黄、东海海域沉积物的源汇效应及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆海相互作用过程中痕量元素和有机质的归宿和行为,不仅是全球物质循环过程(例如碳循环、汞的全球循环等)研究的关键,而且与人类活动(例如:重大水利工程、城市化进程和土地的使用、工业污染物质的排放和大气污染物的沉降)密切相关。如果在一个典型的河口或者陆架海域,将自然过程(河流的输入、季风的输送、外海流系的输送、再悬浮过程等)、人类活动与海洋环境状况(缺氧区、上升流等)相结合,辅助敏感的示踪剂,就有可能在崭新的层面上认识陆海相互作用过程中痕量元素和有机质在海洋学过程中的源汇效应,而长江口与黄、东海海域正是实施这一研究最为理想的场所之一。
     本文以国家"973"项目(2002CB412400),国家自然科学基金面上项目(41076222)和国土资源部海洋油气资源与环境地质重点实验室基金(MRE201004)为依托,根据2003与2006年夏季、2009年冬季和2010年秋季长江口与黄东海海域四个航次的综合调查资料,测定了悬浮体含量、沉积物粒度、黏土矿物含量、有机碳、总氮、碳氮同位素、重金属元素和稀土元素含量等,分析了黄东海海域悬浮体的输送格局、沉积物的来源及其地球化学特征,定量估算了黄东海泥质区的沉积通量以及沉积物中重金属元素、有机碳的埋藏通量,结合前人的研究成果,系统地探讨了黄东海海域沉积物的源汇效应及其环境记录。主要结论如下:
     (1)黄海海域秋季悬浮体含量介于0.1-300mg/L之间,小于5mg/L的水体占据了研究区绝大部分海域。悬浮体高含量区主要分布在苏北浅滩,低含量区主要分布在山东半岛南部海域和南黄海中部海域。黄海悬浮体分布特征受黄海环流系统和再悬浮作用影响显著。北黄海泥质区和山东半岛沿岸泥质区是渤海海峡输入物质的汇,长江冲淡水也可能携带部分泥沙经黄海暖流输送至北黄海泥质区,而南黄海中部泥质区主要受老黄河物质的影响。基于对北黄海泥质区、山东半岛沿岸泥质区和南黄海中部泥质区沉积通量的估算(其沉积通量分别约为20Mt/yr、25-75Mt/yr和49Mt/yr),可得知黄河通过渤海海峡的输送通量应大于43Mt/yr,每年至少有50Mt老黄河物质输入至东海东部海域。
     (2)长江口海域夏季悬浮体含量的极大值出现在最大浑浊带,悬浮体高含量区主要出现在近岸泥质区中,在东海残留沉积区悬浮体含量较低。悬浮体含量的分布格局受沿岸流、长江冲淡水和台湾暖流的共同作用。表层悬浮体含量主要受长江冲淡水的影响,部分悬浮体可被携带至口外东北方向的海域。底层悬浮体含量在最大浑浊带可达1000mg/L,之后向外海方向迅速降低,在口外锋面处悬浮体含量出现明显的梯度变化,大部分悬浮体在沿岸流的作用下向南输送。闽浙沿岸泥质区的沉积通量约为186Mt/yr,而长江口外泥质区虽然面积较小,但却有着较快的堆积速率(最高可达到3g/cm2/yr),其沉积通量约为137Mt/yr。长江口泥质区和闽浙沿岸泥质区每年约沉积323Mt泥沙,大于基于浅地层剖面所估算的沉积通量240Mt/yr。
     (3)北黄海泥质区沉积物中有机质主要以陆源为主。长江口外泥质区和闽浙沿岸泥质区中有机质在近岸主要以陆源沉积为主,由近岸向海沉积物受海源物质的影响逐渐增强。在南黄海中部泥质区沉积物,陆源有机质的输送依然是有机质来源的主要方式,海洋来源有机质在南黄海中部泥质区的东侧呈增加趋势,可能与黄海暖流的输入有关。在百年尺度上,北黄海泥质区每年埋藏的有机碳总量约为0.19Mt,南黄海中部泥质区每年约埋藏0.59Mt,而长江口外泥质区的有机碳埋藏通量约为1.24Mt,略低于闽浙沿岸泥质区(2.10Mt)。东海的有机碳理藏通量大于黄海,在东海至少有50%的有机碳埋藏于长江口外和闽浙沿岸泥质区。
     (4)长江口海域沉积物中重金属元素的高含量分布在口门附近,向海方向呈逐渐减少的趋势。长江口外泥质区中呈现重金属元素的高值,在东海残留沉积区内绝大多数重金属元素含量出现低值。铁锰氧化物结合态是长江口及邻近海域沉积物中重金属元素非残渣态的主要存在形式。在长江口外泥质区的南部出现高含量的铜元素非残渣态,长江水沙输入量呈一定的正相关性;非残渣态的铅元素含量受大气输入和工业污染的影响较明显。长江口海域Y16站岩芯沉积物中铅、锌含量在1990年后呈现逐渐增加的趋势,其含量变化主要受控于长江物质的供给、生物沉积作用以及人类活动污染物排放的影响。另外,长江输沙量的变化与重金属元素铅、锌含量旱现一定的负相关性,结合富集因子分析和相关分析可知,1990年后岩芯沉积物中铅、锌含量受到人类活动污染物排放的影响,但这种影响在长江大量输沙的背景下被明显减少。
     (5)黄东海海域黏土矿物的分布特征主要受长江和黄河两条大河的影响,北黄海泥质区中黏土矿物主要受黄河输入物质控制,闽浙沿岸泥质区中黏土矿物被长江输入物质所控制。南黄海中部泥质区黏土矿物不仅受老黄河物质的影响,还受现代黄河和长江物质的影响,具多源特点。同时,韩国河流对南黄海中部泥质区中黏土矿物的贡献很小。
     黄渤海海域悬浮体和沉积物中稀土总含量介于20至300μg/g之间。在悬浮体中,经北美页岩标准化的稀土元素配分模式大致分为两类,一类为:水体的各层悬浮体中稀土元素配分模式均一致,与黄河沉积物接近。另一类为:底层悬浮体稀土元素配分模式与黄河沉积物接近,而表层和10m层悬浮体配分模式呈现重稀土相对富集,且稀土总量整体偏低。黄海海域悬浮体中稀土元素含量的变化主要受控于陆源碎屑物质,还可能受到水体的影响而体现出与陆源碎屑不同的配分模式。这种影响主要集中于悬浮体含量较低的表层或水深10m层中,可能由悬浮体清扫水体中重稀土元素所致。
     本文的创新点主要为:一、基于矿物学、地球化学和水沙输送过程,系统地分析了黄、东海海域物质的输送格局和来源,重新估算和评价了沉积通量、有机碳的埋藏通量和重金属元素的环境效应。二、详尽分析了黄海海域悬浮体中稀土元素的含量及配分模式,发现部分表层悬浮体中稀土元素的配分模式虽仍呈近直线型分布,但重稀土元素相对富集,可能由悬浮体清扫水体中重稀土元素所致。
