核素在高放废物地质处置预选场的迁移行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性核素的迁移行为研究是高放废物地质处置中的一项热门难点研究内容。本论文从水动力学、水文地球化学角度对放射性核素U和Sr在中国高放废物北山处置库预选场花岗岩裂隙水中的运动特征展开研究。预测了处置库破坏后核素的迁移行为。本项研究主要的工作和创新成果如下:
     (1)通过研究高放废物处置预选场研究区裂隙水水文地质特征与水动力特性,建立核废物处置场地下水运动的概念模型和迁移模型,并推导出岩石裂隙地下水中的数值解。在此基础上,利用MATLAB计算核素U、Sr在花岗岩裂隙域与基质域中的相对浓度分布和迁移距离。在花岗岩裂隙域中,U在地下水中迁移距离为500~700米,而Sr迁移距离为1400~1600米,Sr在地下水中迁移的距离比U要长;核素U、Sr在基质域中,迁移距离相同点处的核素相对浓度都随扩散距离增大而减小。
     (2)通过水文地球化学模拟软件PHREEQC -Ⅱ对研究区钻孔地下水和乌龙泉水中U、Sr元素形态计算分析表明地下水中铀的主要形态仍以UO_2(CO_3)_3~(4-)、UO_2(CO_3)_2~(2-)、UO_2CO_3~0和(UO_2)_3(OH)_5~+为主,锶主要形态为Sr~(2+)和SrSO_4~0占据主导地位。对比污染物(铀和锶)全部进入含水层后和天然状态下的U、Sr的形态分布结果表明元素形态分布大致相同,但含量有一定变化。
     (3)利用PHREEQC -Ⅱ分别模拟污染物铀、锶连续源和瞬时源进入研究区地下水后浓度随时空的分布。同时还对迁移的pH、弥散度、扩散系数和温度等影响因素进行模拟分析。模拟结果表明:瞬时源进入地下水后,728年后,铀含量已迁移到极限距离。连续源情况下,同一距离处U、Sr元素的浓度随着时间的迁移不断升高,直至达到初始浓度;在6952年的时候1995m处铀浓度达到其值为2.07×10~(-6)mol/L、锶浓度其值为5.63×10~(-6)mol/L,均接近国家饮用水卫生标准。
     (4)采用批式法测定不同因素如pH值、浓度、温度等对铀在北山处置场粉碎花岗岩岩石中分配系数K_d值的影响。结果表明,体系在2-3d左右达到吸附平衡。温度增高会导致铀的分配系数K_d值的变化,但吸附效率影响不大。pH值和核素浓度对铀在地下水中吸附扩散影响比较显著。铀在北山花岗岩上的吸附符合Fruendlich等温吸附方程。
The behavior of the radionuclides migration in groundwater is a hot-button and difficult point in geological disposal of high level radioactive waste(HLW). From the water dynamics, hydrogeochemical perspective,this paper mainly researches the characteristic of the radionuclides U and Sr in the granite fracture water in China's HLW disposal preliminary site in Beishan area, and predicts the nuclides migration behavior when repository is destructed sometime in future.The main works and innovation achievements in this paper are as follows:
     (1) Through the research of water dynamic and hydrological characteristics in the research area, the conceptual and mathematical models of solute transport in rock fracture are built deduced by Laplace transform. Their transport distance and relative concentrations of U and Sr in fracture domain and diffusion depth in matrix domain are researched by MATLAB in detail. The transport distance in fracture domain of U in the groundwater is about 500 to 700 meters, and Sr is between 1400 and 1600 meters. Sr in groundwater migration distance is longer than U; Radionuclide U and Sr in matrix domain and migration distance fixed the nuclide after the relative concentrations of distance with the diffusion and decreases.
