污水厂污泥中重金属脱除技术及污泥特性变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对污泥中重金属进入土壤后会在土壤植物生态系统中累积,固化的重金属会由于环境条件变化被重新释放出来而造成的环境风险问题,本文采用化学方法脱除污泥中重金属和超声/微波的辅助手段提高化学脱除过程中的脱除效率及经济性,实现污泥安全利用。
     采用四级连续提取法对不同污水处理阶段污泥和不同污水处理厂脱水污泥中重金属形态分布及可移动性进行研究。考察污泥中水溶态、酸溶态、可还原态、可氧化态和残留态重金属的在污水处理过程中的变化以及与污泥性质的相关性。对不同污泥中重金属的潜在环境风险进行了评估。
     污泥中各重金属总量远高于黑土中背景含量值,对环境存在潜在的风险,污泥中Cu、Zn、Cd、Mn呈严重污染水平。污泥中Cu、Pb、Cr的可迁移性差,Zn和Mn的可迁移性强,其中Pb的形态在各污泥中的分布不受污水处理过程影响。Cd主要以有机物形态存在,Ni的可迁移性受污水处理过程影响。污泥中水溶态、酸溶态、可还原态Pb与污泥的理化性质正相关,污泥中Cu、Cr、Mn、Cd、Ni的水溶态、酸溶态、可还原态含量和有机物含量正相关。
     化学法脱除污泥中重金属的研究表明,化学提取剂种类是影响在污泥中重金属脱除效率的主要因素,其次是浸提时间和固液比。固液比为1:50和浸提时间为8h时污泥中7种重金属脱除效率最佳。无机酸比有机酸、螯合剂、无机盐对重金属的脱除效率高,脱除效率随pH的降低而升高。草酸脱除重金属效果要好于柠檬酸、琥珀酸、天冬氨酸,HEDTA脱除重金属效果要好于EDTA和DTPA,均表现为达到一定浓度时脱除效率不再增加。无机盐的重金属脱除效果最差。较高pH值环境条件下,HEDTA和草酸联合脱除重金属的效果单一试剂好。
     微波/超声作用下污泥中重金属脱除特性的研究表明,重金属的脱除效率随辐射时间的延长和功率密度增强而升高,高功率密度区的提升效果要优于低功率密度区,在相同的能量密度下,长辐射时间和低功率密度的脱除效率要好于短辐射时间和高功率密度的脱除效率。微波功率密度为7.7W/mL时最佳脱除效果的辐射时间为180s ,污泥中各重金属的脱除效率顺序为Zn>Ni>Cu>Mn>Cd>Cr>Pb;在能量密度为1260J/mL附近,微波能量穿透,重金属的脱除效率不再增加。超声辐射定功率为2.5W/mL时最佳脱除效果的微波辐射时间为660s ,污泥中各重金属的脱除效率顺序为Zn>Cu>Ni>Mn>Cd>Cr>Pb;在能量密度为1350J/mL附近,超声能量穿透,重金属脱除效率不再增加;超声过程中增加搅拌的效果要好于无搅拌的效果。
     微波/超声处理前后污泥中重金属形态分布及红外和荧光特性的研究表明,处理后污泥中Cu、Zn、Cd、Mn、Cr、Ni的水溶态、可还原态和酸溶态的几乎全部溶出,Cd和Pb有重新吸附现象。微波/超声处理后会改变污泥中有机物的基团,污泥中水溶态重金属主要结合在水溶性醇酚类分子间-OH基团上,酸溶态重金属主要以碳酸盐无机物形式存在,在超声处理后污泥中,部分酸溶态重金属与不饱和烯烃类物质结合,可还原形态的重金属主要与有机物中C-O及C-N相结合,重金属可氧化态大部分结合在直链条烷烃上和一部分与难溶性醇酚类分子间O-H相结合。微波/超声处理后污泥中可溶性蛋白质、腐植酸、富里酸物质全部溶出,残留的变性蛋白质与污泥结合很强。水溶态重金属与污泥中富里酸和腐植酸的O-H相结合,酸溶态重金属包裹在变性蛋白质中,可还原态重金属与富里酸/类蛋白质物质中C-O及C-N相结合,氧化态重金属与腐植酸类/类蛋白物质O-H和-CH_2-相结合。
     微波/超声处理的能耗比和处理后污泥的特性研究表明,在0-900J/mL和1350-1800J/mL能量密度条件下,超声的效果较好;在900-975J/mL和1275-1350J/mL能量密度条件下,微波/超声效果相当;在975-1275J/mL能量密度条件下,微波的效果较好。超声处理后污泥的营养成分含量低于微波处理后污泥,但均具有很高的农用价值。微波和超声处理后污泥中Cu、Zn、Mn、Cr、Ni不具有可移动性,就7种重金属总体而言,可迁移性风险已处于安全水平。微波和超声处理后污泥中重金属潜在的环境风险从重度降到了中等水平。污泥中重金属对蔬菜生长存在很强的抑制作用,在低施肥量时,微波处理污泥中重金属的抑制作用要强于超声;在高施肥量时,超声处理污泥中重金属的抑制作用要强于微波。微波和超声脱除重金属后污泥均可以安全有效利用。
Heavy metals in sewage sludge used for land application can be accumulated and be released in the soil environment, which caused serious environmental risks. So chemical extraction procedure was applied for removal of heavy metals from sewage sludge and ultrasound / microwave radiation was used to improve the chemical extraction rate of heavy metals for the safe land application of sewage sludge.
     A four-step sequential extraction procedure was used to investigate the heavy metal speciation in sludges from different stages of wastewater treatment process and from dewatered room of different wastewater treatment plants. The relationship between Water soluble, acid soluble, reducible, oxidisable, and residue fraction and sludge physiochemical properties was studied. The potential environmental risks heavy metals in sludges were evaluated.
     Total heavy metal in sludge is much higher than background value in the black soil, which is a potential risk to the environment. Cu, Zn, Cd, Mn in sludge has a serious pollution risk. Cu, Pb, Cr in sludge poorly migrate in soil environment, however Zn and Mn have strong mobility. Pb distribution in sludge has no changes during the wastewater treatment procedure, Ni has opposite change, Cd mainly exists in the organic form. Water soluble, acid soluble, reducible fraction of Pb and Al have positively related to physiochemical properties, water soluble, acid soluble, reducible fraction of Cu, Cr, Mn, Cd, Ni positively related with organic content in sludge.
     Chemical removal procedure indicated that the type of chemical agents used in extraction procedure is a key factor for removal of heavy metals from sludge, extraction time and solid-liquid ratio are also important factor for achieving high heavy metal extraction rate. 1:50 is an optimal solid-liquid ratio and 8h is an optimal extraction time for chemical extraction procedure. Extraction rate of heavy metals with organic acids are higher than extraction rate with organic acids, chelating agents, inorganic salts, increasing with decreasing pH. Oxalic acid is better than citric acid, succinic acid, aspartic acid on removal of heavy metals from sludge. HEDTA is better than EDTA and DTPA for extraction of heavy metals. Inorganic salts have low removal rate of heavy metals. The mixed agents of HEDTA and oxalic acid are better than a single reagent to remove heavy metals from sludge.