The behavior and late of trace elements and organic matter in the process of Land-Sea interection, is not noly the key for the material cycle (such as carbone cycle and mercury cycle), but also relate to human activities (such as Dam Construction, urbanization, land use, industrial pollution and air pollution). If combine the nature process, human activities and oceanic environmental conditions in a typical estuary or shelf, and assists the avilible proxy, it is possible to recognize source and sink of trace metals and organic matter in the oceanic process. Therefore, the Changjiang, the Yellow Sea and the East China Sea are one of the best places to study the source to sink of the sediment.
     This research is supported by the Natural Science Foundation of China (No.41076022) and the National Basic Research Program of China (No.2002CB412400). Four cruises were accupied on the Changjiang estuary, the Yellow Sea and the East China Sea during summer of2003and2006, winter of2009and autumn of2010. The concentration of suspended sediment, grain size, clay mineral content, total organic carbon, total nitrogen, heavy metals and rare earth elements were determined, and transportation of suspended sediments, source of sediments were analysised and discussed. Based on other research, sediment deposition in the Yellow sea and the East China Sea were also estimated, and a complete discussion was taken to the sediment source and environmental records. The major conclution were drawn below:
     (1) The concentration of suspended sediments range from0.1to300mg/L, and the suspended sediment concentration with less than5mg/L distributes in the most study area. The high concentration of suspended matter is in the shallow water along the northeastern coast of Jiangsu Province. The low is mostly in the south area of Shandong Peninsula and the mud area of the South Yellow Sea. The distribution of suspended sediments is controlled by the circulation system and the resuspcnded process. The mud of North Yellow Sea and the mud of Shandong Peninsula are the sink of sediment from the Bohai Straits. However, the Changjiang diluted water could carry parts of sediments to the mud of North Yellow Sea by the Yellow Sea Warm Current, and the sediment from old Yellow River is the major contribution for the mud of the middle part in the South Yellow Sea. The sediment accumulacation in the mud of the North Yellow Sea is about20Mt/yr, for the mud of the Shandong Peninsula is about25-75Mt/yr and the mud area of the South Yellow Sea is about49Mt/yr. Based on this, we could conclude that there are more than43Mt/yr sediment from the Bohai Strait and more than50Mt/yr sediment from old Yellow River are transported to the Fast China Sea.
