山西、河南部分煤中重金属元素的含量及其赋存形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤中重金属元素的含量及其在煤中的赋存状态是影响其在煤炭加工和利用过程中环境效应的决定因素,对煤中的微量元素进行定量和赋存状态的研究,能够为煤中有害微量元素迁移、富集规律提供理论依据,以期寻求有效的可控脱除技术,减少煤中重金属元素的环境危害。因此研究煤中重金属元素的含量和赋存特性具有重要的理论意义和现实意义。
     采用密闭的微波消解装置,利用不同的酸、功率、溶样时间进行多次微波条件实验,寻求最佳溶样效果,确立微波消解处理煤样的优化方法,应用ICP-MS、原子荧光光谱仪、XRD、逐级化学提取分析等多手段测定,分析山西、河南部分煤中的As、Se、Pb、Cr、Cd、Hg等微量重金属元素的含量水平及赋存状态,并应用XRD对煤中的无机矿物组分进行物相分析,深入剖析重金属元素和矿物组分间的亲和关系,揭示了重金属元素在煤中的分布特性,为建立煤中重金属元素聚集的地质地球化学模式提供理论依据。
     (1)从煤样消解方法看,利用密闭微波消解法,采用HNO3-H2O2混合体系达到最佳溶样效果,优化了实验条件,为煤样微波消解提供依据。
     (2)从定量分析的结果看,山西煤样品中铬、硒、汞的平均含量均低于河南煤样品的平均含量,而砷、镉的平均含量略高于河南样品中平均含量。与全国均值相比,山西煤样中铬、砷、镉的平均含量略高于全国均值,铅的平均含量远高于全国均值,硒、汞的平均含量略低于全国均值。河南煤样中铬、砷、硒、镉、铅和汞的平均含量都略高于全国均值。
     (3)从定性分析的结果看,样品中主要存在的矿物为高岭石、方解石和石英,还有部分伊利石、白云石,个别样品中还有白云母、黄铁矿和锐钛矿。
     (4)从赋存状态分析的结果看,煤样中铬、砷、硒、镉、铅和汞均具多种赋存状态,多数元素赋存状态以粘土矿物结合态、有机结合态和硫化物结合态为主,其次为水溶态和可交换态、铁锰氧化物结合态和碳酸盐结合态。
The content of trace metals in coal and their modes of occurrence are the determinant elements which influence their use in coal processing and the process of environmental effects. Studies on quantitative analysis and occurrence characteristics in coal can provide a theoretical basis on hazardous trace elements migration and enrichment rule with a view to finding effective controllable removal technology, which reduces environmental hazards of trace metals in coal. Therefore, there is vitally important theoretical and practical significance to study harmful content of trace metals in coal and the occurrence characteristics.
     In this paper, Using the airtight microwave digestion systems, uses the different acid, the power, the dissolved time to carry on the multiple microwave condition experiment, seeks dissolves the type effect best, the establishment microwave resolution processing coal sample optimized method. ICP-MS, atomic fluorescence spectrometer, XRD, sequential chemical extraction analysis and many other means of measurement are used to analyze As, Se, Pb, Cr, Cd, Hg and other trace element content and occurrence of trace metals status in coal in Shanxi and Henan, and application XRD to phase analysis inorganic mineral compositions in coal, in-depth analysis relationships between trace metals and mineral components, which reveals distribution properties of the trace metals in coal to provides theoretical basis on establishment geological and geochemical model of harmful trace metals gathering in coal.
     (1)From the coal sample resolution method, using the airtight microwave resolution method, uses the HNO3-H2O2 mix system to achieve dissolves the type effect best, optimized the experimental condition, provides the basis for the coal sample microwave resolution.
     (2)From the results of quantitative analysis, the average content of chromium, selenium and mercury in the samples in Shanxi are lower than that of Henan; while the average content of arsenic, cadmium are slightly higher than that of Henan. Compared with the national average, the average content of chromium, arsenic, cadmium are slightly higher; while the lead is far higher and selenium and mercury are slightly lower. The average content of chromium, arsenic, selenium, cadmium, lead and mercury in the samples in Henan are slightly higher than that of the national average.
