gas H2S consumed plenty of oxygen in surface water. Thus hypoxia and toxic gas leaded to mass extinction in shallow continental shelves, these provided credible evidences for Frasnian-Famennian mass extinction.
     Pyrite famboids are spheroidal or sub-spheroridal aggregates composed of pyrite microcrystals with same shape and uniform size:They are widely found in sedimentary rocks and other geologic carriers. So pyrite framboids can form under wider geochemical environment. Although formation mechanism of pyrite framboids exists controversy of biogenesis and abiogenesis. Different characteristic pyrite framboids can attribute to different biotic and abiotic action. The shape of pyrite framboids is very sensitive to redox conditions, Framboid diameter usually is used to trace paleoxygenation facies, discriminating the anaerobic (enxinic) and aerobic environment in overlying water column, The physical and chemical characteristics of pyrite framboids provide important record that sea responsed to environmental change in the geological history, and the relation with iron, sulfur, carbon and oxygen cycle of the globe. This study largely based on pyrite framboids in the Devonian strata and fossil, South China, by comparing and analyzing mineralogical characteristics of pyrite framboids in different carriers, these carriers include Devonian carbonatites and body fossils (Brachiopodas and bryozoans and corals) from South China, and other surrounding rocks and body fossils reported by predecessors as well as those synthesized in inorganic environment by predecessors, We has proposed identifying criteria of different genetic pyrite framboids in mineralogy. It was surprising that pyrite framboids can evolve to different directions under different environments, by analyzing the influence of environment during the course of evolution. The factors controlling the development of pyrite framboids are revealed. Taking Yangdi section as an example, by measuring trace elements and inorganic carbon isotope of total rocks and S isotope of carbonate-associated sulfate (CAS), as well as the occurrence state of pyrite framboids, The paper discusses the relation of pyrite framboids and C-S cycle, and provides the credible evidence for Devonian mass extinction.
     Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) was used to compare and analyze these pyrite framboids in different carriers such as surrounding rock、entity fossil、 Zoophycos, The items of analysis and comparison include framboid diameter(D), microcrystal diameter(d), D/d, the quantity and shape of microcrystal, the impurity among microcrystals, Our study initially obtained the following results:there are no great differences between abiogenic pyrite framboids and those by biological and abiological processes. Differences between pyrite framboids only depend on inorganic chemical conditions of the environment, where pyrite framboids formed, for example redox rate, nucleation time and microcrystal growth rate. Characteristics of biogenic pyrite framboids include that framboid diameter(D) and microcrystal diameter(d) of biogenic pyrite framboids are low and vary slightly, framboid diameter isn't affect by redox conditions of depositional environments, only in relation with micro-environment, Most D/d is less than10, and pyrite framboids made up of cubic microcrystal are very likely formed by biological action, pyrite framboids with membrane wrapping the outer surface are biogenic. Characteristics of abiogenic pyrite framboids include that framboid diameter (D) of abiogenic framboid vary widely, framboid diameter can reflect redox conditions of depositional environments. Most D/d is more than10, no cubic microcrystal, no membrane wrapping the outer surface. The pyrite framboids in Zoophycos were the result of biological action, microbe enrich Fe in the surrounding rock, formed pyrite framboids, intracellular and extracellular. The reduction degree in deep spreiten of Zoophycos was more than in light spreiten, and microbial activity is stronger.
     Besides that, we discovered pyrite framboid can develop to different directions under different environments. Under the conditions of alkaline oxidation, Pyrite framboid can be oxidized and replaced to form pseudomorphs framboid of magnetite, hematite, sphalerite or chalcopyrite, etc; Under the conditions of acidic weak oxidation and high [Fe][S] saturation, microcrystals in pyrite fromboids can slowly grow up, microcrystal diameter is bigger, so framboid diameter is bigger with microsrystal; Under the conditions of acidic weaker oxidation even anoxia and low [Fe][S] saturation, pyrite framboids gradually developed to euhedral crystal, first formed euhedral pyrite made of microcrystal, then microcrystal recrystallized and fused, last formed single euhedral pyrite, such as cube, octahedron, or pentagonal dodecahedron crystal.