     (2) It uses hydrogeochemical simulation software- PHREEQC -Ⅱto calculate and analyze the species of U and Sr in drilling groundwater and WULONG spring. Furthermore, It comprises the distribution of pollutants(uranium and strontium) between they enter into the aquifer and in natural state, The results show that the main species of uranium in the groundwater are still predominantly made up of UO_2(CO_3)_3~(4-)、UO_2(CO_3)_2~(2-)、UO_2CO_3~0 and(UO_2)_3(OH)_5~+and the main species of strontium exists dominantly with Sr~(2+) and SrSO_4~0. The species distribution of the groundwater and the spring is roughly same and contents are some changed after pollutants enter.
     (3) It uses PHREEQC -Ⅱsoftware to simulate uranium and strontium concentration changed with time and distance as instantaneous and continuous source respectively entering groundwater in the study area. The influence factors such as pH、dispersion、diffusion coefficient and temperature are also simulated. The research results show that pollutants uranium as instantaneous source migrates with a limit distance after 728 years. In continuous source circumstance, U, Sr concentration increases with time in the same distance place until it reaches the initial concentration; When uranium concentration in 1995m place reaches 2.07×10~(-6)mol/L in 6952 years, strontium concentration is 5.63×10~(-6)mol/L, all are close to national drinking water hygiene standards.
     (4) It analyzes the influence of the different factors including pH, concentration, temperature, etc. to distribution coefficient K_d value in crushed granite rocks in Beishan area by batch method. The results show that the system achieves adsorption equilibrium around 2-3d. The temperature increasing results in K_d changes with little effects on adsorption efficiency. The pH and nuclide concentration plays a more significant role and the adsorption of Uranium in Beishan granite accords with Fruendlich isothermal adsorption equation.
引文
Appelo, C.A.J., 1994. Cation and proton exchange, pH variations and carbonate reactions in a freshening aquifer, Water Resources Research, 30(10):2793~2805.
    B.J.Merkel,B.Planer-Friedrich.,2005.Groundwasserchmie,Groundwater Geochemistry.
    Berkowitz B, Zhou Z, 1996. Reactive solute transports in a single fracture, Water Resour. Res. 32(4):901~913.
    Benes,H.R .v on Gunten & P.Partz,1995.speciation of radionuclides in the environment. Radiochemica Acts. 69:1~29.
    Bibby R.,1981. Mass transport of solutes in dual-porosity media. Water Resources Research, 17(4):1075~1081.
    Birgersson L, Neretnieks I, 1990.Diffusion in the matrix of granitic rock:field tests in the Stripa mine, Water Resource Research, 26(11):2833~2842.
    Bradbury, M.H,Lever, D., and Kinsey, D.,1982.Aqueous phase diffusion in crystalline rack. Scientific Basic for Nuclear Waste Management, Berlin,Elsevier, 569~578.
    Bradbury,M.H., Green,A.,1985.Measurements of important parameters determining aqueous phase diffusion rates through crystalline rock matrices. Journal Hydrology,82:39~55.
    Bradbury, M.H.,Stephen, I.G.,1985. Diffusion and permeability based sorption measurements in intact rock samples. Materials Research Society Symposium Proceedings, 50:81~90.
    Bradbury M.H., Green A. 1986.Diffusion studies of evaporitic rocks, slates and cements and concretes. UKAEA Report AERE R 11996:111~134.
    Brookins D.G, 1984.Geochemical Aspects of Radioactive Waste Disposal, Springer-Verlag. New York Inc.,39~134.
    C.A.Morrow D.Lockner J.D.Byerlee,1986.Velocity and time dependent stress transients in simulated fault gouge.Proceedings of the International Symposium on Engineering in Complex Rock Formations:125~129.
    Chapman, N.A., Smellie, J.A.T.,1986.Introduction and summary of the workshop on "Natural Analogues to the Conditions around a Final Repository for High-level Radioactive Waste",Chemical Geology,55(4):167~173.
    Chappell,B. W.,1974,Two contrasting granite types.Pacific Geol.,8:173~174.