     Microwave / Ultrasound assisted chemical removal procedure presented that Heavy metal removal rates of them increase by increasing of radiation time and power density. Microwave / Ultrasound radiation on chemical extraction at high power density is more effective than it is at low-power-density. In the same energy density, long time and low power density radiation rate is better than a short time and high power density radiation rate on heavy metal extraction. The maximum removal rate of heavy metals at 7.7 W/mL can be achieved after 180s microwave radiation, the order of individual heavy metal removal rate is Zn > Ni > Cu > Mn > Cd > Cr > Pb. Microwave radiation have no further effects heavy metal removal when the energy density reached 1260 J/mL. The maximum removal rate of heavy metals at 2.5 W/mL ultrasound energy density can be achieved after 660sultrasound radiation, the order of individual heavy metal removal rate is Zn > Cu > Ni > Mn > Cd > Cr > Pb. ultrasound radiation have no further effects heavy metal removal when the energy density reached 1350 J/mL. Magnetic stirring on heavy metal removal procedure can enhance the rate of extraction with ultrasound radiation.
     Organic matter infrared and fluorescence characteristics and heavy metal speciation distribution in untreated sludge, microwave treated sludge and ultrasound treated sludge before and after four steps sequential extraction procedure showed that water soluble, acid soluble and reducible fraction of Cu, Zn, Cd, Mn, Cr, Ni were extracted from sludge, and Cd and Pb was resorbed by dissolved organic matter. Microwave / ultrasound treatment can change the group of original sludge; water soluble heavy metals are complexed with -OH groups of water-soluble alcohol and phenol; acid soluble heavy metals mainly exists in form bound with inorganic carbonate, partly existed in form bound with unsaturated olefins in ultrasound treated sludge; reducible heavy metals mainly were bound with C-O and C-N groups of organic matters; oxidisable heavy metals were complexed with direct paraffin and–OH groups between phenolic molecules. Dissolved protein, humic acid, fulvic acid substances were extracted by microwave / ultrasound assisted chemical extraction procedure. Water soluble heavy metals are bound with–OH groups of fulvic acid and humic acid matter in sludge; acid soluble heavy metals were wrapped in denatured protein matters; reducible heavy metals were bound with C-O and C-N groups of in fulvic acid / protein substances; oxidisable heavy metals were bound with -CH_2- and OH groups of humic acids / protein substances.
     Ultrasound radiation for improving the HEDTA-Oxalic extraction rate of heavy metals from sludge is more effective in 0-900 and 1350-1800 J/mL, microwave radiation is better than ultrasound radiation in 975-1275 J/mL, Ultrasound treatment has similar effects on heavy metal extraction with microwave treatment in 900-975 and 1275-1350 J/mL. Ultrasound and microwave treated sludge have high nutrient content and showed potential agricultural application value. Mobile fraction of Cu, Zn, Mn, Cr and Ni in sludge was extracted, which shows the low mobility in soil environment. The risk degree of potential accumulated environment from heavy metals in sludge is lowed to moderate level. Heavy metals can inhibit vegetables grown, inhibition of heavy metals in microwave treated sludge is strong at low sludge fertilization, and inhibition of heavy metals in ultrasound treated sludge is strong at high sludge fertilization. Sludges after microwave and ultrasound assisted HEDTA-Oxalic extraction of heavy metals can be safely utilized in sludge land application.
引文
[1]张军,夏训峰,贾春蓉,等.中国城镇生活废水排放量影响因素及情景分析.资源开发与市场, 2009, 25(005): 397~399.
    [2] S.R. Smith. A Critical Review of the Bioavailability and Impacts of Heavy Metals in Municipal Solid Waste Composts Compared to Sewage Sludge. Environment International, 2009, 35(1): 142~156.
    [3]王宝贞.水污染控制工程.高等教育出版社, 1994: 303~305.
    [4]李淑更,张可方,周少奇,等.微生物淋滤法去除城市污泥中重金属的效果.生态环境学报, 2009, 18(001): 111~115.
    [5]罗彬源,曾佳敏.城镇污水处理厂污泥处理处置技术探讨.广东化工, 2010, 37(7): 243~244.
    [6]宁军,台明青.剩余污泥共厌氧消化改善脱水性能研究.环境科学与技术, 2010, 33(8): 127~131.
    [7]宿翠霞,王龙波,李凌霄,等.城镇污水处理厂污泥处置与资源化利用.中国资源综合利用, 2010, 28(5): 50~52.
    [8] B. Mccann. Sludge to Land: a Case of Storing up Trouble? Water Services, 1997, 101(1212): 16~18.
    [9] B. Paulsrud, K.T. Nedland. Strategy for Land Application of Sewage Sludge in Norway. Water Science and Technology, 1997, 36(11): 283~290.
    [10]张召述,马培舜,李斌.脱水污泥制备聚合物合成“木材”的研究.环境污染治理技术与设备, 2003, 4(010): 52~56.
    [11] Y. Liu, L. Ma, Y. Li, et al. Evolution of Heavy Metal Speciation During the Aerobic Composting Process of Sewage Sludge. Chemosphere, 2007, 67(5): 1025~1032.
    [12]林云琴,周少奇.城市污泥好氧堆肥过程中重金属的形态转化.生态环境, 2008, 17(003): 940~943.
    [13] D. Fytili, A. Zabaniotou. Utilization of Sewage Sludge in EU Application of Old and New Methods-A Review. Renewable and Sustainable Energy Reviews, 2008, 12(1): 116~140.
    [14] R.B. Owen, N. Sandhu. Heavy Metal Accumulation and Anthropogenic Impacts on Tolo Harbour, Hong Kong. Marine Pollution Bulletin, 2000, 40(2): 174~180.
    [15] S. Kools, M. Boivin, A. Van Der Wurff, et al. Assessment of Structure and Function in Metal Polluted Grasslands Using Terrestrial Model Ecosystems.Ecotoxicology and Environmental Safety, 2009, 72(1): 51~59.
    [16] T. Bhattacharya, S. Chakraborty, D.K. Banerjee. Heavy Metal Uptake and Its Effect on Macronutrients, Chlorophyll, Protein, and Peroxidase Activity of Paspalum Distichum Grown on Sludge-Dosed Soils. Environmental Monitoring and Assessment, 2010: 1~12.
    [17] S. Babel, D. Del Mundo Dacera. Heavy Metal Removal from Contaminated Sludge for Land Application: A Review. Waste Management, 2006, 26(9): 988~1004.
    [18] Z. Liu, G. Qian, Y. Sun, et al. Speciation Evolutions of Heavy Metals During the Sewage Sludge Incineration in a Laboratory Scale Incinerator. Energy & Fuels, 2010, 24(4): 2470~2478.
    [19] B. Bayat, B. Sari. Comparative Evaluation of Microbial and Chemical Leaching Processes for Heavy Metal Removal from Dewatered Metal Plating Sludge. Journal of Hazardous Materials, 2010, 174(1-3): 763~769.
    [20] M. Wu, R. Zhu, C. Wei, et al. Effects of Humus Soil on Chemical Speciation of Heavy Metals in Activated Sludge. Journal of Tongji University. Natural Science, 2010, 38(2): 263~267.
    [21]谭启玲,赵斌.城市污泥的特性及其农业利用现状.华中农业大学学报, 2002, 21(006): 587~592.
    [22]黄会斐,周佳恒.杭州城镇污水处理厂污泥处置对策.环境保护, 2010, (012): 57~59.