     By analysizing and researching for pyrite framboid, trace element, the coupling of the high-resolution C-S isotope records across the Frasnian-Famennian boundary in Guilin, Guangxi. The C isotope means whole-rock inorganic C isotope, the S isotope means sulfur isotopic composition of carbonate associated sulfate (CAS). We discover that C-S isotope records showed coupled change in synchronization from No.36layer to No.39layer, the C-S isotope record showed the characteristic of positive excursion as a whole in the event layers, but the C isotope and S isotope records displayed unsynchronized vibration, respectively. Above Frasnian-Famennian transition, firstly, C-S isotope records didn't show coupled change in synchronization, that was, C isotope records continued positive excursion, to the top of No.41layer, C isotope records gradually went back, but S isotope records began already negative excursion, C-S isotope records showed coupling of negative excursion in synchronization above the top of No.41layer. The quantity of pyrite framboid was very rare from No.36layer to No.39layer, increased till to No.40layer, but the quantity still was low as a whole, framboid diameters were not big, below10μm, framboid diameters reached15μm only in a few layers, framboid diameters began to largen at the top of No.40layer, most pyrite framboids were up to10μm, the quantity of pyrite framboids began to increase greatly, framboid diameters increased, too, even exceeded30μm in No.42layer. By analysizing the data of trace elements and the occurrence state of pyrite framboids, we exclude these factors of volcanism and errigenous input and consider transient fluctuation of C-S isotope records could be primarily related to pulsatile hydrothermal activity in the bottom of ocean, The Frasnian--Famennian Mass Extinction could be also related to hydrothermal activity, because hydrothermal activity leaded to deep and middle water heated, H2S in those water happened degassing owing to heated water and upwelled to surface water, consumed plenty of oxygen, leaded to mass extinction in shallow continental shelves due to damage from hypoxia and toxic gas, the deep hot water upwelled to surface water soon afterwards, leaded to S isotope records showing quickly negative excursion then recovered quickly. At the same time, hydrothermal activity could lead to organic matter pyrolysis and variation of redox in the study area, all those were the cause of transient fluctuation of C-S isotope records in the event layers. The result was consistent with the occurrence state of pyrite framboids such as framboid diameter mostly below10μm, up to15μm only in a few layers, corrosion and oxidation of some pyrites across the Frasnian-Famennian boundary, meanwhile, accorded with redox state by analyzing trace metals, that was, The event layers were under weak oxidation environment as a while, but had fluctuation between weak oxidation and reduction environment. Above the Frasnian-Famennian boundary, S isotope records began negative excursion, but C isotope records continued positive excursion, then began to fall slowly, these could be related to gradually increasing oxidizability. When oxidizability in surface water increased, the thiobacterias or sulfur-containing compounds were more easily oxidized to SO42-with low δ34S entering into seawater, So δ34SCAS value began negative excursion, at the same time, increased oxidizability maked marine ecosystem gain ecological repair, microbe activity weakened, macro-organisms started to recover, probably terrestrial inputs added, the increased quantity of pyrite framboids could account for this, at the moment primary productivity decreased, those factors leaded to sulfur isotope showing negative excursion,δ12C value showing positive excursion then negative excursion.
引文
[1]Schneiderhohn H. Chalkographische Untersuchung desMansfelder Kupferschiefers. Neues Jahrb Mineral Geol Palaeontol,1923,47:1-38.
    [2]Rust GW. Colloidal primary copper Ores at Cornwall Mines, Southeastern Missouri. The Journal of Geology,1935,43:398-426.
    [3]Ohfuji H, Rickard D. Experimental syntheses of framboids-review. Earth-Science Reviews,2005,71(3-4):147-170.
    [4]Hallbauer DK. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter. In CR Anhaeusser and S Maske, Eds, Mineral Deposits of Southern Africa, Geological Society of South Africa,1986:731-752,.
    [5]Marynowski L, Zaton M, Karwowski L. Early diagenetic conditions during formation of the Callovian (Middle Jurassic) carbonate concretions from Lukow (eastern Poland): evidence from organic geochemistry, pyrite framboid diameters and petrographic study. Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen,2008,247(2):191-208.
    [6]Chang HJ, Chu XL, Feng LJ, Huang J. Framboidal pyrites in cherts of the Laobao Formation, South China:Evidence for anoxic deep ocean in the terminal Ediacaran. Acta Petrologica Sinica,2009,25(4):1001-1007.
    [7]Love LG, Amstutz GC. Framboidal pyrite in two andesites. Neues Jahrbuch fur Mineralogie-Abhandlungen,1969,3:97-108.
    [8]Steinike K. A further remark on biogenic sulfides; inorganic pyrite spheres. Economic Geology,1963,58(6):998-1000.
    [9]Rachel AM, Bruce SM. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA. Paleoenvironments and taphonomy of Cambrian Lagerstatten 2009,277(1-2):57-62.
    [10]Garcia-Guinea J, Martinez-Frias J, Gonzalez-Martin R, Zamora L. Framboidal pyrites in antique books. Nature,1997,388(6643):631-631.
    [11]Wilkin RT, Arthur MA, Dean WE. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth and Planetary Science Letters,1997, 148(3-4):517-525.
    [12]Grimes ST, Brock F, Rickard D, et al. Understanding fossilization:Experimental pyritization of plants. Geology,2001,29(2):123-126.
    [13]Berner RA. The synthesis of framboidal pyrite. Economic Geology,1969,64(4):383-384.
    [14]Raiswell R. Pyrite texture, isotopic composition and the availability of iron. Am J Sci,1982, 282(8):1244-1263.
    [15]Kalliokoski J. Diagenetic pyritization in three sedimentary rocks. Economic Geology,1966, 61(5):872-885.
    [16]Love LG. Biogenic primary sulfide of the Permian Kupferschiefer and Marl Slate. Economic Geology,1962,57(3):350-366.
    [17]Love LG, Murray JW. Biogenic pyrite in recent sediments of Christchurch harbour, England. Am J Sci,1963,261(5):433-448.
    [18]Suits NS, Wilkin RT. Pyrite formation in the water column and sediments of a meromictic lake. Geology,1998,26(12):1099-1102.
    [19]Sweeney RE, Kaplan IR. Pyrite Framboid Formation; Laboratory Synthesis and Marine Sediments. Economic Geology,1973,68(5):618-634.
    [20]Graham UM, Ohmoto H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochimica et Cosmochimica Acta,1994,58(10):2187-2202.
    [21]Vallentyne JR. Isolation of Pyrite Spherules from Recent Sediments. Limnol & Oceanogr, 1963,8:16-30.