     (2) The max concentration of suspened sediment in the Changjiang estuary at summer is presented in turbidity maximum zone. High value is in the near shore mud area, and low value is preseted in the relict sediment of the East China Sea. The distribution of suspended sediments is controlled by the coastal current, the Changjiang dillutied water and Taiwan Warm Current, especially the max gradient of suspened sediment concentration presented in the shear front off the Changjiang estuary. The concentration of surface suspended sediment is controlled by the Changjiang diluted water, and part of the suspended sediment could be transported to the northeast direction. The max concentration of bottom suspended sediment is about1000mg/L in the turbidity maximum zone and shows a dcreased trend to the sea. Most of the suspended sediments are transported to the south off the Changjiang estuary by the coast current. It is about186Mt/yr sediment deposited in the mud of Minzhe coast. I lowever, the sediment depositon in the area of the Changjiang offshore mud is less than in the mud of Minzhe coast, but there is a high accumulacation rate in the Changjiang offshore mud area and its sediment deposition flux is about137Mt/yr. Therefor, the sediment deposited in the Changjiang offshore area is about323Mt/yr, above than the deposition flux caculated from the shallow seismic profile (240Mt/yr).
     (3) The source of organic materr in the sediment of the North Yellow Sea mud area is mainly from terrigenous input. The near shore sediment of the mud area off the Changjiang estuary is controlled by the terrigenous input, and the ocean source effection is increasing to the sea. In the mud area of the South Yellow Sea, terrigenous input is still the main source for the organic matter, and in the east part, ocean source input is increased which may correlated to the Warm Current of Yellow Sea. During the hundand year time scale, there is about0.19Mt organic carbon depositions in the mud of North Yellow Sea every year. And0.59Mt organic carbon buried in mud of South Yellow Sea every year,1.24Mt/yr organic carbon in mud of the Changjiang estuary which is below the value of the Minzhe Coast mud area (2.10Mt/yr). The burry flux of organic carbon in the East China Sea is above the flux in the Yellow Sea. More than50%organic carbon is buried in the mud area off the Changjiang estuary.
     (4) High value of heavy metals in the Changjiang estuarine sediment is presented near the estuary, and shows a dreaseaing trend to the sea. Most of low vlues of heavy metals are presented in the relict sediment of the East China Sea. Fe-Mn oxide fraction is the major fraction for the sediment of Changjiang estuary. Non residual fraction of Cu correlated to the sediment flux of the Changjiang, and non residual fraction of Pb is affected by the atmospheric input. The concentration of Pb and Zn in the core Y16presents an increasing trend from1990s, which is mainly controlled by the Changjiang input, biogenic sedimentation, and human activities. Moreover, the sediment flux of Changjiang presents a negative correlation with the concentration of Pb and Zn. From1990. the concentration of Pb and Zn is affected by the anthropugenic pollution. But. such huge sediment flux from Changjiang significantly diluted the pollution in the sediment.
     (5) The distribution of clay mineral in the sediment of the Yellow Sea and the East China Sea is mainly controlled by the Changjiang and the Yellow River. The clay from the North Yellow Sea in mainly controlled by the Yellow River input, and the clay from the mud of Minzhe coast is affected by the Chanjiang. However, the clay mineral in the mud of South Yellow Sea is not only effects by the Old Yellow River, but also effects by the Changjiang and Yellow River input. However, the contribution of clay mineral from the Korea River is neglectable in the mud of South Yellow Sea.
     The REE concentrations of suspeneded sediment and surface sediment arc range from20to300μg/g. The REE distribution pattern normalized to North America Shale present two typies:one is that there is no distinguish of the REH distribution pattern in the different layers of suspended sediment. The other is thai REE distribution pattern in the bottom layers is same to the sediment of Yellow River. But, REE distribution pattern in the surface and10m layers are riched in HREE, and TREE is lower than others. The REE distribution pattern in the Yellow Sea is mainly controlled by the terrigenous input and others (such as surface suspended sediment) may affect by the REE in the water. It could be interperated that the suspeneded sediment adsorbs the HREE of the water.