    [23]刘东方,张友萍,王爱娟,等.华北地区典型城市污水处理厂污泥填埋处置可行性分析.环境污染与防治, 2010, (005): 40~42.
    [24]蔡璐,陈同斌,高定,等.中国大中型城市的城市污泥热值分析.中国给水排水, 2010, (15): 106~108.
    [25]尹军,谭学军,廖国盘,等.我国城市污水污泥的特性与处置现状.中国给水排水, 2003, 19(13): 21~24.
    [26]余杰,田宁宁,王凯军.城市污水厂污泥处理与处置技术的新思路.中国给水排水, 2008, 24(6): 11~14.
    [27]邱兆富,周琪.国内城市污水污泥的特点及处理处置对策.中国沼气, 2004, 22(002): 22~25.
    [28] S.R. Smith. Agricultural Recycling of Sewage Sludge and the Environment. C.A.B. International, 1995, 207~236.
    [29] G. Hackett, C.A. Easton, S. Duff. Composting of Pulp and Paper Mill Fly Ash With Wastewater Treatment Sludge. Bioresource Technology, 1999, 70(3): 217~224.
    [30]蔡全英,莫测辉,吴启堂,等.城市污泥堆肥处理过程中有机污染物的变化.农业环境保护, 2001, 20(3): 186~189.
    [31]陈曦,杨丽标,王甲辰,等.施用污泥堆肥对土壤和小麦重金属累积的影响.中国农学通报, 2010, 26(8): 278~283.
    [32]杨军,郭广慧,陈同斌,等.中国城市污泥的重金属含量及其变化趋势.中国给水排水, 2009, 25(13): 122~124.
    [33]姚金玲,王海燕,于云江,等.城市污水处理厂污泥重金属污染状况及特征.环境科学研究, 2010, 23(6): 696~702.
    [34] H. Degaard, B. Paulsrud, I. Karlsson. Wastewater Sludge as a Resource: Sludge Disposal Strategies and Corresponding Treatment Technologies Aimed at Sustainable Handling of Wastewater Sludge. Sludge Management: Regulation, Treatment, Utilisation and Disposal, 2002, 46(10): 295~303.
    [35]张辰.污泥处理处置技术与工程实例.化学工业出版社, 2006:18~19.
    [36] H. Yoo, J.W. Washington, J.J Ellington, et al. Concentrations, Distribution, and Persistence of Fluorotelomer Alcohols in Sludge-Applied Soils Near Decatur, Alabama, USA. Environmental Science & Technology, 2010: 1339~1342.
    [37] F. Ekardt, N. Holzapfel, A.E. Ulrich. Phosphorus, Land Use and Absolute Quantity Reductions as a Legal Problem. Journal for European Environmental Planning Law, 2010, 7(3): 267~286.
    [38] K. Oshita, A. Mori, M. Takaoka, et al. Fundamental Study on the Composition and Heating Value of Char, Tar and Gas from Sewage Sludge Pyrolysis. Doboku Gakkai Ronbunshu G/JSCE Journal of Environmental Systems and Engineering, 2008, 64(3): 221~230.
    [39] S. Mori. A New Complex Plant for Carbonization and Composting of Municipal Wastes. Particuology, 2010, (8): 599~601.
    [40] Y.J. Kim, J.H. Choi, J.H. Kim, et al. Production and Effective Utilization of Carbonized Sludge of Industrial Wastewater Treatment Plant. Journal of the Chemical Society of Pakistan, 2010, 32(1): 7~12.
    [41] A. Berbecea, I. Radulov, F. Sala. Agricultural Use of Sewage Sludge Pros and Cons. Research Journal of Agricultural Science, 2011, 40(2): 15~20
    [42] S.P. Mcgrath, A.C. Chang, A.L. Page, et al. Land Application of Sewage Sludge: Scientific Perspectives of Heavy Metal Loading Limits in Europe and the United States. Environmental Reviews, 1994, 2(1): 108~118.
    [43]翟丽梅,张继宗,刘宏斌,等.生活污泥对白菜供磷和土壤磷状况的影响.植物营养与肥料学报, 2010, 3(3): 688~694.
    [44]张桥,吴启堂,黄焕忠,等.施用污泥堆肥对作物和土壤的影响.土壤与环境, 2000, 9(4): 277~280.
    [45]林晓红,吴少华.污泥有机肥应用于中国水仙栽培的研究.中国农学通报,2010, 26(1): 158~161.
    [46] M. Benbrahim, L. Denaix, A.L. Thomas, et al. Metal Concentrations in Edible Mushrooms Following Municipal Sludge Application on Forest Land. Environmental Pollution, 2006, 144(3): 847~854.
    [47] K.F. Brisolara, Y. Qi. Biosolids and Sludge Management. Water Environment Research, 2010, 82(10): 1311~1326.
    [48] M. Jorba, P. andres. Effects of Sewage Sludge on the Establishment of the Herbaceous Ground Cover After Soil Restoration. Journal of Soil and Water Conservation, 2000, 55(3): 322~327.
    [49] C.G. Nichols. US Forestry Uses of Municipal Sewage Sludge. Alternative Uses for Sewage Sludge Conference Proceedings, Perrgamon Press, 1989: 155~166.
    [50]刘洪涛,郑国砥,陈同斌,等.污泥堆肥对草坪基质综合质量的影响.中国给水排水, 2010, 26(19): 106~108.
    [51] M.J. Malmstead, D.F. Bonistall, C.V. Maltby. Closure of a Nine-Acre Industrial Landfill Using Pulp and Paper Mill Residuals. Tappi Journal, 1999, 82(2): 153~160.
    [52] W.E. Sopper. Utilisation of Sewage Sludge in the United States for Mine Land Reclamation. Alternative Uses for Sewage Sludge Conference Proceedings, Perrgamon Press, 1989: 21~40.
    [53]周学武,孙岱生,房建国,等.利用矿山固体废弃物(粉煤灰、淤泥及污泥)改良矿山退化土地及种植实验.资源·产业, 2005, 7(3): 61~64.
    [54]周立祥,胡霭堂.城市污泥土地利用研究.生态学报, 1999, 19(002): 185~193.
    [55]周立祥,胡霭堂.城市生活污泥农田利用对土壤肥力性状的影响.土壤通报, 1994, 25(003): 126~129.
    [56] M. Tejada, J.L. Gonzalez. Influence of Organic Amendments on Soil Structure and Soil Loss Under Simulated Rain. Soil and Tillage Research, 2007, 93(1): 197~205.
    [57] K. Debosz, S.O. Petersen, L.K. Kure, et al. Evaluating Effects of Sewage Sludge and Household Compost on Soil Physical, Chemical and Microbiological Properties. Applied Soil Ecology, 2002, 19(3): 237~248.
    [58] S.Y. Selivanovskaya, V.Z. Latypova. Effects of Composted Sewage Sludge on Microbial Biomass, Activity and Pine Seedlings in Nursery Forest. Waste Management, 2006, 26(11): 1253~1258.
    [59] K.E. Giller, E. Witter, S.P. Mcgrath. Toxicity of Heavy Metals To Microorganisms and Microbial Processes in Agricultural Soils: a Review. Soil Biology & Biochemistry, 1998, 30(10): 1389~1414.