    [22]Popa R, Kinkle BK, Badescu A. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal,2004,21(3):193-206.
    [23]Love LG. Microorganisms and the presence of syngenetic pyrite. Geol Soc Lond Q J,1957, 113:429-440.
    [24]Kribek B. The origin of framboidal pyrite as a surface effect of sulphur grains Mineralium Deposita,1975,10(4):389-396.
    [25]Papunen H. Framboidal texture of the pyritic layer found in a peat bog in SE Finland. Bull Comm Geol Finlande,1966,222:117-125.
    [26]Raiswell R, Whaler K, Dean S, Coleman ML, Briggs DEG. A Simple 3-Dimensional Model of Diffusion-with-Precipitation Applied to Localized Pyrite Formation in Framboids, Fossils and Derrital Iron Minerals. Marine Geology,1993,113(1-2):89-100.
    [27]Wilkin RT, Barnes HL, Brantley SL. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions. Geochimica et Cosmochimica Acta,1996, 60(20):3897-3912.
    [28]Bottcher ME, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea:Evidence from stable isotopes and pyrite textures. Journal of Marine Systems,2000,25(3-4):299-312.
    [29]Wilkin RT, Arthur MA. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O-2-H2S redox transition. Geochimica et Cosmochimica Acta,2001,65(9):1399-1416.
    [30]Craig JR, Vokes FM, Solberg TN. Pyrite:physical and chemical textures, Mineral. Deposita,1998,34:82-102.
    [31]Passier HF, Middelburg JJ, Lange GJd, Bottcher ME. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean Sapropel Geology,1997,25(6):519-522.
    [32]Wilkin RT, Barnes HL. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta,1996,60(21): 4167-4179.
    [33]Lyons TW, Gill BC. Ancient Sulfur Cycling and Oxygenation of the Early Biosphere. Elements,2010,6(2):93-99.
    [34]Ohmoto H. Stable isotope geochemistry of ore deposits. In:Valley J W, Taylor H P, O'Neil J R, eds. Stable Isotopes in High Temperature Geological Processes. Reviews in Minerology 16 Washington D C:Mineralogical Society of America,1986:491-559.
    [35]Ohmoto H, Rye RO. Isotopes of Sulfur and Carbon. In:Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits.2nd ed New York:Wiley,1979:509-567.
    [36]Canfield DE, Raiswell R. The evolution of the sulfur cycle. American Journal of Science 1999,299(7-9):697-723.
    [37]Johnston DT, Farquhar J, Habicht KS, Canfield DE. Sulphur isotopes and the search for life:strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology,2008,6(5):425-435.
    [38]Mayer B, Krouse HR, Prietzel J. The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Applied Geochemistry 2001, 16(9-10):1003-1019.
    [39]Novak M, Adamova M, Milicic J. Sulfur Metabolism in Polluted Sphagnum Peat Bogs:A Combined 34S-35S-210Pb Study Water, Air, and Soil Pollution,2003,3(1):181-200.
    [40]Williford KH, Foriel J, Ward PD, Steig EJ. Major perturbation in sulfur cycling at the Triassic-Jurassic boundary. Geology,2009,37(9):835-838.
    [41]Gabbott SE, Norry MJ, Aldridge RJ, Theron JN. Preservation of fossils in clay minerals; a unique example from the Upper Ordovician Soom Shale, South Africa. Proceedings of the Yorkshire Geological Society,2001,53:237-244.
    [42]Ron H, Kolodny Y. Paleomagnetic and rock magnetic study of combustion metamorphic rocks in Israel. Journal of Geophysical Research:Solid Earth,1992,97(B5):6927-6939.
    [43]Loucks RG, Reed RM, Ruppel SC, Jarvie DM. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research,2009,79(12):848-861.
    [44]Henry D, Dutrow B. Tourmaline in a low grade clastic metasedimentary rock:an example of the petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology, 1992,112(2-3):203-218.
    [45]Gong YM, Shi GR, Weldon EA, Du YS, Xu R. Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia. Geological Magazine,2008,145(1):95-103.
    [46]Bond DPG, Wignall PB. Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin,2010,122(7-8):1265-1279.
    [47]Garcia-Guinea J, Martinez-Frias J, Harffy M. Cell-hosted pyrite framboids in fossil woods. Naturwissenschaften,1998,85(2):78-81.
    [48]Schieber J, Baird G. On the Origin and Significance of Pyrite Spheres in Devonian Black Shales of North America. Journal of Sedimentary Research,2001,71(1):155-166.
    [49]Cavalazzi B, Barbieri R, Cady SL, et al. Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco:Evidence of potential microbial biosignatures. Sedimentary Geology,263-264(0):183-193.
    [50]Cavalazzi B, Barbieri R, Cady SL, et al. Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco:Evidence of potential microbial biosignatures. Sedimentary Geology,2012,263-264(0):183-193.
    [51]董榕生.中国南方大地构造演化及泥盆纪古构造格局.成都理工大学学报1992,19(2):58-64.
    [52]吴诒,周怀玲,蒋廷操.广西泥盆纪沉积相古地理及矿产.南京:广西人民出版社1987:1-292.
    [53]陈代钊,陈其英.华南泥盆纪沉积演化及海水进退规程.地质科学,1994,29:246-255.