     The innovation point of this paper is about:firstly, based on the mineralogy, geochemistry and sediment transports, we analysis the sediment transportation pattern and souce in the Yellow Sea and the East China Sea, recalculated the sediment flux, burry flux of organic matter and the environment effection of heavy metals. Secondly, a detail work for the REE in the suspended sediment of Yellow Sea is carried out. Parts of REE distribution pattern in the surface and10m Layers suspended sediment present nearly a line, but the HREE is related rich. The related rich HREE in the surface of suspended sediment is may attributed by the asorbtion of HREE from the water.
引文
1. LOICZ Working Document-Version If. http://www.nioz.nl/loiez/firstpapers/loiczfitires V10.pdf,2003.9.
    2. 沈焕庭,长江河物质通量2001,北京:海洋出版社.
    3. 胡敦欣,韩舞鹰和章申,长江、珠口及邻近海域陆海相互作用2001,北京:海洋出版社.218.
    4. 王凡和许炯心,长江、黄河口及邻近海域陆海相互作用若干重要问题2004,北京:海洋出版社.
    5. 刘锡清,中国海洋环境地质学2006,北京:海洋出版社.
    6. 沈焕庭等,长江河口陆海相互作用界面2009:北京:海洋出版社.
    7. 翟世奎等,三峡工程一期蓄水后的长江口海域环境.北京:科学出版社2008.
    8. Hung, J.J., et al., Geochemical controls on distributions and speciation of As and Hg in sediments along the Gaoping (Kaoping) Estuary-Canyon system off southwestern Taiwan. Journal of Marine Systems,2009.76(4):p.479-495.
    9. Maity, S., et al., Evaluation and standardisation of a simple HG-AAS method for rapid speciation of As(Ⅲ) and As(Ⅴ) in some contaminated groundwater samples of West Bengal, India. Chemosphere,2004.54(8):p.1199-1206.
    10. Sunderland, E.M., et al., Environmental controls on the speciation and distribution of mercury in coastal sediments. Marine Chemistry,2006.102(1-2):p.111-123.
    11. Turner, A., et al., Sediment-water interactions of thallium under simulated estuarine conditions. Geochimica et Cosmochimica Acta,2010.74(23):p.6779-6787.
    12. Atkinson, C.A., D.F. Jolley, and S.L. Simpson, Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere,2007.69(9):p.1428-1437.
    13. Bloom. N.S. and B.K.. Lasorsa, Changes in mercury speciation and the release of methyl mercury as a result of marine sediment dredging activities. The Science of The Total Environment.1999.237-238:p.379-385.
    14. Yuan, C.-g., et al., Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International,2004.30(6):p.769-783.
    15. Coquery, M., D. Cossa. and J. Sanjuan, Speciation and sorption of mercury in two macro-tidal estuaries. Marine Chemistry,1997.58(1-2):p.213-227.
    16. Pacyna, E.G., et al.. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment,2006.40(22):p.4048-4063.
    17. Miretzky, P. and A.F. Cirelli, Hg(Ⅱ) removal from water by chitosan and chilosan derivatives: A review. Journal of Hazardous Materials,2009.167(1-3):p.10-23.
    18. Heyes, A., et al., Mercury methylation in estuaries:Insights from using measuring rates using stable mercury isotopes. Marine Chemistry,2006.102(1-2):p.134-147.
    19. Graydon, J.A., et al., Mercury in the Mackenzie River delta and estuary:Concentrations and fluxes during open-water conditions. Science of The Total Environment,2009.407(8):p. 2980-2988.
    20. Feng, X. and G. Qiu, Mercury pollution in Cndzhou, Southwestern China -- An overview. Science of The Total Environment,2008.400(1-3):p.227-237.
    21. Prego, R., et al., Rare earth elements in sediments of the Vigo Riu, NW Iberian Peninsula. Continental Shelf Research,2009.29(7):p.896-902.
    22. Steinmann, M. and P. Stille, Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic-granitic catchment basin (Massif Central, France). Chemical Geology,2008.254(1-2):p.1-18.
    23. Xu, Z. and G. Han, Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China. Applied Geochemistry,2009.24(9):p.1803-1816.