    [60] I. Sastre, M.A. Vicente, M.C. Lobo. Influence of the Application of SewageSludges on Soil Microbial Activity. Bioresource Technology, 1996, 57(1): 19~23.
    [61] J.L. Moreno, C. Garcia, T. Hernandez. Toxic Effect of Cadmium and Nickel on Soil Enzymes and the Influence of Adding Sewage Sludge. European Journal of Soil Science, 2003, 54(2): 377~386.
    [62] S.A. Fernandes, W. Bettiol, C.C Cerri. Effect of Sewage Sludge on Microbial Biomass, Basal Respiration, Metabolic Quotient and Soil Enzymatic Activity. Applied Soil Ecology, 2005, 30(1): 65~77.
    [63]姜城,杨金,陈振天,等.污泥、污泥复合肥农业应用的初步研究.吉林农业大学学报, 1996, 18(2): 46~50.
    [64]陈同斌,李艳霞,金燕,等.城市污泥复合肥的肥效及其对小麦重金属吸收的影响.生态学报, 2002, 22(5): 643~648.
    [65]蔡全英,莫测辉,吴启堂.城市污泥及其堆肥对盆栽通菜和萝卜产量的影响.农业环境科学学报, 2003, 22(1): 52~55.
    [66] S.V. Smith, W.H. Renwick, R.W. Buddemeier, et al. Budgets of Soil Erosion and Deposition for Sediments and Sedimentary Organic Carbon Across the Conterminous United States. Global Biogeochemical Cycles, 2001, 15(3): 697~707.
    [67] M.á. González-Martínez, E.M. Brun, R. Puchades, et al. Glyphosate Immunosensor. Application for Water and Soil Analysis. Analytical Chemistry, 2005, 77(13): 4219~4227.
    [68] A.J. Sweetman, M.D. Valle, K. Prevedouros, et al. the Role of Soil Organic Carbon in the Global Cycling of Persistent Organic Pollutants (Pops): Interpreting and Modelling Field Data. Chemosphere, 2005, 60(7): 959~972.
    [69] J.D. Goodin, M.D. Webber. Persistence and Fate of Anthracene and Benzo (a) Pyrene in Municipal Sludge Treated Soil. Journal of Environmental Quality, 1995, 24(2): 271~278.
    [70]乔显亮,骆永明.污泥的土地利用及其环境影响.土壤, 2000, 32(002): 79~85.
    [71]程五良,方萍,陈玲,等.城市污水厂污泥土地利用可靠性探讨.同济大学学报(自然科学版), 2004, 32(7): 939~942.
    [72]黄雅曦,李季,李国学,等.污泥资源化处理与利用中控制重金属污染的研究进展.中国生态农业学报, 2006, 14(1): 156~158.
    [73] P.S. Kidd, M.J. Dominguez-Rodriguez, J. Diez, et al. Bioavailability and Plant Accumulation of Heavy Metals and Phosphorus in Agricultural Soils Amended By Long-Term Application of Sewage Sludge. Chemosphere, 2007, 66(8): 1458~1467.
    [74] A. G?thberg, M. Greger, B.E. Bengtsson . Accumulation of heavy metals inWater Spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environmental Toxicology and Chemistry, 2002, 21 (9): 1934~1939.
    [75] F.M.G. Tack, B. Vandecasteele. Cycling and Ecosystem Impact of Metals in Contaminated Calcareous Dredged Sediment-Derived Soils (Flanders, Belgium). Science of the Total Environment, 2008, 400(1-3): 283~289.
    [76] G.W. Bryan, W.J. Langston. Bioavailability, Accumulation and Effects of Heavy Metals in Sediments With Special Reference to United Kingdom Estuaries: a Review. Environmental Pollution, 1992, 76(2): 89~131.
    [77] J.M. Bubb, J.N. Lester. the Impact of Heavy Metals on Lowland Rivers and the Implications for Man and the Environment. the Science of the Total Environment, 1991, 100(2): 207~233.
    [78] P.S. Rainbow. Biomonitoring of Heavy Metal Availability in the Marine Environment. Marine Pollution Bulletin, 1995, 31(4-12): 183~192.
    [79] A.V. Hirner. Trace Element Speciation in Soils and Sediments Using Sequential Chemical Extraction Methods. International Journal of Environmental Analytical Chemistry, 1992, 46(1): 77~85.
    [80] A. Tessier, P.G.C Campbell, M. Bisson. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 1979, 51(7): 844~850.
    [81] R.P. Gambrell. Trace and Toxic Metals in Wetland-A Re-View. Journal of Environment Quality, 1994, (23): 819~883.
    [82] U. F?rstner, G.T.W. Wittmann. Metal Pollution in Aquatic Environment. Springer Verlag, 1981, 0-387.
    [83] L.M. Shuman. Fractionation Method for Soil Microelements. Soil Science, 1985, 140: 11~22.
    [84]吴少尉,池泉,陈文武,等.土壤中硒的形态连续浸提方法的研究.土壤, 2004, 36(01), 92~95.
    [85] D.A. Martens, D.L. Suarez. Selenium Speciation of Soil/Sediment Determined With Sequential Extractions and Hydride Generation Atomic Absorption Spectrophotometry. Environmental Science & Technology, 1996, 31(1): 133~139.
    [86]邵涛,谢思琴.油污染土壤重金属赋存形态和生物有效性研究.中国环境科学, 2000, 20(001): 57~60.
    [87] G. Rauret. Extraction Procedures for the Determination of Heavy Metals in Contaminated Soil and Sediment. Talanta, 1998, 46: 449~455.
    [88] F.L. Domergue, J.C. Védy. Mobility of Heavy Metals in Soil Profiles. International Journal of Environmental Analytical Chemistry, 1992, 46(1): 13~23.
    [89] D. Hirsch, A. Banin. Cadmium Speciation in Soil Solutions. Journal ofEnvironmental Quality, 1990, 19(3): 366~372.
    [90] C.H. Langford, D.W. Gutzman. Kinetic Studies of Metal Ion Speciation. Analytica Chimica Acta, 1992, 256(1): 183~201.
    [91] J.N. Lester , R.M. Sterritt , P. Kirk. Significance and Behaviour of Heavy Metals in Waste Water Treatment Processes II. Sludge Treatment and Disposal. Science of the Total Environment, 1983, 30: 45~83.
    [92] R. Agraz, M.T. Sevilla, L. Hernandez. Chemically Modified Electrode for the Simultaneous Determination of Trace Metals and Speciation Analysis. Analytica Chimica Acta, 1993, 273(1-2): 205~212.
    [93] M. Esteban, H.G. De Jong, H.P. Van Leeuwen. Metal Speciation in Polyelectrolytic Systems By Differential Pulse Anodic Stripping Voltammetry. International Journal of Environmental Analytical Chemistry, 1990, 38(2): 75~83.
    [94] F.L.L. Muller, D.R. Kester. Voltammetric Determination of the Complexation Parameters of Zinc in Marine and Estuarine Waters. Marine Chemistry, 1991, 33(1-2): 71~90.
    [95] G.F. Koopmans, W.D. Schenkeveld, J. Song , et al. Influence of EDDS on Metal Speciation in Soil Extracts:Measurement and Mechanistic Multicomponent Modeling. Environ.Sci.Technol, 2008, 42: 1123~1130.