     (3)From the results of qualitative analysis, in the samples there is mainly kaolinite, calcite and quartz, as well as some of illite, dolomite, and muscovite, pyrite, and anatase exit in individual samples.
     (4)From the results of occurrence analysis, the chromium, the arsenic, the selenium, the cadmium, the lead and the mercury have many kinds of modes of occurrence in the coal sample. Modes of occurrence of the most element focus on the clay mineral union condition, the organic synthesis condition and the sulfide union condition primarily, next for water-soluble condition and the exchange condition, the iron and manganese oxide condition and the carbonate condition.
引文
[1]王志波.民用型煤环境影响与公众健康危害评价[M].北京:原子能出版社,1999.
    [2]任德贻,赵峰华,代世峰等.煤的微量元素地球化学[M].北京:科学出版社,2006.
    [3] Finkelman R B. Mode of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Proc Technol,1994,39(1):21-24.
    [4] Galbreath K C, Toman D L, Zygarlicke C J, et al. Trace element partitioning and transformations during combustion of bituminous and subbituminous U.S. coals in a 7-kW combustion system [J]. Energy Fuel,2000,14(6):1265-1279.
    [5] Yan R, Gauthier D, Flamant G. Volatility and chemistry of trace elements in a coal combustor [J]. Fuel, 2001,80(15):2217-2226.
    [6] Matsuoka K, Abe A, Suzuki Y, et al. Effectiveness of hydrothermal treatment of coal with lime for removal of trace elements[J]. Energy Fuel, 2002, 16(4): 920-924.
    [7] Finkelman R B. Trace and Minor Elements in Coal [J]. In: Engel M H and Macko S A (eds.), Organic Geochemistry. New York: Plenum press,1993,593-607.
    [8] Goodarzi F. Organic petrology and elemental distribution in thermally altered coals from Telkwa [J]. British Columbia. Energy Sources, 1990,12:315-343.
    [9]唐书恒,秦勇,姜尧发等.中国洁净煤地质研究[M].北京:地质出版社,2006.
    [10]王文峰,宋党育,秦勇.煤中有害元素对环境和人体健康影响的评价参数[J].煤矿环境保护,2002,79(1):8-14.
    [11] Swaine D J. Trace element in Coal [J]. London Boston Singapore Sydney Toronto Wellington: Butterworths,1990,1-278.
    [12] Valkovic V. Trace elements in coal [M]. Boca Raton: CRC Press, 1983, 1:1-210;2:1-281.
    [13] Swaine D J. Trace elements in the Permian coals [J]. Aust Bur Miner Resource Geol Geophys Bull, 1989, 231:297-300.
    [14] Meij R, Van der Kooj J, Van der Shiys et al. Characteristics of emitted fly ash and trace elements from utility boilers fired with puberized coal [J]. Kema Csi, Tech Rep, 1984, 2: 1-8.
    [15] Minkin J A, Finkelman E B, Thompson C L et al. Micro-characterisation of arsenic-and selenium-bearing pyrite in Upper-Freeport coal, Indiana County, Pennsylvania [J]. Scanning Electron Microscopy, 1984,4: 1515-1524.
    [16] Goodarzi F. Elemental distribution in coal seams at the Fording Coal Mine, British Columbia,Canada [J]. Chem Geol, 1988,68:129-154.
    [17] Solari J A, Fiedler H, Schnerder C L. Modeling of the distribution of trace elements in coal[J]. Fuel, 1989, 68:536-539.
    [18] Dudas M J. Long tean leachability of selected elements from fly ash [J]. Environ Sci, Techol, 1981, 15:840-843.
    [19] Bou?ka.Geochemistry of Coal [J].Elsevier, Asterdam and Academia, Praha, 1981, 1-284.
    [20] Yan R, Gauthier D,Flamant G. Volatility and chemistry of trace elements in coal combustor[J]. Fuel, 2001, 80:2217-2226.
    [21] Seames W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion [J]. Fuel Processing Technology, 2003, 81:109-125.