    24. Amakawa, H., D.S. Alibo, and Y. Nozaki, Nd isotopic composition and REE pattern in the surface waters of the eastern Indian Ocean and its adjacent seas. Geochimica et Cosmochimica Acta,2000.64(10):p.1715-1727.
    25. Aubert, D., P. Stille, and A. Probst, REE fractionation during granite weathering and removal by waters and suspended loads:Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta,2001.65(3):p.387-406.
    26. Davranche, M., et al., Adsorption of REE(Ⅲ)-humate complexes onto MnO2:Experimented evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochimica et Cosmochimica Acta,2005.69(20):p.4825-4835.
    27. Kikuchi, M., et al., Redistribution of REE, Pb and U by snpergene weathering studied from in-silu isotopic analyses of the Bangombe natural reactor, Gabon. Geochimica et Cosmochimica Acta,2007.71(19):p.4716-4726.
    28. Leybourne, M.I. and K.H. Johannesson, Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe-Mn oxyhydroxides:Fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochimica et Cosmochimica Acta,2008. 72(24):p.5962-5983.
    29. Ohta, A. and I. Kawabe, REE(Ⅲ) adsorption onto Mn dioxide ([deltu]-MnO2) and Fe oxyhydroxide:Ce(Ⅲ) oxidation by [delta]-MnO2. Geochimica et Cosmochimica Acta,2001. 65(5):p.695-703.
    30. Shouye, Y., et al., REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators. Chinese Science Bulletin,2003.48(11):p.1135-1139.
    31. Smith, M.P., P. Henderson, and L.S. Campbell, Fractionation of the REE during hydrothermal processes:constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta,2000.64(18):p.3141-3160.
    32. Lu, X. and S. Zhai, Distributions and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Continental Shelf Research,2006.26(1):p. 1-14.
    33. Hu, L., et al., Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry,2009.113(3-4):p.197-211.
    34. Blair, N.E., et al., Terrestrial sources and export of paniculate organic carbon in the Waipaoa sedimentary system:Problems, progress and processes. Marine Geology,2010.270(1-4):p. 108-118.
    35. Bianchi, T.S., S. Mitra, and B.A. McKee, Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments:implications for differential sedimentation and transport at the coastal margin. Marine Chemistry,2002.77(2-3):p. 211-223.
    36. Bianchi, T.S., J.J. Galler, and M.A. Allison, Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science,2007.73(1-2):p.211-222.
    37. Zhang, J., et al., Distribution of organic matter in the Changjiang (Yangtze River) Esluarv and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics. Marine Chemistry,2007.106(1-2):p.111-126.
    38. Gordon, E.S. and M.A. Goni, Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin. Marine Chemistry,2004.92(1-4):p.331-352.
    39. Li, X., et al., Organic carbon source and burial during the past one hundred years in Jiaozhou Bay. North China. Journal of Environmental Sciences,2008.20(5):p.551-557.
    40. Louchouarn, P., M. Lucotte, and N. Farella, Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment. Organic Geochemistry,1999.30(7):p.675-699.
    41. Perin. G., et al., A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation. Water Research,1997.31(12):p.3017-3028.
    42. Audry, S., et al., Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution,2004.132(3):p.413-426.
    43. Farkas, A., C. Erratico, and L. Vigano, Assessment of the environmental significance of heavy metal pollution in sedficial sediments of the River Po. Chemosphere,2007.68(4):p.761-768.
    44. Jiao, N., et al., Ecological anomalies in the East China Sea:Impacts of the Three Gorges Dam? Water Research,2007.41(6):p.1287-1293.
    45. Koshikawa, M.K., et al., Distributions of dissolved and particulate elements in the Yangtze estuary in 1997-2002:Background data before the closure of the Three Gorges Dam. Estuarine, Coastal and Shelf Science,2007.71(1-2):p.26-36.
    46. Chai, C., et al., Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of The Total Environment,2009.407(16):p.4687-4695.
    47. Chen, X., et al., Human impacts on the Chang/iang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea. Geomorphology, 2001.41(2-3):p.111-123.
    48. Chu, Z., et al., A quantitative assessment of human impacts on decrease in sediment flux from major Chinese rivers entering the western Pacific Ocean. Geophysical Research Letters,2009. 36(19):p. L19603.
    49. Milliinan, J.D., et al., Transport and deposition of river sediment in the Chang/iang estuary and adjacent continental shelf Continental Shelf Research,1985.4(1-2):p.37-45.