    [96] J. Yang, Q. Wang, T. Wu, et al. Heavy Metals Extraction from Municipal Solid Waste Incineration Fly Ash Using Adapted Metal Tolerant Aspergillus Niger. Bioresource Technology, 2008, 100(2009): 254~260.
    [97] L. Rodriguex, E. Ruiz E, J. Alonso-Azcárate J, et al. Heavy Metal Distribution and Chemical Speciation in Tailings andsoils Around a Pb–Zn Mine in Spain. Journal of Environmental Management, 2008, 90(2009): 1106~1116.
    [98] Q.R. Zhang B. Pan, W. Zhang, et al. Selective Sorption of Lead, Cadmium and Zinc Ions By a Polymeric Cation Exchanger Containing Nano-Zr(HPO3S)2. Environmental Science & Technology, 2008, 42(11): 4140~4145。
    [99] R. Chandra, R.N. Bharagava, S.B. Yadav, et al. Accumulation and Distribution of Toxic Metals in Wheat (Triticumaestivuml.) and Indian Mustard (Brassicacampestrisl.) Irrigated With Distillery and Tannery Effluents. Journal of Hazardous Materials, 2008, 162(2009): 1514~1521.
    [100] T.C. Yip, D.C. Tsang , K.T. Ng, et al. Empirical Modeling of Heavy Metal Extraction By EDDS from Single-Metaland Multi-Metal Contaminated Soils. Chemosphere, 2008, 74(2009): 301~307.
    [101] T.K. Janssens, R. Lopéz Rdel, J. Mari?n, et al. Comparative Population Analysis of Metallothionein Promoter Alleles Suggests Stress-Induced Microevolution in the Field. Environmental Science & Technology, 2008, 42: 3873~3878.
    [102] U. Bulut, A. Ozverdi, M. Erdem. Leaching Behavior of Pollutants in Ferrochrome arc Furnace Dust and Its Stabilization/Solidifcation Using Ferrous Sulphate and Portland Cement. Journal of Hazardous Materials, 2008, 162(2009): 893~898.
    [103] H. Gen?-Fuhrman, P.S. Mikkelsen, A. Ledin. Simultaneous Removal of As, Cd, Cr, Cu, Ni and Zn From stormwater: Experimental Comparison of 11 Different sorbents. Water Research, 2006, 41(2007): 591~602.
    [104] U. Wingenfelder, B. Nowack, G. Furrer, et al. Adsorption of Pb and Cd By Amine-Modified Zeolite. Water Research, 2005, 39(2005): 3287~3297
    [105] G. Christine, T. Sylvaine, A. Michel. Fractionation Studies of Trace Elements in Contaminate Soils and Sediments: a Review of Sequential Extraction Procedures. Trends in Analytical Chemistry, 2002, 21(6-7): 451~467.
    [106] M.D. Christine, L.D. Ailsa, L. David, et al. A Critical Evaluation of the Three-Stage BCR Sequential Extracion Procedure to Asses the Potential Mobility and Toxicity Heavy Metals in Industrially-Contaminated Land. Analytica Chimica Acta, 1998, 363: 45~55.
    [107] Z. Zou, R. Qiu, W. Zhang, et al. the Study of Operating Variables in Soil Washing With EDTA. Environmental Pollution, 2009, 157(1): 229~236
    [108] A. Fuentes, M. Lloréns, J. Saez, et al. Simple and Sequential Extractions of Heavy Metals from Different Sewage Sludges. Chemosphere, 2004, 54(8): 1039~1047.
    [109] R. Zufiaurre, A. Olivar, P. Chamorro, et al. Speciation of Metals in Sewage Sludge for Agricultural Uses. Analyst, 1998, 123(2): 255~259.
    [110] S. Tokalioglu, S. Kartal, L. Elci. Speciation and Determination of Heavy Metals in Lake Waters By Atomic Absorption Spectrometry after Sorption on Amberlite XAD-16 Resin. Analytical Sciences, 2000, 16(11): 1169~1174.
    [111] I.S. Da Silva, G. Abate, J. Lichtig, et al. Heavy metal distribution in recent sediments of the Tietê-Pinheiros river system in S?o Paulo state, Brazil. Applied Geochemistry, 2002, 17(2): 105~116.
    [112] H.J. Tan, C. Zhang, Z.Z. Wang, et al. Heavy Metal Pollution of River Sludge in Taiyuan. Advanced Materials Research, 2011, 243: 5280~5284.
    [113] J. Scanca, I.R. Mila, M. Stra Ar, et al. Total Metal Concentrations and Partitioning of Cd, Cr, Cu, Fe, Ni and Zn in Sewage Sludge. the Science of the Total Environment, 2000, 250(1-3): 9~19.
    [114]周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报, 2000, 20(3): 269~274.
    [115]刘敬勇,孙水裕.城市污泥焚烧过程中重金属形态与分布的热力学平衡分析.中国有色金属学报, 2010, 20(8): 1645~1655.
    [116]安淼,周琪,李永秋.城市污泥中重金属的形态分布和处理方法的研究.农业环境科学学报, 2003, 22(2): 199~202.
    [117]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用.海洋湖沼通报, 2002, (003): 25~35.
    [118]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析.生态环境, 2004, 13(2): 154~155.
    [119]刘忠珍,刘世亮,介晓磊,等.土壤环境中重金属形态区分方法的新进展及其应用.中国农学通报, 2005, 21(004): 206~211.
    [120]胡忻,陈茂林,吴云海,等.城市污水处理厂污泥化学组分与重金属元素形态分布研究.农业环境科学学报, 2005, 24(002): 387~391.
    [121]魏俊峰,吴大清,彭金莲,等.广州城市水体沉积物中重金属形态分布研究.土壤与环境, 1999, 8(1): 10~14.
    [122]乔显亮,骆永明.污泥土地利用研究:Ⅱ,连续化学提取法研究施污泥土壤重金属的有效性和环境风险.土壤, 2001, 33(004): 210~213.
    [123] A.K. Singh, S.I. Hasnain, D.K. Banerjee. Grain Size and Geochemical Partitioning of Heavy Metals in Sediments of the Damodar River–a Tributary of the Lower Ganga, India. Environmental Geology, 1999, 39(1): 90~98.
    [124] S.B. Wiese, C.L. Macleod, J.N. Lester. A Recent History of Metal Accumulation in the Sediments of the Thames Estuary, United Kingdom. Estuaries, 1997: 483~493.
    [125] J.H. Trefry, S. Metz, R.P. Trocine, et al. A Decline in Lead Transport By the Mississippi River. Science, 1985, 230(4724): 439~441.
    [126] B.J. Presley, J.H. Trefry, R.F. Shokes. Heavy Metal Inputs to Mississippi Delta Sediments. Water, Air, & Soil Pollution, 1980, 13(4): 481~494.
    [127] A. Obrador, M.I. Rico, J.M. Alvarez, et al. Influence of Thermal Treatment on Sequential Extraction and Leaching Behaviour of Trace Metals in a Contaminated Sewage Sludge. Bioresource Technology, 2001, 76(3): 259~264.
    [128]潘玉,郭浩磊,曾正中,等.污泥堆肥前后重金属Ni和Cd形态变化研究.安徽农业科学, 2010, (31): 17708~17709.