    Chin-Fu Tsang, Lanru Jing, O. Stephsson, et al.,2005.The DECOVALEXШproject:A summary of activities and lessons learned, International Journal of Rock Mechanics & Mining Science,42:593~610.
    Cruden D. M.,1977.Desc ribing the Size of discontinuities.Int. J.Rock Mech.M in.Sci.,133~l37.
    Denniston R F,Shearer C K, Layne G D,et al.,1997.SIMS analyses of minor and trace element distributions in fracture calcite from Yucca Mountain, Nevada, USA. Geochimica et Cosmochimica Acta,61(9):1803~1818.
    Del Nero, M., Salah, S., Miura,T.,et al.,1999.Sorption/desorption processes of uraniumin clayer samples of the Bangombe natural reactor zone,Gabon. Radiochim. Acta 87,135~149.
    Dean J D,Huyakorn PS,Donigian AS,et al.,1989. Risk of unsaturated/ saturated t ransport and transformation of chemical concentrations (RUSTIC),Theory and code verification.Athens.USEPA, 1
    Dershowitz W.S., Wallmann P,Kindred S,1991.Discrete fracture modeling for Stripa site characterization and validation draft inflow predictions, Stripa Project Technical Report,Stockholm,SKB:91~93.
    Detwiler RL, Rajaram H, Glass RJ,2000.Solute transport in variable-aperture fractures: and investigation of the relative importance of Taylor dispersion and macrodispersion, Water Resour Res.,36(7):1611~1625.
    Douglas G. Brookins.,1984.Geochemical aspects of radioactive waste disposal. Springer-Verlag,New York,214.
    Dyer J R, Voegele M D.,1999.美国高放废物管理:背景与现状(1996),见:王驹,张铁岭,郑华玲等译.威瑟斯庞编.世界放射性废物地质处置,北京:原子能出版社,240~251.
    Fuller,C.C.,D avis,J. A.,and Waychunas,G.A.,1993.Surface chemistry of ferrihydrite.part 2.Kinetics of arsenate adsorption and Coprecipitation.Geochimica et Cosmochimica Acts.,57:2271~2282.
    Grenthe,I.,1992.Chemical thermodynamics of uranium NorthHolland.,713~720.
    Gillnam R W,Ro binlMJ L,Dy tynyshyn D J. 1983.Diffusive transport of strontium-85 in sand-bentonite mixtures.AECL-6838.
    Grimaud,D.,Beaucaire,C.,and Michard.G,1990.Modelling of the evolution of ground waters in a granite system at low temperature:The Stripa groundwaters,Sweden.Applied Geochem.5:515~525.
    Gillham rw,Robin mjl and Dytynyshyn dj. Johnson H,1983.Diffusive transport of strontium-85 in sand-bentonite mixtures. Atomic Energy of Canada Limited, AECL-6838.
    Gelhar L W., 1987.Application of stochastic models to solute transport in fractured rocks, SKB TR 87-05. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden:53~57.
    Gelhar, L,W., Welty, C. and Rehfeldt, K. R.,1992.A critical review of data on field-scale dispersion in aquifers, Water Resources Research,28(7):1955~1974.
    Gelher L W.,1993.Stochastic subsurface hydrology, Prentice Hall, Englewood Cliffs, NJ, USA:184~198.
    Higgojjw,Coletg,Reeslvc,1988.Diffusion of radionuclides through deep sea sediments. RadiochimActa,44/45:231~238.
    Hibiya. K.,Inaba. T.,Shiogama. Y.,et al.,1999.A study on groundwater flow in Japan, JNC TN7400 99-004, Tokai, Japan, Japan Nuclear Cycle Development Institute (JNC).
    His C.D, Langmiur D.,1985.Adsorption of uranyl on to ferric oxyhy-dioxides: application of the surface completion site-binding model.Geochim.Cosmochim. Acta,49:1931~1941.
    HiggoJJW,ReesL VC.Eviron.,1986.Adsorption of actinides by marine sediments:effect of the sediment/sea water radio on the measured distribution ratio.Sci.Techno1, 20(5):483~490.