    50. Liu, J.P., et al.. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology,2007.85(3-4):p.208-224.
    51. Wang, H., et al., Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology,2008.349(3-4):p.318-332.
    52. Yang, Z.S. and J.P. Liu, A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology,2007.240(1-4):p.169-176.
    53. 庞重光和王凡,东海悬浮体的分布特征及其演变.海洋科学集刊,2004.
    54. 杨作升高文兵,黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报,1992.14(002):p.81-90.
    55. 蔡德陵嫩等,南黄海悬浮体和沉积物的物质来源和运移.来自碳定同位素组成的证据.科学通报,2001(OSl).
    56. 郭志刚和张东厅,冬,夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用.海洋学报,2002.24(005):p.71-80.
    57. 雷坤和杨作升,东海陆架北部泥质区悬浮的絮凝沉积作用.海洋与湖沼,2001.32(003):p.288-295.
    58. 刘芳,黄海军,和郜昂,春、秋黄东海澎域悬浮体平面分布特征及海流对其分布的影响.海洋科学,2006.30(001):p.68-72.
    59. 秦蕴珊等,南黄海冬季海水中悬浮体的研究.海洋科学,1986.10(6):p.1-7.
    60. 宋召军等,南黄海辐射沙洲附近海域悬浮体的研究.海洋地质与第四纪地质,2006.26(006):p.19-25.
    61. 孙效功,方明,和黄伟,黄、东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼,2000.31(6):p.581-587.
    62. 熊林芳等,南黄海与东海北部春季悬浮体颗粒有机碳分布.海洋地质与第四纪地质,2010(003):p.7-14.
    63. Alexander, C.R., D.J. DeMaster, and C.A. Nittrouer, Sediment accumulation in a modern epicontinental-shelf setting:The Yellow Sea. Marine Geology,1991.98(1):p.51-72.
    64. Chough, S., Further evidence of fine-grained sediment dispersal in the southeastern Yellow Sea. Sedimentary geology,1984.41(2-4):p.159-172.
    65. Guo, X., et al., Characteristics and flux of settling particulate matter in neritic waters:The southern Yellow Sea and the East China Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2010.57(11-12):p.1058-1063.
    66. Lee, H.J. and S.K. Chough, Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology,1989.87(2-4):p.195-205.
    67. Lee, H.J., Y.S. Chu, and Y.A. Park, Sedimentary processes of fine-grained material and the effect of seawall construction in the Daeho macrotidal flat-nearshore area, northern west coast of Korea. Marine Geology,1999.157(3-4):p.171-184.
    68. Lee, H.J., et al., Sediment transport on macrotidal flats in Garolim Bay, west coast of Korea: significance of wind waves and asymmetry of tidal currents. Continental Shelf Research,2004. 24(7-8):p.821-832.
    69. 雷坤和杨作升,东海不同底质类型海域春季悬浮体通量及影响因素.海洋与湖沼,2001.32(001):p.50-57.
    70. 吴晓涛,南黄海海水中悬浮体分布的水动力因素统计分析.海洋科学,1995(001):p.59-63.
    71. 郭志刚和杨作升,东海陆架北部泥质区沉积动力过程的季节性变化.青岛海洋大学学报:自然利学版,1999.29(003):p.507-513.
    72. 庞重光和杨作升,升海泥质和砂质沉积区悬乳物垂向分布的季节文化特征.海洋科学,2001.25(008):p.34-37.
    73. Shi, Z., Behaviour of fine suspended sediment at the North passage of the Changjiang Estuary, China. Journal of Hydrology,2004.293(1-4):p.180-190.
    74. Chen, S.-L., et al., Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China. Journal of Hydrology,2006. 331(1-2):p.137-145.
    75. 毕世普,三峡工程截流后长江口海区表层悬沙分布与河口锋带特征,2009,中国科学院研究生院(海洋研究所).
    76. 李军等,长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼,2003.34(5):p.499-510.
    77. 严肃庄和曹沛奎,长江口外滨滨悬浮体的粒度特征及其与锋面的关系.华东师范大学学报:自然科学版,1995(001):p.81-89.
    78. 秦蕴珊等,东海地质.北京:科学出版社,1987.
    79. Qin, Y. and F. Li. Study of influence of sediment loads discharged from Huanghe River on sedimentation in Bohai Sea and Huangliai Sea.1983.
    80. Martin, J., et al., Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean. Netherlands Journal ofSea Research,1993.31(3):p.243-254.