    [22] Richaud R, Lachas H, Collot A G et al. Trace mercury concentrations in coals and coal-derived material determined by atomic absorption spectrophotomentry [J]. Fuel, 1998, 77(5):359-368.
    [23] Diaz-Somoano M, Martinez-Alonos A, Tascon J M D et al. Retention of arsenic compounds using limestone in a coal gasification flue gas[J]. In: Li B Q, Liu Z Y (eds). The Poceedings of 10th International Coal Conference, Taiyuan, Shanxi, China. Shanxi Press House of Science and Technology, 1999, 14445-14448.
    [24] Zajusz-Zubek E, Konieczynski J. Dynamics of trace elements release in a coal pyolysis process [J]. Fuel, 2003, 82:1281-1290.
    [25]ЮдовичЯЭ,КетрисМП.ТоксичныеЭлементы-ПримесивИскопаемыхуглях[M].Екатеринóург:УральскоеОтделениеРоссиискОйАкадемииНаук, 2005.
    [26] Goodarzi F. Petrology of subbituminous feed coal as a guide to the capture of mercury by fly ash-influence of depositional environment [J]. International Journal of Coal Geology, 2005, 61(1~2): 1-12.
    [27] Vassilev S V.Trace elements in soild waste products from coal burning at some Bulgarian thermoelectric power stations [J].Fuel, 1994,73(3):367-374.
    [28] Diehl S F,Goldhaber M B, Hatch J R. Modes of occurrence of mercury and other trace elements in coals from the Warrior field, Black Warrior Basin, northwestern Alabama[J]. International Journal of Coal Geology, 2004, 59:193-208.
    [29] Huggins F E. Overview of analytical methods for inorganic constituents in coal [J]. International Journal of Coal Geology, 2002, 50:169-214.
    [30] Hower J C, Robertson J D. Clausthalite in coal [J]. International Journal of Coal Geology, 2003,53(4): 219-225.
    [31] Eary L E, Rai D, Mattigod S V et al. Geochemical factors controlling the mobilization of inorganic constuents from fossil fuel combustion residues:Ⅱ. Review of the minor elemnts. J Environ Qual, 1990, 19:202-214.
    [32] Querol X, Fernández-Turiel J L, López-Soler A. Trace elements in coal and their behaviour during combustion in a large power station [J]. Fuel, 1995,74(3): 331-343.
    [33] Kizilshtein L Ya, Kholodkov Yu I. Ecologically hazardous elements in coals of the Donets Basin [J]. International Journal of Coal Geology, 1999, 40(2-3): 189-197.
    [34] Swaine D J. Why trace elements are important [J]. Fuel Porcessing Technology, 2000, 65-66: 21-23.
    [35] Alastuey A, Jiménez A, Plana F et al. Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain [J]. International Journal of Coal Geology, 2001, 45(4):247-265.
    [36]孙景信, Jervis R E.煤中微量元素及其在燃烧过程中的分布特征[J].中国科学(A辑),1986, (12): 1287-1294.
    [37]周义平.云南某些煤中砷的分布及控制因素[J].煤田地质与勘探, 1983, 11(3):2-8.
    [38]周义平.云南煤中某些微量元素和有毒元素的研究[J].云煤科技, 1985, (3-4):2-8.
    [39]周义平.老厂矿区煤中汞的成因类型和赋存状态[J].煤田地质与勘探, 1994,22(3):17-21.
    [40]许琪.煤中伴生元素的聚集机制及其侵入环境的动态规律[D].北京:中国矿业大学北京研究生部,1988.
    [41]周贤定.赣中地区煤中砷含量的变化规律初探[J].中国煤田地质, 1991, 3(3):39-44.
    [42]郭英延,王延斌,方爱民等.贵州西部晚二叠世煤层中有害微量元素及其分布[J].《煤田地质研究文集》,北京:煤炭工业出版社,1996,188-194.
    [43]肖达先.煤中砷及其赋存状态研究[J].煤炭科学研究总院西安分院文集,西安:陕西出版社,1989,3:36-48.
    [44]钟立军.煤中砷的存在形式及与硫的相关性[J].煤炭分析及利用, 1992, 7(4):21-22.