    [129] J.H. Hsu, S.L. Lo. Effect of Composting on Characterization and Leaching of Copper, Manganese, and Zinc from Swine Manure. Environmental Pollution, 2001, 114(1): 119~127.
    [130]吕彦,马利民.快速堆肥对污泥中重金属的影响.东华理工学院学报, 2005, 28(1): 30~33.
    [131]曹军,谭云飞,邢磊,等.污泥中重金属在厌氧消化前后的形态分布分析.河南化工, 2003, (6): 33~34.
    [132]沈晓南,谢经良.厌氧消化后污泥中的重金属形态分布.中国给水排水, 2002, 18(011): 51~52.
    [133] L.X. Zhou, J.W. Wang. Effect of Dissolved Organic Matter from Sludge and Sludge Compost on Soil Copper Sorption. Journal of Environmental Quality, 2001, 30(3): 878~883.
    [134] G.S. Miner, R. Gutierrez, L.D. King. Soil Factors Affecting Plant Concentrations of Cadmium, Copper, and Zinc on Sludge-Amended Soils. Journal of Environmental Quality, 1997, 26(4): 989~994.
    [135] J.L. Jing, J. Terry. Effects of Sewage Sludge Cadmium Concentration on Chemical Extractability and Plant Uptake. Journal of Environmental Quality, 1992, 21(1): 73~81.
    [136] R. Riffaldi, R. Saviozzi, A. Tropea. Sorption and Release of Cadmium By Some Sewage Sludges1. Journal of Environmental Quality, 1983, 12(2): 253~256.
    [137] G. Merrington, I. Oliver, R.J. Smernik , et al. The Influence of Sewage Sludge Properties on Sludge-Borne Metal Availability. Advances in Environmental Research, 2003, 8(1): 21~36.
    [138]杜延军,金飞,刘松玉,等.重金属工业污染场地固化/稳定处理研究进展.岩土力学, 2011, 32(1): 116~124.
    [139]吴芳,罗爱平,李楠.含重金属水处理污泥的固化和浸出毒性研究.环境污染治理技术与设备, 2003, 4(12): 40~43.
    [140]张春娜,鲁叶江,李良玉.唐山市南湖城市中央生态公园土壤重金属形态特征研究.中国农学通报, 2011, 27(1): 286~289.
    [141]廖敏,黄昌勇. PH对镉在水系统中的迁移和形态的影响.环境科学学报, 1999, 19(001): 81~86.
    [142]单孝全,钱进,王子健.土壤中微量金属元素的植物可给性研究进展.环境科学, 1995, 16(6): 73~75.
    [143]章骅,何品晶,吕凡,等.重金属在环境中的化学形态分析研究进展.环境化学, 2011, 30(001): 130~137.
    [144] N.S. Bolan, R. Naidu, M. Khan, et al. the Effects of Anion Sorption on Sorption and Leaching of Cadmium. Australian Journal of Soil Research, 1999, 37(3): 445~460.
    [145] R.D. Macnicol, P. Beckett. The Distribution of Heavy Metals Between the Principal Components of Digested Sewage Sludge. Water Research, 1989, 23(2): 199~206.
    [146] L. Sadovnikova, E. Otabbong, O. Iakimenko, et al. Dynamic Transformation of Sewage Sludge and Farmyard Manure Components. 2. Copper, Lead and Cadmium Forms in Incubated Soils. Agriculture, Ecosystems & Environment, 1996, 58(2-3): 127~132.
    [147] A.E. Boekhold, E. Temminghoff, S. Zee. Influence of ElectrolyteComposition and Ph on Cadmium Sorption By an Acid Sandy Soil. European Journal of Soil Science, 1993, 44(1): 85~96.
    [148] P.L. Giusquiani, L. Concezzi, M. Businelli, et al. Fate of Pig Sludge Liquid Fraction in Calcareous Soil: Agricultural and Environmental Implications. Journal of Environmental Quality, 1998, 27(2): 364~371.
    [149]王治喜,屈明.溶解性有机质对土壤重金属活性影响的研究概况.中国农学通报, 2005, 21(12): 388~392.
    [150]刘敬勇,孙水裕,许燕滨,等.广州城市污泥中重金属的存在特征及其农用生态风险评价.环境科学学报, 2009, 29(12): 2545~2556.
    [151]李娟娟,马金涛,楚秀娟,等.应用地积累指数法和富集因子法对铜矿区土壤重金属污染的安全评价.中国安全科学学报, 2006, 16(012): 135~139.
    [152]刘敬勇,常向阳,涂湘林,等.广东某硫酸废渣堆渣场周围土壤铊污染的地累积指数评价.土壤通报, 2010, (005): 1231~1236.
    [153]汤洁,天琴,李海毅,等.哈尔滨市表土重金属地球化学基线的确定及污染程度评价.生态环境学报, 2010, 19(010): 2408~2413.
    [154]张一修,王济,张浩.贵阳市区地表灰尘重金属污染分析与评价.生态环境学报, 2011, 20(1): 169~174.
    [155]贾振邦,于澎涛.应用回归过量分析法评价太子河沉积物中重金属污染的研究.北京大学学报:自然科学版, 1995, 31(004): 451~459.
    [156]檀满枝,陈杰,徐方明,等.基于模糊集理论的土壤重金属污染空间预测.土壤学报, 2006, 43(003): 389~396.
    [157]赵智杰,贾振邦,张宝权,等.应用脸谱图与地积累指数法综合评价沉积物中重金属污染的研究.环境科学, 1993, (4): 48~52.
    [158] Y.J. Song, H.Q. Liu. Distribution of Heavy Metals in Urban Gully and Their Pollution Assessment. Advanced Materials Research, 2011, 255: 2977~2980.
    [159]刘红樱,谢志仁,陈德友,等.成都地区土壤环境质量初步评价.环境科学学报, 2004, 24(2): 297~303.
    [160] F. Botsou, A.P. Karageorgis, E. Dassenakis, et al. Assessment of Heavy Metal Contamination and Mineral Magnetic Characterization of the Asopos River Sediments (Central Greece). Marine Pollution Bulletin, 2011, 62(3): 547~563.
    [161]张江华,赵阿宁,王仲复,等.内梅罗指数和地质累积指数在土壤重金属评价中的差异探讨——以小秦岭金矿带为例.黄金, 2010, 8(8): 43~46.
    [162] G. Muller. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal, 1969, 2(3): 108~118.
    [163]刘志彦,孙丽娜,郑冬梅,等.河道底泥重金属污染及农用潜在风险评价.安徽农业科学, 2010, (21): 11436~11438.
    [164] L. Hakanson. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Research, 1980, 14(8): 975~1001.
    [165]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算.环境科学与技术, 2008, 31(2): 112~115.
    [166]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价.合肥工业大学学报(自然科学版), 2011, 34(1): 128~131.
    [167] J. Sims, J.S. Kline. Chemical Fractionation and Plant Uptake of Heavy Metals in Soils Amended with Co-Composted Sewage Sludge. Journal of Environmental Quality, 1991, 20(2): 387~395.
    [168] M.L. Berrow, J.C. Burridge. Persistence of Metal Residues in Sewage Sludge Treated Soils over Seventeen Years. International Journal of Environmental Analytical Chemistry, 1990, 39(2): 173~177.