    81. 毕乃双等,黄河调水调沙期间黄河入海水沙的扩散与通量.海洋地质与第四纪地质,2010(002):p.27-34,
    82. Jiang, W., et al., A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems,2000.24(3-4):p.175-200.
    83. DeMaster, D.J., et al., Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research,1985.4(1-2):p.143-158.
    84. Wang, B.d., X.I. Wang, and R. Zhan, Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine. Coastal and ShelfScience,2003.58(1):p.127-136.
    85. Wang, S.L., et al., Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research.2000.20(4-5):p.525-544.
    86. Yang, G. P., et al.. Distribution, flux and biological consumption of carbon monoxide in the Southern Yellow Sea and the East China Sea. Marine Chemistry,2010.122(1-4):p.74-82.
    87. Zhu, Z.Y., et al., Bulk particulate organic carbon in the East China Sea:Tidal influence and bottom transport. Progress In Oceanography,2006.69(1):p.37-60.
    88. Zhu. Y. and R. Chang. Preliminary Study of the Dynamic Origin of the Distribution Pattern of Bottom Sediments on the Continental Shelves of the Bohai Sea, Yellow Sea and East China Sea. Estuarine, Coastal and ShelfScience,2000.51(5):p.663-680.
    89. Zhang, L., et al., Distribution of the surface partial pressure of CO2 in the southern Yellow Sea aud its controls. Continental Shelf Research,2010.30(3-4):p.293-304.
    90. Zhang, J., et al., Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress In Oceanography,2007.74(4):p.449-478.
    91. Canwet, G. and F.T. Mackenzie, Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow rivers (China). Marine Chemistry,1993.43(1-4):p.235-246.
    92. 贺志鹏,宋金明和张乃星,南黄海溶解有机碳的生物地球化学特征分析.海洋科学进展,2006.24(004):p.477-488.
    93. 梁成菊,王江涛和谭丽菊,青岛近海夏季溶解有机碳的分布.是中海洋大学学报(自然科学版),2009.1.
    94. Ogawa, H., T. Usui, and I. Koike, Distribution of dissolved organic carbon in the East China Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2003.50(2):p.353-366.
    95. Wu, Y., et al., Sources and distribution of carbon within the Yangtze River system. Estuarine, Coastal and Shelf Science,2007.71(1-2):p.13-25.
    96. 林晶等,长江有机碳通量的季节变化及三峡工程对其影响.中国环境科学,2007.27(2):p.246-249.
    97. 张龙军,徐雪梅和何会军,黄河不同粒径悬浮物中POC含量及输运特征研究.中国环境科学,2009.30(2).
    98.张向上,黄河口碳输运过程及其对莱州湾的影响,2007,中国海洋大学.
    99. Wu, Y., et al., Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Marine Chemistry,2007.107(3):p.367-377.
    100.杨丽阳等,长江口邻近陆架区表层沉积物的本质素分布和有机物来源分析.海洋学报,2008.30(005):p.35-42.
    101. Meybeck, M., Carbon, nitrogen, and phosphorus transport by world rivers. Am.J. Sci,1982. 282(40):p.1-450.
    102. Gordon, E.S. and M.A. Goni, Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta,2003.67(13):p.2359-2375.
    103. Milliman, J.D., Transfer of paniculate organic carbon and nitrogen from the Yangtze River to the ocean. American Journal of Science,1984.284(7):p.824.
    104. Goni, M.A., et al., Distribution and sources of paniculate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine, Coastal and Shelf Science,2006.69(1-2):p.225-245.
    105. Hedges, J.I., R.G. Keil, and R. Benner, What happens to terrestrial organic matter in the ocean? Organic Geochemistry,1997.27(5-6):p.195-212.
    106.金海燕等,黄海、东海颗粒有机碳的分机特征及其影响因子分析.海洋学报,2005.27(005):p.46-53.
    107. 陈建芳等,黄海和东海沉积物有机质活性及营养盐再生潜力初探.地球化学,2005.34(004):p.83-90.
    108. 张岩松等,黄海秋季典型站位沉降颗粒物的垂直通量.地球化学,2005.34(002):p.123-128.
    109. 张岩松等,黄海夏季水域沉降颗粒物垂直通量的研究.海洋与湖沼,2004.35(003):p.230-238.
    110.谢琳萍等,夏季南黄海总有机碳的分布特征及其影响因素.海洋科学进展,2008.26(004):p.497-505.
    111.朱纯等,长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示.海洋学报,2005.27(004):p.59-67.