    [45]张振桴,樊金串,晋菊芳.煤中钴、镉、镍、锰、铜的赋存状态[J].煤炭分析及利用,1991,(4):10-13.
    [46]张振桴,樊金串,晋菊芳等.煤中砷、铅、铍、铬等元素的存在状态[J].燃料化学学报,1992,20(2):206-211.
    [47]张振桴,樊金串.小龙潭煤中砷、铅、铬等元素的结合状态[J].煤炭转化, 1993,16(2):86-88.
    [48]李文华,熊飞,姜英.微量有害元素在高硫煤中的存在状态[J].煤化工, 1994,(4):20-23.
    [49]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D].北京:中国矿业大学北京研究生部.
    [50]陆晓华,Ali A,刘汉珍等.煤中痕量元素分布的多变量分析及实验研究[J].环境化学,1995,14(6):494-499.
    [51]陆晓华,曾汉才,晏蓉等.煤中痕量元素与三态硫关系的模型[J].环境化学,1997,16(4):306-310.
    [52]徐佳全.燃煤中有害元素铬在水体环境中的迁移转化规律[J].中国矿业大学学报,1994,23(1):53-58.
    [53]王运泉,任德贻.煤中微量元素研究的进展[J].煤田地质与勘探, 1994, 22(4):16-20.
    [54]王运泉,任德贻.煤中有机显微组分伴生元素的微区分析[J].煤炭高校青年科学基金学术会议文集,徐州:中国矿业大学出版社,1995,61-65.
    [55]王起超,马如龙.煤及其灰渣中的汞[J].中国环境科学,1997,17(1):76-79.
    [56]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [57]赵峰华,任德贻.燃煤产物中有害元素淋滤试验的研究现状[J].煤田地质与勘探,1998,(4):14-17.
    [58]赵峰华,任德贻,张军营等.煤中有害元素的研究现状及其对环境的保护意义[J].煤矿环境保护,1998a,12(2):20-23.
    [59]冯新斌,洪业汤,洪冰等.煤中汞的赋存状态研究[J].矿物岩石地球化学通报,2001,20(2):71-78.
    [60]冯新斌,倪建宇,洪业汤等.贵州省煤中挥发性和半挥发性微量元素分布规律的初步研究[J].环境化学,1998b,17(2):148-153.
    [61]郭瑞霞,杨建丽,刘东艳等.煤热解过程中无机有害元素的变迁规律[J].环境科学, 2002, 23(5): 1000-1004.
    [62]蒋靖坤,郝吉明,吴烨等.中国燃煤汞排放清单的初步建立[J].环境科学,2005,26(2):34-39.
    [63]刘桂建,王桂梁,张威.煤中微量元素的环境地球化学研究-以兖州矿区为例[M].徐州:中国矿业大学出版社,1999,1-119.
    [64]唐修义,黄文辉等.中国煤中微量元素[M].北京:商务印书馆,2004.
    [65]陈祖兴,刘心中,翁仁贵.煤中微量元素研究进展[J].能源与环境,2008,5:4-6.
    [66] Huggins F E, Int J. Overview of analytical methods for inorganic constituents in coal[J]. Coal Geology,2002,50(1-4):169-214.
    [67]罗琦林,倪海燕.浅论微波消解[J].天津化工,2008,22(2):58-60.
    [68] K.Srogi. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination[J].Analytical Letters,2007,40:199-233.
    [69] Jenny Sun, Rich Hoffman. Evaluation of microwave digestion as the preparation method for mercury-in-coal measurement[J].Energy & Environmental Research Center,1998,815-819.
    [70]王小如.电感耦合等离子体质谱应用实例[M].化学工业出版社,2005.
    [71]赵继尧,唐修义,黄文辉.中国煤中微量元素丰度[J].中国煤田地质,2002,14(增刊):5-13.
    [72]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学研究总院,2003.
    [73]郑刘根,刘桂建,高连芬等.中国煤中砷的含量分布、赋存状态、富集及环境意义[J].地球学报,2006,27(4):355-366.