    [54]刘文均,陈源仁,郑荣才.龙门山地区泥盆纪层序地层划分、对比和海平面相对变化.刘文均,陈源仁 层序地层成都:成都科技大学出版社,1996.
    [55]徐冉,龚一鸣,汤中道.茵藻类繁盛:晚泥盆世大灭绝的疑凶?地球科学:中国地质大学学报,2006,31(6):787-797.
    [56]张立军.遗迹化石Zoophycos的地球生物学研究.博士学位论文:中国地质大学(武汉),2011:1-149.
    [57]梅什龙,史晓颖,陈学方,孙克勤,颜佳新.黔南桂中二叠系Cisuralian统和Guadalupian统层序地层及其与牙形石演化的关系.地球科学--中国地质大学学报,1999,24(1):21-31.
    [58]沙庆安,吴望始,傅家谟.黔桂地区二叠系综合研究------兼论含油气性.北京:科学出版社,1990:1-207.
    [59]梅仕龙,朱自力,史晓颖,孙克勤,李斌.广西中部二叠系乐平统层序地层研究.现代地质,1999,13(1):11-18.
    [60]Perry KA, Pedersen TF. Sulphur speciation and pyrite formation in meromictic ex-fjords. Geochimica et Cosmochimica Acta,1993,57(18):4405-4418.
    [61]Sapota T. Morphology, internal structure and chemical composition of oxidized pyrite framboids from sediments of Lake Baikal, Siberia. Neues Jahrbuch Fur Mineralogie-Abhandlungen,2005,181(2):111-123.
    [62]Ostwald J, England BM. The relationship between euhedral and framboidal pyrite in base-metal sulfide ores. Mineralogical Magazine 1979,43.
    [63]Lewicka-Szczebak D, Trojanowska A, Gorka M, Jedrysek MO. Sulphur isotope mass balance of dissolved sulphate ion in a freshwater dam reservoir. Environmental Chemistry Letters,2008,6(3):169-173.
    [64]Chang HJ, Chu XL, Huang J, Feng LJ, Zhang QR. Terminal Ediacaran oceanic anoxia: Evidence from framboidal pyrites in the cherts of Laobao Formation (South China). Geochimica et Cosmochimica Acta,2009,73(13):A208-A208.
    [65]Haynes DW. Stratiform copper deposits hosted by low-energy sediments; Ⅰ, Timing of sulfide precipitation, an hypothesis. Economic Geology,1986,81(2):250-265.
    [66]Farrand M. Framboidal sulphides precipitated synthetically Mineralium Deposita,1970, 5(3):237-247.
    [67]Goldhaber MB, Kaplan IR. The sulfur cycle, in:E.D. Goldberg (Ed.), The Sea, vol.5,Wiley, New York 1974:569-655.
    [68]Kalogeropoulos SI. A Mechanism for Framboid Formation as Illustrated by a Volcanic Exhalative Sediment-a Discussion. Mineralium Deposita,1983,18(1):127-128.
    [69]Bennett CEG, Graham J. New observations on natural pyrrhotites,Part III. Thermomagnetic experiments. AmMinera,1980,65:800-807.
    [70]Wilkin RT, Barnes HL. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta,1997,61(2):323-339.
    [71]Schoonen MAA, Barnes HL. Reactions forming pyrite and marcasite from solution:II. Via FeS precursors below 100℃. Geochimica et Cosmochimica Acta,1991,55(6):1505-1514.
    [72]Wang Q, Morse JW. Pyrite formation under conditions approximating those in anoxic sediments:I. Pathway and morphology. Marine chemistry 1996,52(2):99-121.
    [73]Canfield DE, Raiswell R. Pyrite formation and fossil preservation, in Allison, P.A., and Briggs, D.E.G., editors, Taphonomy:Releasing the Data Locked in the Fossil Record. New York:Plenum Press,1991:337-387.
    [74]Kelly DP. Sulfur bacteria first again. Nature,1987,326:830.
    [75]Bak F, Cypionka H. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature,1987,326(6116):891-892.
    [76]Thamdrup B, Finster K, Hansen JW, Bak F. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese. Appl Environ Microbiol, 1993,59(1):101-108.
    [77]Schoonen MAA. Mechanisms of sedimentary pyrite formation. In:GSA Special Paper, 2004,379:117-134.
    [78]Rona PA, Klinkhammer G, Nelsen TA, Trefry JH, Elderfield H. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge, nature,1986,321(6065):33-37.
    [79]Kelley DS, Karson JA, Blackman DK, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30[deg] N. nature,2001,412(6843):145-149.
    [80]Little CTS, Cann JR, Herrington RJ, Morisseau M. Late Cretaeous hydrothermal vent communities from the troodos ophilite.Cyprus. Geology,1999,27(11):1027-1030.
    [81]Roberts AP, Turner GM. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and planetary science letters,1993,115(1-4):257-273.
    [82]Luther Iii GW. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta,1991,55(10):2839-2849.
    [83]Trudinger P, Swaine D. Biogeochemical cycling of mineral-forming elements. New York: Amsterdam,1979:293-352.
    [84]Finegold SM. Desulfovibrio species are potentially important in regressive autism. Medical Hypotheses,2011,77(2):270-274.
    [85]Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H. Phylogenetic Analysis of the Genus Desulfotomaculum:Evidence for the Misclassification of Desulfotomaculum guttoideum and Description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. International Journal of Systematic Bacteriology,1997,47(4):1134-1139.