    IAEA,1992.Geochemistry of Long Lived Transuraniums Actinides and Fission Product. IAEA-TECDOC-673.
    IAEA,1993.IAEA Radioactive Waste Management Glossary.Vienna:IAEA.
    IAEA,1999.Co-ordinated research project (CRP) on anthropogenic analogues for geological disposal of high level and long lived radioactive waste.
    IAEA,2003.Scientific and Technical Basis for Geological Disposal of Radioactive Wastes.Technical Report Series.413.
    IAEA,2006.Geological Disposal of Radioactive Waste. IAEA Safety Standards Series WS-R-4.
    IAEA,2010.Energy elecitricity and nuclear power estimates for the period up to 2050. IAEA-ADS-1/30.
    Iwai K,1976.Fundamental studies of fluid flow through a single fracture[博士论文].Callfornia:University of Callfornia
    Jerry D.,1991.Manual of MINTEQA2(Z).EPA.
    J B.Walsh.,1981.Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,18(5):429~435.
    Japan Nuclear Cycle Development Institute (JNC), 2000a.H12, Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan (Supporting Report 1: Geological Environment in Japan), JNC TN1410 2000-002, JNC,Tokai,Japan.
    Japan Nuclear Cycle Development Institute (JNC),2000b.H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan -Supporting Report2: Repository Design and Engineering Technology, JNC TN1410 2000-003, Tokai,Japan, JNC.
    Japan Nuclear Cycle Development Institute (JNC),2000c.H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan (Supporting Report 3: Safety Assessment of the Geological Disposal System),JNC TN1410 2000-004,JNC, Tokai,Japan.
    Keller AA,Roberts PV,Blunt MJ,1999.Effect of fracture aperture variations on the dispersion of contaminant.Water Resource Research,35(1):55~63.
    Klotz D,Seiler K.P.,Moser H.,et al.,1980.Dispersivity and velocity relationship from laboratory and field experiments.Journal of Hydrology,45:169~184.
    Langmuir,D.,1978.Uranium solution-mineral equilibria at low temperatures with applications to one deposit.Geochimica et Cosmochimica Acta,42:547~569.
    Laurence S C.,1997.Site selection and characterization processes for deep geological disposal of high level nuclear waste. Albuquerque Sandia National Laboratories.
    Luis Moreno, Ivars Neretnieks,et al.,1985.Analysis of some laboratory tracer runs in natural fissures Water Resource Research,21(7):951~958.
    Leo A,Hansch C,Elkins D.1971.Partition coefficients and their uses.Chem Rev,71 (6):525~616.
    L. Jing, C.F. Tang, O. Stephansson,1995.DECOVALEX-An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,32(5):389~398.
    Mohamed Azaroual, Christian Fouillac.,1997.Experimental study and modelling of granite-distilled water interactions at 180°C and 14 bars. Applied Geochemistry, Elsevier Science Ltd.,12:55~73.
    Meijer A. 2002. Conceptual model of the controls on natural water chemistry at Yucca Mountain,Nevada.Applied Geochemistry,17:793~805.
    Mercer, J.W.,Cohen, R.M.,1990.A Review of Immiscible Fluids in the Subsurface: Properties.
    Michel R.1999.法国高放废物地质研究现状.见:王驹,张铁岭,郑华玲等译.威瑟斯庞编.世界放射性废物地质处置,北京:原子能出版社:90~99.
    Neretmieks,1980.Diffusion in the rock matrix:An important factor in radionuclide retardation,Journal Geophysical Research,85(88):4378~4397.
    Neymark L A,Amelin Y V, Paces J.,2000.206Pb–230Th–234U–238U and 207Pb–235U geochronology of Quaternary opal,Yucca Mountain,Nevada.Geochimica et Cosmochimica Acta, 64(17):2913~2928.
    Neuman,S.P., 1995.On advective transport in fractural permeability and velocity fields, Water Resources Research,31(6):1455~1460.