    [74] Wedepohl K H. The composition of the continental crust[J]. Geochim et Cosmochim Acta, 1995, 59: 1217-1232.
    [75]陈冰如,杨绍晋,钱琴芳等.中国煤矿样品中砷、硒、铬、铀、钍元素含量分布[J].环境科学,1989,10(6):23-26.
    [76]郑刘根,刘桂建,齐翠翠等.中国煤中汞的环境地球化学研究[J].中国科学技术大学学报, 2007, 37(8):953-963.
    [77] Finkelman R B. What we do not know about the occurrence and distribution of the trace elements in coal [J]. J of Coal Qualilty, 1989, 8: 63-66.
    [78] Goodarzi F, Foscolos A E, Cameron A R. Mineral matter and elemental concentration in selected western Canadian coals [J]. Fuel, 1989, 64: 1599-1605.
    [79] Wandless A M. The occurrence of sulfur in British coals [J]. J Inst Fuel, 1959, 32:258-266.
    [80]刘金钟,许云秋.次火山热变质煤中Ge、Ga、As、S的分布特征[J].煤田地质与勘探, 1992, 20(5): 27-32.
    [81]张军营.煤中潜在毒害微量元素富集规律及其污染性抑制研究[D].北京:中国矿业大学,1999.
    [82]代世峰.煤中伴生元素的地质地球化学习性与富集模式[D].北京:中国矿业大学,2002.
    [83] Cavender P F, Spears D A. Analysis of forms of sulfur within coal, and minor and trace element associations with pyrite by ICP analysis of extraction solutions[J]. In: Pajares J A, Tascon J M D (eds). Coal Science, VolⅡCoal Sci Tchnol. Amsterdam: Elsevier, 1995,24:1653-1656.
    [84] Davidson R M. Modes of occurrence of trace elements in coal[R]. Report CCC/36 InternationalEnergy Agency Coal Research, London. 2000, 36pp, with appendices on CD-ROM.
    [85]王运泉.煤及其燃烧产物中微量元素分布赋存特征研究[D].北京:中国矿业大学北京研究生部,1994.
    [86]张军营,任德贻,赵峰华等.煤中微量元素赋存状态研究方法[J].煤炭转化, 1998, 21(4): 12-17.
    [87]代世峰,任德贻,孙玉壮等.鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取[J].煤炭学报, 2004,29(增刊):56-60.
    [88] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-844.
    [89]刘桂建,彭子成.煤中微量元素富集的主要因素分析[J].煤田地质与勘探,2001,29(4):1-4.
    [90]秦勇,王文峰,宋党育.太西煤中有害元素在洗选过程中的迁移行为与机理[J].燃料化学学报,2002,30(2):148-150.
    [91]樊金串,樊民强.煤中微量元素间依存关系的聚类分析[J].燃料化学学报,2000,28(2):157-161.
    [92] Clarke L B. The fate of trace elements during Coal Combustion and gasification, an overview[J]. Fuel, 1993,72 (6):731-736.
    [93]冯新斌,洪业汤.煤中微量元素的环境地球化学[J].矿物岩石地球化学通报,1997,16(4).
    [94]韩军,程俊峰,曾汉才.燃煤中重金属控制技术[J].洁净煤燃烧与发电技术,2000,3(31):5-10.
    [95] Meij R. Mass balance study of trace elements in a coal-fired power plant with a wet FGD facility [J]. International Conference Proceedings on Elemental Analysis of Coal and Its By-Products, 1992, 299.
    [96] Renninger S A, Farthing G A, Ghorishi S B et al. Using wet FGD systems to absorb mercury[J]. Power, 2004, 148(8):44-49.
    [97] Connolly, J.R. Introduction Quantitative X-Ray Diffraction Methods. Introduction to X-Ray Powder Diffraction, Spring, 2003, 1-14.
    [98] Connolly, a. R. Sample Preparation and Systematic Diffractometer Errors. Introduction to X-Ray Powder Diffraction, Spring, 2005.
    [99]李建欣.XRD全谱拟合精修对贵州煤中矿物质的定量研究[D].河南理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700