    [86]Leathen WW, Kinsel NA, Braley SA. Ferrobacillus ferrooxidans:a chemosynthetic autotrophic bacterium. Journal of Bacteriology,1956,72(5):700-704.
    [87]Rawlings DE, Kusano T. Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews,1994,58(1):39-55.
    [88]Juszczak A, Domka F, Kozlowski M, Wachowska H. Microbial desulfurization of coal with Thiobacillus ferrooxidans bacteria. Fuel,1995,74(5):725-728.
    [89]夏学惠.从西南硫矿带内黄铁矿生物组构论微生物成矿作用.沉积学报,1993,11(4):85-90.
    [90]蔡浩然.液晶态生物膜.科学通报,1978,23(4):209-218.
    [91]So CM, Young LY. Isolation and Characterization of a Sulfate-Reducing Bacterium That Anaerobically Degrades Alkanes. Applied and Environmental Microbiology,1999,65(7): 2969-2976.
    [92]Boyle AW, Phelps CD, Young LY. Isolation from Estuarine Sediments of aDesulfovibrio Strain Which Can Grow on Lactate Coupled to the Reductive Dehalogenation of 2,4,6-Tribromophenol. Applied and Environmental Microbiology,1999,65(3):1133-1140.
    [93]余江滨,潘侊.原始黄铁矿莓体的发现与研究.矿物学报,1988,4:357-362.
    [94]Raiswell R, Newton R, Wignall PB. An Indicator of Water-Column Anoxia:Resolution of Biofacies Variations in the Kimmeridge Clay (Upper Jurassic, U.K.). Journal of Sedimentary Research,2001,71(2):286-294.
    [95]Lash GG, Blood DR. Origin of Shale Fabric by Mechanical Compaction of Flocculated Clay:Evidence from the Upper Devonian Rhinestreet Shale, Western New York, U.S.A. Journal of Sedimentary Research,2004,74(1):110-116.
    [96]Shen WJ, Lin YT, Xu L, Li JF, Wu YS, Sung YG. Pyrite framboids in the Pennian-Triassic boundary section at Meishan, China:Evidence for dysoxic deposition. Palaeogeography Palaeoclimatology Palaeoecology,2007,253(3-4):323-331.
    [97]Ohfuji H, Boyle AP, Prior DJ, Rickard D. Structure of framboidal pyrite:An electron backscatter diffraction study. American Mineralogist,2005,90(11-12):1693-1704.
    [98]Van Der Voo R, Torsvik TH. The history of remagnetization of sedimentary rocks: deceptions, developments and discoveries. Geological Society, London, Special Publications,2012,371(1):23-53.
    [99]Large DJ, Fortey NJ, Milodowski AE, Christy AG, Dodd J. Petrographic observations of iron, copper, and zinc sulfides in freshwater canal sediment. Journal of Sedimentary Research,2001,71(1):61-69.
    [100]Solomon M, Gaspar OC. Textures of the Hellyer volcanic-hosted massive sulfide deposit, Tasmania-the aging of a sulfide sediment on the sea floor. Economic Geology and the Bulletin of the Society of Economic Geologists,2001,96(7):1513-1534.
    [101]Skei JM. Formation of Framboidal Iron Sulfide in the Water of a Permanently Anoxic Fjord-Framvaren, South-Norway. Marine Chemistry,1988,23(3-4):345-352.
    [102]Bailey JV, Raub TD, Meckler AN, et al. Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,285(1-2):131-142.
    [103]Butler IB, Rickard D. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta,2000,64(15): 2665-2672.
    [104]Morse JW, Wang Q. Pyrite formation under conditions approximating those in anoxic sediments. Ⅱ. Influence of precursor iron minerals and organic matter. Marine Chemistry, 1997,57(3-4):187-193.
    [105]Popa R, Schelble RT, Douglas S, Nealson KH. Searching for Biosignatures in Pyrite Framboids. American Geophysical Union, Fall Meeting 2004,85(47).
    [106]Berner RA. Sedimentary pyrite formation:An update. Geochimica et Cosmochimica Acta, 1984,48(4):605-615.
    [107]Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE. Calibration of Sulfate Levels in the Archean Ocean. Science,2002,298(5602):2372-2374.
    [108]Canfield DE, Thamdrup B, Fleischer S. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfurdisproportionating bacteria. Limnol Oceanogr,1998,43(2):253-264.
    [109]MaClean LCW, Tyliszczak T, Gilbert PUPA, et al. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology,2008,6(5):471-480.
    [110]Jones B, Renaut RW, Konhauser KO. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology,2005,52(6): 1229-1252.
    [111]Wallace L, Welch SA, Kirste D, Beavis S, McPhail DC. Characteristics of inland acid sulfate soils of the Lower Murray floodplains, South Australia. Regolith,2005:326-328.
    [112]李洪星,陆现彩,边立曾,et a1.有孔虫壳体内草莓状黄铁矿成因及其地质意义——以湖北雁门口地区栖霞组有孔虫化石为例.高校地质学报,2009,15(4):470-476.
    [113]MacLean LCW, Pray TJ, Onstott TC, Brodie EL, Hazen TC, Southam G. Mineralogical, Chemical and Biological Characterization of an Anaerobic Biofilm Collected from a Borehole in a Deep Gold Mine in South Africa. Geomicrobiology Journal 2007,24(6): 491-504.