    OECD/NEA.1999.Confidence in the long-term safety of deep geological repositories, its development and communication.Paris,France:the Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency(NEA).
    OhnukiT,Kozai N.,1994.Sortion characteristics of radioactive cesium and strontium.RadiochimActa,66(6):327~331.
    Ohlsson Y.,Neretnieks I.,1995.Literature survey of matrix diffusion theory and of experiments and data including natural analogues.SKB Technical Report,TR 95-12:457~478.
    Parkhurst D L.,1990.Manual of PHREEQE.USGS.
    Parkhurst DL,Appelo CAJ.,1999.User's Guide to PHREEQC(Version2)—A Computer Program for Speciation,Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations.Denver.Geological Survey,14:24~121.
    Prasad,A.N.,Kumra,M.S.,Misra,S.D.,et al.,1995. Requirement for the safe management of radioactive waste,IAEA-TECDOC-853,Vienna:107~120.
    Rasmusion A, Neretnieks I,1986. Radionuclide transport in fast channels in crystalline rock, Water Resource Research,22(8):1247~1256.
    Rebour V.,Billiotte J.,et al.,1997.Molecular diffusion in water-saturatd rocks:A new experimental method,Journal of Contaminant Hydrology,(28):71~93.
    Roux S, PlourabouéF, Hulin JP.,1998.Tracer dispersion in rough open cracks,Transport Porous Media,32(1):97~116.
    Robinson NI,Sharp JM,Kreisel I.,1998.Contaminant transport in sets of parallel finite fracture with fracture skins,J Contam Hydrol,(31):83~109.
    Russell L D.Harihar Rajaram.2000.Glass R J Solute transport in a variable-aperture fractures:An investigation of the relative importance of Taylor dispersion and microdispersion, Hydrology Res,(4):439~466.
    S.Aksoyoglu,1989.Sorption of U(VI) on granite. Journal of Radio analytical and Nuclear Chemistry,134(2):393~403.
    Shang-Jyh Liu, 1988.Simulation of radionuclide chemistry and sorption characteristics in thegeosphere by artificial intelligence technique.Radiochimica Acta. 44/45:421~426.
    Savage, D., Rochelle C.A.,1993.Modelling reactions Between Cement pore fluids and rocks:Impliations for porosity change.Contam.Hydrol.13:365~378.
    Sudicky E. A.,1989.The Laplace transform Galerkin technique:A time-continuous finite element theory and application to mass transport in groundwater, Water Resour. Res., 25(8):1833~1846.
    Sudicky E.A.,R.G.Mclaren,1992.The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations, Water Resour.Res.,28(2):499~514.
    Streltsova TD.,1976.Hydrodynamics of groundwater flow in a fractured formation,Water Resourc. Res.,(12):405~413.
    Stumm W, Morgan J J.1981.Aquatic Chemistry. 2nd ed.New York:John Wiley and Sons, 599~647.
    Swedish Nuclear Waste Management Corporation(SKB),1984.The KBS Annual Report 1983, KBS Technical Report 83-77,Stockholm,Sweden:SKB.
    Swedish Nuclear Waste Management Corporation(SKB),1992.Final disposal of spent fuel: Importance of the bedrock for safety, SKB Technical Report 92-20,Stockholm,Sweden: SKB.
    Tsang,Y.W and Tsang,C.F.,1987.Channel model of flow through fractured media.Water Resour.,23(7):467~479.
    Tsang,Y.W, and Tsang, C.F.,Neretnicks,I,e tal, 1988, Flow and tracer transport in fractured media -- a variable aperture channel model and its properties.Water Resour.,24(9):2049~2060.
    T.Ohe,H-P.Hermansson,et al.,1993.The American Society of Mechanical Engineers.EM I-Book No.10354A:197~205.
    Torstenfelt B.,1986a.Migration of the fission products strontium, technetium, iodine and cesium in clay,Radiochimica Acta,39:97~104.