    [169] M. Sanka, M. Dolezal. Prediction of Plant Contamination by Cadmium and Zinc Based on Soil Extraction Method and Contents in Seedlings. International Journal of Environmental Analytical Chemistry, 1992, 46(1): 87~96.
    [170] H. Heinz. The Analysis of Inorganic and Organic Pollutants in Soil with Special Regard to Their Bioavailability. International Journal of Environmental Analytical Chemistry, 1990, 39(2): 197~208.
    [171] S.K. Gupta, C. Aten. Comparison and Evaluation of Extraction Media and Their Suitability in a Simple Model to Predict the Biological Relevance of Heavy Metal Concentrations in Contaminated Soils. International Journal of Environmental Analytical Chemistry, 1993, 51(1): 25~46.
    [172] R.X. Gonzalez, J.B. Sartain, W.L. Mille. Cadmium Availability and Extractability from Sewage Sludge as Affected by Waste Phosphatic Clay. Journal of Environmental Quality, 1992, 21(2): 272~275.
    [173] A.J. Palazzo, C.M. Reynolds. Long-Term Changes in Soil and Plant Metal Concentrations in an Acidic Dredge Disposal Site Receiving Sewage Sludge. Water, Air & Soil Pollution, 1991, 57(1): 839~848.
    [174] J. Liang, J. Stewart, R.E. Karamanos. Distribution of Zinc Fractions in Prairie Soils. Canadian Journal of Soil Science, 1990, 70(3): 335~342.
    [175] G.G. Payne, D.C. Martens, E.T. Kornegay, et al. Availability and Form of Copper in Three Soils Following Eight Annual Applications of Copper-Enriched Swine Manure. Journal of Environmental Quality (USA), 1988, 17(4) :740~746.
    [176] G.G. Payne, D.C. Martens, C. Winarko, et al. Form and Availability of Copper and Zinc Following Long-Term Copper Sulfate and Zinc Sulfate Applications. Journal of Environmental Quality (USA), 1988, 17(4) :707~711.
    [177] B.D. Rappaport, D.C. Martens, R.B. Reneau, et al. Metal Availability in Sludge-Amended Soils With Elevated Metal Levels. Journal of EnvironmentalQuality (USA), 1987, 17(1):42~47.
    [178] W.L. Lindsay, W.A. Norvell. Development of a DTPA Soil Test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal , 1978, 42(3): 421~428.
    [179] J.L. Jing, J. Terry. Effects of Sewage Sludge Cadmium Concentration on Chemical Extractability and Plant Uptake. Journal of Environmental Quality, 1992, 21(1): 73.
    [180] Y. Weimin , G.E. Batley, M. Ahsanullah. The Ability of Sediment Extractants to Measure the Bioavailability of Metals to Three Marine Invertebrates. Science of the Total Environment, 1992, 125(9): 67~84.
    [181] B.P. Bourgoin, M.J. Risk , R.D. Evans, et al. Relationships Between the Partitioning of Lead in Sediments and Its Accumulation in the Marine Mussel, Mytilus Edulis Near a Lead Smelter. Water, Air, & Soil Pollution, 1991, 57(1): 377~386.
    [182] K.L. Shuttleworth, R.F. Unz. Influence of Metals and Metal Speciation on the Growth of Filamentous Bacteria. Water Research, 1991, 25(10): 1177~1186.
    [183] E. Waidmann, K. Hilpert, J.D. Schladot, et al. Determination of Cadmium, Lead, and Thallium in Materials of the Environmental Specimen Bank Using Mass Spectrometric Isotope Dilution Analysis (MS-IDA). Fresenius' Journal of Analytical Chemistry, 1984, 317(3): 273~277.
    [184] B.R. Fristoe, P.O. Nelson. Equilibrium Chemical Modelling of Heavy Metals in Activated Sludge. Water Research, 1983, 17(7): 771~778.
    [185] J.Z. Xie, H.L. Chang, J.J. Kilbane. Removal and Recovery of Metal Ions from Wastewater Using Biosorbents and Chemically Modified Biosorbents. Bioresource Technology, 1996, 57(2): 127~136.
    [186] A. Veeken, H. Hamelers. Removal of Heavy Metals from Sewage Sludge By Extraction With Organic Acids. Water Science and Technology, 1999, 40(1): 129~136.
    [187] K. Lo, Y.H. Chen. Extracting Heavy Metals from Municipal and Industrial Sludges. Science of the Total Environment, 1990, 90(1): 99~116.
    [188] D.J. Wozniak, J.Y.C. Huang. Variables Affecting Metal Removal from Sludge. Journal (Water Pollution Control Federation), 1982, 54(12): 1574~1580.
    [189]吴忠艳,由宏君,王丽影,等.生化剩余活性污泥中重金属脱除技术的研究.石油化工环境保护, 2002, 25(2): 43~46.
    [190]陈曦,王玉军.化学淋滤法去除污泥中Cr、Cu的研究.环境科学与管理, 2009, 34(6): 61~64.
    [191] M.M. Marchloretto, H. Bruning, N.T. Loan, et al. Heavy Metals Extraction from Anaerobically Digested Sludge. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2002,46(10): 1~8.
    [192] O.K. Borggaard, P.E. Holm, J.K. Jensen, et al. Cleaning Heavy Metal Contaminated Soil With Soluble Humic Substances Instead of Synthetic Polycarboxylic Acids. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2011, (1): 1~5.
    [193] M. Soleimani , M.A. Hajabbasi, M. Afyuni, et al. Comparison of Natural Humic Substances and Synthetic Ethylenediaminetetraacetic Acid and Nitrilotriacetic Acid As Washing Agents of a Heavy Metal–Polluted Soil. Journal of Environmental Quality, 2010, (39): 855~862.
    [194] Zhiping. Removal of Heavy Metals from Sludge By Chemical Method. Pathumtani: Asian Institute of Technology Master`s Thesis, 1995, 18~52.
    [195]刘云国,肖鑫,李欣,等.土著微生物对尾矿中重金属的淋滤研究.湖南大学学报(自然科学版), 2011, 2(2): 70~74.
    [196] J.F. Blais, J.C. Auclair, R.D. Tyagi. Cooperation Between Two Thiobacillus Strains for Heavy-Metal Removal from Municipal Sludge. Canadian Journal of Microbiology, 1992, 38(3): 181.
    [197]朱兰保,盛蒂.重金属污染土壤生物修复技术研究进展.工业安全与环保, 2011, 37(2): 20~21.
    [198]王红旗,陆泗进,陈延君.污染土壤植物修复中螯合诱导和转基因技术的应用现状与前景.地学前缘, 2005, 12(z1): 36~42.
    [199]黄慧,陈宏.植物修复重金属汞,镉,铬污染土壤的研究进展.中国农学通报, 2010, 26(24): 326~329.
    [200] C.C. Shagol, K.Y. Kim, J.B. Chung, et al. Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils. 2011, 44(1): 58~66.
    [201] O.N. Ruiz, D. Alvarez, C. Torres, et al. Metallothionein Expression in Chloroplasts Enhances Mercury Accumulation and Phytoremediation Capability. Plant Biotechnology Journal, 2011, 9(5): 609~617.
    [202] S. Doumett, D. Fibbi, E. Azzarello, et al. Influence of the Application Renewal of Glutamate and Tartrate on Cd, Cu, Pb and Zn Distribution Between Contaminated Soil and Paulownia Tomentosa in a Pilot-Scale Assisted Phytoremediation Study. International Journal of Phytoremediation, 2011, 13(1): 1~17.