    [114]Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology,2008, 36(8):663-666.
    [115]Ixer RA, Vaughan DJ. Lead-Zinc-Flourite-Baryte depsites of the Pennines, Northe Wales and Mendips. In:Pattrick, R.A. Polya, D.A. eds Mineralization in the British Isles. London: Chapman and Hall,1993:355-418.
    [116]Suk D, Voo RVD, Peacor DR. Origin of magnetite responsible for remagnetization of early Paleozoic limestones of New York State. Journal of Geophysical Research:Solid Earth,1993,98(B1):419-434.
    [117]Elmore RD, Engel MH, Crawford L, Nick K, Imbus S, Sofer Z. Evidence for a relationship between hydrocarbons and authigenic magnetite. Nature,1987,325(6103):428-430.
    [118]McCabe C, Sassen R, Saffer B. Occurrence of secondary magnetite within biodegraded oil. Geology,1987,15(1):7-10.
    [119]Suk D, Peacor DR, der Voo RV. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature,1990,345(6276):611-613.
    [120]Raybould JG. Framboidal pyrite associated with lead-zinc mineral-ization in mid-Wales. Lithos,1973,6:175-182.
    [121]Charisi SD, Schmitz B. Stable (δ13C,δ18O) and strontium () isotopes through the Paleocene at Gebel Aweina, eastern Tethyan region. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,116(1-2):103-129.
    [122]Schmitz B, Speijer RP, Aubry M-P. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt):Foraminiferal stable isotopic (813C,8180) records. Geology,1996,24(4):347-350.
    [123]Schmitz B, Charisi SD, Thompson El, Speijer RP. Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova,1997,9(2):95-99.
    [124]Rickard DT. Experimental concentration-time curves for the iron (Ⅱ) sulphide precipitation process in aqueous solutions and their interpretation. Chemical Geology,1989,78: 315-324.
    [125]Love LG, Amstutz GC. Review of microscopic pyrite from the Devonian Chattanooga shale aiid Rammelsberg Banderz. Fortschritte der Mineralogie 1966,43:273-309.
    [126]Sawlowicz Z. Pyrite Framboids and Their Development-a New Conceptual Mechanism. Geologische Rundschau,1993,82(1):148-156.
    [127]Love LG Micro-organic material with diagenetic pyrite from the lower Proterozoic Mount Isa Shale and a Carboniferous shale. Proceedings of the Yorkshire Geological Societ,1965, 35:187-201.
    [128]Kalliokoski J. Framboids:colloid-crystals of pyrite (abstract). Economic Geology 1965,60: 1562.
    [129]Ostwald J, England BM. Notes on framboidal pyrite from Allandale New South Wales. Mineralium Deposita,1977,12(1):111-116.
    [130]Sawlowicz Z. Framboidal pyrite from the metamorphic Radzimowice Schists of Stara Gora (Lower Silesia, Poland). Mineralogia Polonica,1987,18(1):57-67.
    [131]Merinero R, Lunar R, Martinez-Fiias J, Somoza L, Diaz-del-Rio V. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology,2008,25(8):706-713.
    [132]曾剑威,徐冉,龚一鸣.泥盆纪F-F之交海底热液活动与海洋酸化:来自稀土元素的证据.中国科学:地球科学,2011,41(8):1089-1099.
    [133]初凤友,陈丽蓉,中顺喜,李安春,石学法.南黄海自生黄铁矿成因及其环境指示意义.海洋与湖沼,1995,26(3):227-233.
    [134]Soliman MF, El Goresy A. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt:Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite. Geochimica et Cosmochimica Acta,2012,90(0):195-220.
    [135]Weber PA, Stewart WA, Skinner WM, Weisener CG, Thomas JE, Smart RSC. Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry,2004,19(12):1953-1974.
    [136]Morse JW, Berner RA. What determines sedimentary CS ratios7 Geochimica et Cosmochimica Acta,1995,59(6):1073-1077.
    [137]Howarth RW. Pyrite:Its Rapid Formation in a Salt Marsh and Its Importance in Ecosystem Metabolism. Science,2003,203(4375):49-51.
    [138]徐国风,邵连洁.黄铁矿的标型特征及其实际意义.地质论评,1980,26(6):541-546.
    [139]Howarth RW, Pyrite:Its Rapid Formation in a Salt Marsh and Its Importance in Ecosystem Metabolism. Science,1979,203(4375):49-51.
    [140]陈光远,孙岱生,张立,臧维生,王健,鲁安怀.黄铁矿成因形态学.现代地质,1987,1(1):60-76.
    [141]Murowchick JB, Barnes HL. Effects of temperature and degree of supersaturation on pyrite morphology. American Mineralogist,1987,72(11-22):1241-1250.
    [142]Aragon G, Miguens F. Microscopic analysis of pyrite in the sediments of two Brazilian mangrove ecosystems. Geo-Marine Letters,2001,21(3):157-161.
    [143]Buggisch W. The global Frasnian-Famennian "Kellwasser Event". Geologische Rundschau, 1991,80(1):49-72.
    [144]龚一鸣,李保华,吴诒.广西弗拉阶-法门阶之交碳同位素与分子地层对比研究.地学前缘,2002,9(3):151-160.