    Torstenfelt B,1986b.Migration of the actinides thorium, protactinium, uranium,neptunium and americium in clay,Radiochimica Acta,39:105~112.
    Waite T.D., Davis J.A., PayreT.E.,et al.,1994.Uranium(VI) adsorption to ferrihydrite,Application of surface complexation model,58(24):5465~5478.
    Xu S., W(o|¨)rman A., Dverstorp B.,2001.Heterogeneous matrix diffusion in crystalline rock-implication for geosphere retardation of migrating radionuclides, Journal of Contaminant Hydrology,1(47):365~378.
    Xu, T., Pruess, K.,1998.Coupled modeling of non-isothermal multi-phase flow, solute transport and reactive chemistry in porous and fractured media:Model development and validation. Lawrence Berkeley National Laboratory Report LBNL-42050, Berkeley, California.
    Xu, T.,Pruess, K.,2001.Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks,Methodology. Am. J. Sci.301:16~33.
    Xu T F, Sonnenthal E, Bodvarsson G.,2003.Reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock. Journal of Contaminant Hydrology.64:113~127.
    Yeh.G.T.,1987.FEMWATER: A Finite-Element Model of WATER Flow through Saturated-Unsaturated Porous Media-First Revision. ORNL-6386,Oak Ridge Nationnal Laboratory, Oak Ridge,Tenn,ORNL-5567/R1,
    Yngve.Albinsson,1991.In gemar.Engkvist.Radioactive Waste Management and the Nuclear Fuel Cycle,15(4):221~239.
    陈璋如,郭起风,赵云龙,等,2004.铀矿床的天然类似物研究.中国高放废物地质处置十年进展. 北京:原子能出版社,399~407.
    陈崇喜,李国敏,1995.地下水溶质运移理论及模型.北京:中国地质大学出版社.
    陈式,马明燮,1998.中低水平放射性废物的安全处置.北京:原子能出版社.
    董祖引,2001.复变函数与积分变换.南京:河海大学出版社.
    范洪海,闵茂中,王驹等,2006.甘肃北山旧井岩体BS03号钻孔岩石地球化学特征.铀矿地质, 22(2):90~93.
    甘肃省地质矿产局,1990.旧井幅、四十里井幅区域地质调查报告.
    甘肃省地质矿产局,1991.架子井幅、新场幅区域地质调查报告.
    甘肃省地质矿产局,1997.甘肃省岩石地层.中国地质大学出版社.
    谷存礼,刘秀珍,范智文,等,1994.花岗岩裂隙水推荐配方可行性研究.辐射防护通讯, 14(1):117~121.
    郭永海,刘淑芬,苏锐,等,2003.高放废物处置库甘肃北山预选区水文地质特征方法学研究中国核科技报告(1):145~164
    郭永海,刘淑芬,吕川海,2003.高放废物地质处置库选址中的水文地质调查.铀矿地质, 21(5):296~299.
    郭永海,苏锐,刘淑芬,等,2007.高放废物处置库甘肃北山预选区区域水文地质调查报告.中国国防科学技术报告.
    管后春,2006.单个粗糙裂隙中水流与融资运移试验研究[硕士学位论文].合肥:合肥工业大学.
    金远新,王文广,陈璋如, 2004.中国高放废物处置库围岩类型的选择.见:王驹,范显华,徐国庆等,中国高放废物地质处置十年进展.北京:原子能出版社,62~73.
    李春江,郭志明,林漳基,1999.花岗岩单裂隙中核素125I-、134Cs+的弥散渗透实验.水文地质与工程地质,6:45~51.
    李春江,苏锐,陈式,等,2000.花岗岩单裂隙中核素迁移的研究II.扩散系数的测定.核化学与放射化学,21(4):190~192.
    李书绅,王志明,等,2003.核素在非饱和黄土中迁移研究.原子能出版社,95~130.
    李金轩,钱七虎,等,2004.裂隙岩体核素迁移模型及其在高放废物地质处置库安全性能评价的应用.岩石力学与工程学报, 23(5):736~740.