    [203] Y. Lin, N.G. Smart, C.M. Wai . Supercritical Fluid Extraction and Chromatography of Metal Chelates and Organometallic Compounds. Trace Trends in Analytical Chemistry, 1995, 4(3): 123~133.
    [204] J.R. De La Rosa, P. Elizondo-Martínez, B.N. Martínez, et al. Determination of the Solubility of Copper With Three Commercial Ligands and One NovelLigand in Supercritical CO2. Materials and Manufacturing Processes, 2011, 26(2): 304~310.
    [205] N.G. Smart, T.E. Carleson, S. Elshani, et al. Extraction of Toxic Heavy Metals Using Supercritical Fluid Carbon Dioxide Containing Organophosphorus Reagents. Industrial & Engineering Chemistry Research, 1997, 36(5): 1819~1826.
    [206] C. Kersch, M. Van Roosmalen, G.F. Woerlee, et al. Extraction of Heavy Metals from Fly Ash and Sand With Ligands and Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2000, 39(12): 4670~4672.
    [207] Y.G. Ding, H.T. Huang, Y. Ding, et al. Study of Metal Complexes’Solubility in Supercritical Carbon Dioxide. Advanced Materials Research, 2011, 236-238: 411~416.
    [208] C.Y. Yang , Y.G. Ding, Y. Ding, et al. Supercritical Carbon Dioxide Chelating-Extraction of Trace Heavy Metal from Calcium Lactate. Advanced Materials Research, 2011, 233-235: 1402~1405
    [209] A.P.G.C. Marques, A.O.S. Rangel, P.M.L. Castro. Remediation of Heavy Metal Contaminated Soils: an Overview of Site Remediation Techniques. Critical Reviews in Environmental Science and Technology, 2011, 41(10): 879~914.
    [210] C. Wan , M. Du, D.J. Lee, et al. Electrokinetic Remediation and Microbial Community Shift ofβ-Cyclodextrin-Dissolved Petroleum Hydrocarbon-Contaminated Soil. Applied Microbiology and Biotechnology, 2011, 89(6): 2019~2025.
    [211] H. Jeong, B. Kang. Removal of Lead from Contaminated Korean Marine Clay by Electrokinetic Remediation Technology. Geoenvironmental Engineering Contaminated Ground. Fate of Pollutants and Remediation, Thomas Telford, 1997, 423~424.
    [212] A. Mohamed, H.I. Saleh. Heavy Metals Removal from Municipal wastewater Sludge for Land Application Management. Geoenvironmental Engineering: Contaminated Ground: Fate of Pollutants and Remediation. Thomas Telford, 1997, 449~450.
    [213] C.Y. Kuo, C.H. Wu, S.L. Lo. Leaching Efficiency of Copper from Industrial Sludge With Traditional Acid Extraction (TAE) and Microwave Assisted Treatment (MAT). Journal of Environmental Science and Health, 2005, 40(12): 2203~2214.
    [214] M.B. Arain , T.G. Kazi, M.K. Jamali, et al. Speciation of Heavy Metals in Sediment By Conventional, Ultrasound and Microwave Assisted Single Extraction Methods: A Comparison With Modified Sequential Extraction Procedure. Journal of Hazardous Materials, 2008, 154(1-3): 998~1006..
    [215] J. Deng, X. Feng, X. Qiu. Extraction of Heavy Metal from Sewage Sludge Using Ultrasound-Assisted Nitric Acid. Chemical Engineering Journal, 2009, 152(1): 177~182.
    [216] N. Manutsewee, W. Aeungmaitrepirom, P. Varanusupakul, et al. Determination of Cd, Cu, and Zn in Fish and Mussel By AAS after Ultrasound-Assisted Acid Leaching Extraction. Food Chemistry, 2007, 101(2): 817~824..
    [217]谢礼国,郑怀礼,吴幼权,等.粉煤灰改性及钝化污泥实验研究.土木建筑与环境工程, 2010, (1): 120~124.
    [218]姜华,吴波,李国学.添加不同钝化剂降低污泥堆肥的植物毒性研究.环境工程学报, 2008, 2(010): 1413~1415.
    [219]于瑞莲,徐加庆,胡恭任,等.施用污泥对小白菜生长及其迁转重金属的影响.生态学杂志, 2011, 30(01): 82~86.
    [220] A.O. Oyeyiola, K.O. Olayinka, B.I. Alo. Comparison of Three Sequential Extraction Protocols for the Fractionation of Potentially Toxic Metals in Coastal Sediments. Environmental Monitoring and Assessment, 2011, 172(1-4): 319~327.
    [221] G. Zhang, Y. Lin, M. Wang. Remediation of Copper Polluted Red Soils With Clay Materials. Journal of Environmental Sciences, 2011, 23(3): 461~467.
    [222] M. Martínez-Fernández, M.C. Barciela-Alonso, A. Moreda-Pi Eiro, et al. Matrix Solid Phase Dispersion-Assisted BCR Sequential Extraction Method for Metal Partitioning in Surface Estuarine Sediments. Talanta, 2010, 83(3): 840~849.
    [223] T. Ratuzny, Z. Gong, B.M. Wilke. Total Concentrations and Speciation of Heavy Metals in Soils of the Shenyang Zhangshi Irrigation Area, China. Environmental Monitoring and Assessment, 2009, 156(1): 171~180.
    [224] C. Wang, X.C. Li , H.T. Ma , et al. Distribution of Extractable Fractions of Heavy Metals in Sludge During the Wastewater Treatment Process. Journal of Hazardous Materials, 2006, 137(3): 1277~1283.
    [225]张凤英,阎百兴,朱立禄,等.松花江沉积物重金属形态赋存特征研究.农业环境科学学报, 2010, 29(1): 163~167.
    [226]李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用.生态学报, 2003, 23(011): 2464~2474.
    [227]郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究.环境化学, 2005, 24(004): 383~388.
    [228]鲍士旦.土壤农化分析.中国农业出版社, 2000, 25~282.
    [229] I. Maiz, I. Arambarri, R. Garcia, et al. Evaluation of Heavy Metal Availability in Polluted Soils By Two Sequential Extraction Procedures UsingFactor Analysis. Environmental Pollution, 2000, 110(1): 3~9.
    [230]杨军,郭广慧,陈同斌,等.中国城市污泥的重金属含量及其变化趋势.中国给水排水, 2009, 25(13): 122~124.
    [231]王铁宇,汪景宽,周敏,等.黑土重金属元素局地分异及环境风险.农业环境科学学报, 2004, 23(002): 272~276.
    [232] B. Lourino-Cabana, L. Lesven, A. Charriau , et al. Potential Risks of Metal Toxicity in Contaminated Sediments of Deūle River in Northern France. Journal of Hazardous Materials, 2011, 186(2-3):2129~2137.
    [233]刘静,陈玉成.城市污泥中重金属的去除方法研究进展.微量元素与健康研究, 2006, 23(3): 48~51.
    [234]蔡全英,莫测辉,吴启堂,等.化学方法降低城市污泥的重金属含量及其前景分析.土壤与环境, 1999, 8(4): 309~313.
    [235]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学, 1996, 17(1): 89~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700