    [145]Mcghee GR. The Late Devonian Mass Extinction:The Frasnian/Famennian Crisis New York:Columbia University Press,1996:1-327.
    [146]Girard C, Lecuyer C. Variations in Ce anomalies of conodonts through the Fransnian/ Famennian boundary of Poland (Kowala-Holy Cross Mountains):Implications for the redox state of seawater and biodiverstiy. Palaeogeo Plaeoclimat Palaeoec,2002,181(13): 299-311.
    [147]Joachimski MM. Comparison of organic and inorganic carbon isotope patterns across the Frasnian-Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,1997, 132(1-4):133-145.
    [148]Joachimski MM, Ostertag-Henning C, Pancost RD, et al. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala-Holy Cross Mountains/Poland). Chemical Geology,2001,175(1-2): 109-131.
    [149]Joachimski MM, Pancost RD, Freeman KH, Ostertag-Henning C, Buggisch W. Carbon isotope geochemistry of the Frasnian-Famennian transition. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,181(1-3):91-109.
    [150]Chen D, Qing H, Li R. The Late Devonian Frasnian-Famennian (F/F) biotic crisis:Insights from δ13Ccarb,δ13Corg and 87Sr/86Sr isotopic systematics. Earth and Planetary Science Letters,2005,235(1-2):151-166.
    [151]Zheng Y, Hong-Fei H, Lian-Fang Y. Carbon and oxygen isotope event markers near the Frasnian-Famennian boundary, Luoxiu section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,1993,104(1-4):97-104.
    [152]Gorjan P, Kakegawa T, Casier JG, Kaiho K. A δ34Ssulfate increase at the Frasnian-Famennian (Late Devonian) transition. Geochimica et Cosmochimica Acta,2006, 70(18):A210-A210.
    [153]Giles KA, McMillan NJ, McCarson BL. Geochemical analysis and paleoecological implications of phosphatic microspherules (otoliths?) from Frasnian-Famennian boundary strata in the Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 181(1-3):111-125.
    [154]Pujol F, Berner Z, Stiiben D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections:Chemostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,240(1-2):120-145.
    [155]Gong Y-M, Li B-H, Wang C-Y, Wu Y. Orbital cyclostratigraphy of the Devonian Frasnian-Famennian transition in South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,168(3-4):237-248.
    [156]Chen D, Tucker ME. The Frasnian-Famennian mass extinction:insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,193(1):87-111.
    [157]Crick RE, Ellwood BB, Feist R, et al. Magnetostratigraphy susceptibility of the Frasnian/Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 181(1-3):67-90.
    [158]Schindler E. Event-stratigraphic markers within the Kellwasser crisis near the Frasnian/Famennian boundary (upper Devonian) in Germany, Palaeogeography, Palaeoclimatology, Palaeoecology,1993,104(1-4):115-125.
    [159]Racki G, Racka M, Matyja H, Devleeschouwer X. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins:integrated event-stratigraphical approach. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,181(1-3):251-297.
    [160]Mclaren DJ. Presidential address:time, life and boundaries. Journal of Paleontology,1970, 44(5):801-815.
    [161]Leroux H, Warme JE, Doukhan J-C. Shocked quartz in the Alamo breccia, southern Nevada:Evidence for a Devonian impact event. Geology,1995,23(11):1003-1006.
    [162]Over DJ, Conaway CA, Katz DJ, Goodfellow WD, Gregoire DC. Platinum group element enrichments and possible chondritic Ru:Ir across the Frasnian-Famennian boundary, western New York State. Palaeogeography, Palaeoclimatology, Palaeoecology,1997, 132(1-4):399-410.
    [163]Nicoll RS, Playford PE. Upper Devonian iridium anomalies, conodont zonation and the Frasnian-Famennian boundary in the Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology,1993,104(1-4):105-113.
    [164]Claeys P, Casier JG. Microtektite-like impact glass associated with the Frasnian-Famennian boundary mass extinction. Earth and Planetary Science Letters,1994,122(3-4):303-315.
    [165]Ma XP, Bai SL. Biological, depositional, microspherule, and geochemical records of the Frasnian/Famennian boundary beds, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,181(1-3):325-346.
    [166]Racki G. The Frasnian-Famennian biotic crisis:How many (if any) bolide impacts? Geologische Rundschau,1999,87(4):617-632.
    [167]Ma XP, Sun YL, Hao WC, Liao WH. Rugose corals and brachiopods across the Frasnian-Famennian boundary in central Hunan, South China. Acta Palaeontologica Polonica,2002,47(2):373-396.
    [168]Girard C, Robin E, Rocchia R, Froget L, Feist R. Search for impact remains at the Frasnian-Famennian boundary in the stratotype area, southern France. Palaeogeography, Palaeoclimatology, Palaeoecology,1997,132(1-4):391-397.
    [169]Joachimski MM, Buggischl W. Anoxic events in the late Frasnian—Causes of the Frasnian-Famennian faunal crisis? Geology,1993,21(8):675-678.
    [170]Bratton JF, Berry WBN, Morrow JR. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154(3):275-292.
    [171]Casier J-G, Lethiers F, Baudin F. Ostracods, organic matter and anoxic events associated with the Frasnian/Famennian boundary in the Schmidt quarry (Germany). Geobios,1999, 32(6):869-881.
    [172]Bai SL, Bai ZQ, Ma XP. Devonian events and biostratigraphy of South China. Beijing: Peking University Press,1994:1-303.