    李寻,2009.基于高放废物深地质处置的溶质运移研究[博士学位论文].杭州:浙江大学.
    刘莉,田丰,张明波,2003.甘肃西部北山地区地下水类型及其富水特征.岩土工程界,(6): 33~36.
    刘金英,杨天行,李春江,等,1994.放射性核素在双重介质迁移的实验室尺度模型的迎风交替格式及应用.核化学与放射化学,16(3):21~26
    刘兆昌,张兰生,等,1991.地下水系统的污染与控制.北京:中国环境科学出版社.
    李金轩,李寻,2001.基于双重介质理论的单裂隙核素迁移模型.勘察科学技术,(2):7~10.
    陆誓俊,毛家骏,等,1991.放射性碘在地质材料中吸附和迁移的研究.核化学与放射化学, 13(2):91~95.
    李亚萍,2005.甘肃北山花岗岩裂隙几何学特征研究[硕士学位论文].北京:中国地震局地震研究所.
    罗兴章,2004.中国高放废物处置库北山预选场的地球化学研究[博士学位论文].南京:南京大学.
    罗上庚,2002.放射性废物概论.北京:原子能出版社.
    闵茂中,1998.放射性废物处置原理.北京:原子能出版社.
    毛家骏,1991.放射性铀、铯、硒在盐环境中吸附研究.核科学与工程,11(4):380~384.
    “三废治理与利用”编委会,1995.三废治理与利用.北京:冶金工业出版社.
    沈珍瑶,程金茹,2002.高放射性核废物深地质处置的环境问题.地质通报,21(3):163~165
    史维浚,1987.铀水文地球化学原理.北京:原子能出版社.
    史海滨,陈亚新,1993.饱和-非饱和流溶质传输的数学模型与数值方法评价.水利学报,(8):49~58.
    苏锐,李春江,王驹,等,2000.花岗岩体单裂隙中核素迁移数学模型.核化学与放射化学, 22(2):80~86.
    苏锐,2000.花岗岩体重核素迁移特性研究:[硕士学位论文].北京:核工业北京地质研究院.
    王金生,李书绅,王志明,1996.低中放废物近地表处置安全评价模式研究.环境科学学报,16(3):356~363.
    王金生,杨志锋,李书绅,等,2000.低中放废物处置场核素经地下水迁移对环境影响预测.环境科学学报,20(2):162~167.
    仵彦卿,1996.岩体水力学基础(一).水文地质工程地质,(6):24~28.
    仵彦卿,张倬元,1995.岩体水力学导论.成都:西南交通大学出版社.
    王玉往,姜福芝,1997.北山地区各时代火山岩组合特征及分布.中国区域地质,6(3):297~304.
    王驹,1998.论我国高放核废物深地质处置.中国地质(保护环境),7:33~35.
    王驹,2004.我国高放废物深地质处置战略规划探讨.铀矿地质,20(4):196~212.
    王驹,陈伟明,苏锐,等,2004.我国高放废物地质处置研究.原子能科学技术,38(4):339~342.
    王驹,徐国庆,2005.中国高放废物深地质处置研究进展:1985~2004.世界核地质科学, 22(1):5~16.
    王驹,徐国庆,金远新,2006.论高放废物地质处置库围岩.世界核地质科学,23(4):222~231.
    王驹,陈伟明,苏锐,等,2006.高放废物地质处置及其若干关键科学问题.岩石力学与工程学报,25(4):801~808.
    王玉往,姜福芝,1997.北山地区各时代火山岩组合特征及分布.中国区域地质,6(3):297~304.
    王德义,谌竟清,赵淑良,等,1982.铀的提取与精制工艺学.北京:原子能出版社,7~49.
    温瑞媛,高宏成,蒋成花,等,1990.裂片元素在岩石中的迁移研究Ⅰ-核素125I在花岗岩中的扩散.核化学与放射化学,13(4):213~217.
    温瑞媛,高宏成,彭永忠,等,1991.裂片核素在岩石中的迁移研究Ⅰ-核素75Se在花岗岩和石灰岩中的扩散行为.核化学与放射化学,13(4):213~217.
    温瑞媛,高宏成,彭永忠,等,1993.裂片元素在岩石中的迁移研究Ⅱ-核素134Cs在花岗岩中的扩散与渗透.核化学与放射化学,13(2):98~103.
    温瑞媛,高宏成,彭永忠,等,1994.裂片核素在岩石中的迁移研究Ⅳ-核素75Se在花岗岩中的吸附、扩散、渗透和数学模型.核化学与放射化学,16(4):193~198.
    温瑞媛、高宏成、彭永忠,等, 1996.裂片核素在岩石中的迁移研究-核素125I在大理石中的扩散与渗透.核化学与放射化学,(1):86~88.
    夏德迎,曾继述,1993.放射性锝在含锑矿物上吸附行为和机理的研究.核化学与放射化学, 15(2):94~97.
    谢水波,陈泽昂,张晓健,等,2007.宏观弥散度和阻滞系数对地下水中核素迁移模拟的影响.湖南大学学报.自然科学版,34(5):78~82.
    杨金忠,黄冠华,任理,1979.多孔介质中的水分和溶质运移的随机理论.第一届全国环境岩土工程论文集.
    杨立基, 1992.高放废物深地质处置研究发展计划.中国核工业总公司科技局高放废物地质处置研究协调组编.高放废物地质处置研究论文集.
    袁革新,陈剑杰,2008.罗布泊西北缘低中放废物处置场选址初步研究,见:中国岩石力学与工程学会废物地下处置专业委员会等.第二届废物地下处置学术研讨会论文集,敦煌,467~472.
    叶明吕,陆誓俊,王万春,等,1996.放射性核素137Cs在石湖峪和阳坊花岗岩上的吸附与迁移特性的研究.核技术,34(3):176~181
    张玉军,2007.核废料处置概念库近场热-水-应力耦合模型及数值分析.岩土力学,28(1):17~22.
    左国朝,李茂松,1996.甘蒙北山地区早古生代岩石圈形成与演化.甘肃:甘肃科学技术出版社。
    赵宏刚,王驹,杨春和,等,2007.甘肃北山旧井地段高放废物处置库深度初步探讨.岩石力学与工程学报,26z2:3966~3972.
    张英杰,于承泽, 1990.放射性锶和铯在花岗岩上的吸附与阻滞.核科学与工程. 10(3):265~272.
    张华,罗上庚. 2004.高放废物玻璃固化体浸出行为模型研究概况.辐射防护,31(5):331~337.
    周文斌,张展适,史维浚,2004.EQ3/6及其在核废物地质处置领域的应用.北京:原子能出版社,115~130.
    周志芳,王锦国,2004.裂隙介质水动力学.北京:中国水利水电出版社,13~32.
    张金辉,1998.铀水冶尾矿库地下水流特征与模拟分析:以某矿为例.水文地质工程地质, 25 (2): 38~41.
    中华人民共和国国家环境保护局,1998.GB8703-88.辐射防护规定.北京:中国标准出版社.
    中华人民共和国国家环境保护局,1996. GB9133-1995.放射性废物分类标准.北京:中国标准出版社.
    中华人民共和国卫生部,2007.GB5749-2006.生活饮用水卫生标准.北京:中国标准出版社.
    中华人民共和国国防科工委,2006.核电中长期发展规划(2005-2020).北京:人民出版社.
    中华人民共和国国务院,2011.中华人民共和国国民经济和社会发展第十二个五年(2011-2015 年)规划纲要.北京:人民出版社.
    朱义年,王焰新译,2005.地下水地球化学模拟的原理及应用.中国地质大学出版社.
    朱岳明,1991.裂隙岩体渗流研究述评.河海科技进展.11(2):16~25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700