    [173]龚一呜,李保华.泥盆纪弗拉阶/法门阶之交时间沉积和海平面变化.地球科学——中国地质大学学报,2001,9(3):57-66.
    [174]Bostrom K. Genesis of Ferromanganese deposits diagnostic criteria for recent and old deposits. New York:Plenum Press,1983:473-489.
    [175]Hatch JR, Leventhal JS. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaumsee County, Kansas, USA. Chemical Geology, 1992,99:65-82.
    [176]李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992.
    [177]涂光炽.低温地球化学.北京:科学出版社,1998.
    [178]陈兰.湘黔地区早寒武世黑色岩系沉积学及地球化学研究.中国科学院研究生院博士学位论文,2005.
    [179]高长林.陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义.地球化学1992,4:383-390.
    [180]伊海生,曾允孚,夏文杰.扬子地台东南大陆边缘上震旦统硅质岩的超微组构及其成因.地质评论,1994,68(2):132-142.
    [181]Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology,1995, 119(2-3):213-223.
    [182]刘士林,林舸,周叶,龚发雄,张德圣..南堡凹陷沉积岩化学元素分布特征及多元统计方法研究.地质与资源,2006,15(3):212-217.
    [183]杨兴莲,朱茂炎,赵元龙,张俊明,郭庆军,皮道会.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征.地质评论,2008,54(1):3-15.
    [184]熊国庆,江新胜,蔡习尧,伍皓.藏南白垩系泥,页岩微量,稀土元素特征及氧化-还原环境分析.地球科学进展,2010,25(7):730-745.
    [185]Douville E, Bienvenu P, Charlou JL, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta,1999,63(5): 627-643.
    [186]Owen AW, Armstrong HA, Floyd JD. Rare earth element geochemistry of upper Ordovician cherts from the Southern Uplands of Scotland. Journal of the Geological Society,1999,156(1):191-204.
    [187]Murray RW, Buchholtz Ten Brink MR, Gerlach DC, Russ Iii GP, Jones DL. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California:Assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta,1991,55(7):1875-1895.
    [188]Ruhlin DE, Owen RM. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise:Examination of a seawater scavenging mechanism. Geochimica et Cosmochimica Acta,1986,50(3):393-400.
    [189]许冰,顾兆炎,胡滨,李镇梁.广西上泥盆统F-F界线碳同位素的变化特征.沉积学报, 2004,22(4):603-608.
    [190]龚一鸣,徐冉,汤中道,司远兰,李保华.晚泥盆世FF之交菌藻微生物繁荣与集群绝灭的关系:来自碳同位素和分子化石的启示.中国科学:D辑,2005,35(2):140-148.
    [191]Kump LR, Arthur MA. Interpreting carbon-isotope excursions:carbonates and organic matter. Chemical Geology,1999,161(1-3):181-198.
    [192]Kroopnick P. Correlations between13C and XCO2 in surface waters and atmospheric CO2. Earth and Planetary Science Letters,1974,22(4):397-403.
    [193]Hsue KJ, McKenzie JA. The carbon cycle and atmospheric CO2:Natural variations archean to present; Proceedings of the Chapman Conference on Natural Variations in Carbon Dioxide and the Carbon Cycle. A'Strangelove'ocean in the earliest Tertiary. Washington, DC, American Geophysical Union:Tarpon Springs, FL,1985:487-902.
    [194]Hsu KJ, McKenzie JA. Carbon-isotope anomalies at era boundaries; Global catastrophes and their ultimate cause. Geological Society of America Special Papers,1990,247:61-70.
    [195]McGhee GR, Orth CJ, Quintana LR, Gilmore JS, Olsen EJ. Late Devonian"Kellwasser Event" mass-extinction horizon in Germany:No geochemical evidence for a large-body impact. Geology,1986,14(9):776-779.
    [196]Wang K, Geldsetzer HHJ, Goodfellow WD, Krouse HR. Carbon and sulfur isotope anomalies across the Frasnian-Famennian extinction boundary, Alberta, Canada. Geology, 1996,24(2):187-191.
    [197]Pingitore Jr NE, Meitzner G, Love KM. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy. Geochimica et Cosmochimica Acta,1995,59(12): 2477-2483.
    [198]Stephens NP, Sumner DY. Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,191(2):203-219.
    [199]Ormiston AR, Oglesby RJ. Effect of Late Devonian paleoclimate on source rock quality and location. AAPG Stud Geol,1995,40:105-132.
    [200]Joachimski MM, Buggisch W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian (F-F) mass extinction. Geology,2002,30(8):711-714.
    [201]Averbuch O, Tribovillard N, Devleeschouwer X, Riquier L, Mistiaen B, Vliet-Lanoe BV. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian-Famennian boundary (c.376 Ma)? Terra Nova, 2005,17(1):25-34.
    [202]Algeo TJ, Berner RA, Maynard JB, Scheckler SE. Late Devonian anoxic events and biotic crises:'rooted'in the evolution of vascular land plants? GSA Today,1995,5:63-66.
    [203]McGhee Jr GR. The'Multiple impacts hypothesis'for mass extinction:a comparison of the Late Devonian and the late Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,176(1-4):47-58.
    [204]Ellwood BB, Benoist SL, Hassani AE, Wheeler C, Crick RE. Impact Ejecta Layer from the

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700