    112. 胡利民,大河控制性影响下的陆架海沉积有机质的“源-汇”作用-以渤、黄海为例,2010,中国海洋大学:青岛.p.171.
    113. Deng, B.,J. Zhang, and Y. Wu, Recent sediment accumulation and carbon burial in the East China Sea. Global biogeochemical cycles,2006.20(3):p. GB3014.
    114. Zhai, W., M. Dai, and X. Guo, Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry,2007.107(3):p.342-356.
    115. Fang, T.-H., et al.. Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research,2009.68(4):p.178-187.
    116. Lin, S., et al., Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology,2002.182(2-4):p.377-394.
    117. 孟翊,刘苍字和程江,长江口沉积物金属元素地球化学特征及其底质环境评价.海洋地质与第四纪地质,2003.23(3):p.37-43.
    118. Zhang, W., et al., China's Yangtze Estuary:I. Geomorphic influence on heavy metal accumulation in inlertidal sediments. Geomorphology,2001.41(2-3):p.195-205.
    119. Ip, C.C.M., et al., Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China. Environmental Pollution,2004.132(1):p.157-172.
    120. Ip, C.C.M., et al., Trace metal distribution in sediments of the Pearl River Esluaiy and the surrounding coastal area, South China. Environmental Pollution,2007.147(2):p.311-323.
    121. Li, G., et al., Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research,2001.21(6-7):p.607-625.
    122. Zhang, J., W.W. Huang, and J.M. Martin, Trace metals distribution in huanghe (Yellow River) estuarine sediments. Estuarine, Coastal and Shelf Science,1988.26(5):p.499-516.
    123. Tessier, A., P.G.C. Campbell, and M. Bisson, Sequential extraction procedure for the speciation ofparticulate trace metals. Analytical chemistry,1979.51(7):p.844-851.
    124. 赵一阳和鄢明才,中国近海沿岸泥的地球化学特征及其指示意义.中国地质,2002.29(002):p.181-185.
    125. 夏福兴和D. Eisma,长江口悬浮颗粒有机絮凝研究.华东师范大学学报(自然科学版),1991.1:p.66-70.
    126. Chen, J., et al.. Major element chemistry of the Changjiang (Yangtze River). Chemical Geology,2002.187(3-4):p.231-255.
    I 27. Feng, H., et al., A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin,2004.49(11-12):p.910-915.
    128. Hao, Y., et al., Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environmental Pollution,2008.156(3):p. 1325-1331.
    129. 高会旺,张英娟和张凯,大气污染物向海洋的输入及其生态环境效应.海洋科学进展,2002.17(3):p.326-330.
    130. Zhang, J., et al., Transport of paniculate lieary metals towards the China Sea:a preliminary study and comparison. Marine Chemistry,1992.40(3-4):p.161-178.
    131. 刘毅和周明煜,中国东部海域大气气熔胶入海通量的研究.海洋学报,1999.21(005):p.38-45.
    132. Lin, F.J., S.C. Hsu, and W.L. Jeng, Lead in the southern East China Sea. Marine Environmental Research,2000.49(4):p.329-342.
    133. 陈丽蓉等,冲绳海槽的矿物组分,物质来源及原始岩浆性质的初步探讨.海洋与湖沼,1986.17(1):p.3-12.
    134. 孙白云,黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质,1990.10(3):p.23-34.
    135. 陈丽蓉,徐文强和申顺喜,东海沉积物的矿物组合及其分布特征.科学通报,1979.15:p.709-709.
    136. 杨作升和范德江,东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析.沉积学报,2002.20(001):p.1-6.
    137. 范德江和杨作升,长江、黄河沉积物中碳酸盐组成及差异.自然科学进展,2002.12(001):p.60-64.
    138. 杨作升,王海成和升淑卿,黄河与长江入海沉积物中碳酸盐含量和矿物颗粒形态特征及影响因素.海洋与湖沼,2009(006):p.674-681.
    139. 杨守业等,长江与黄河沉积物中磁铁矿成分标型意义.地球化学,2000.29(5):p.480-484.
    140. 周晓静,高抒和贾建军,长江粘土矿物示踪标记稳定性的初步研究.海洋与湖沼,2003.34(006):p.683-692.
    141. 郭志刚等,长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质,2001.4.
    142. 范德江和杨作升,长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质,2001.21(004):p.7-12.
    143. 何良彪和刘秦玉,黄河与长江沉积物中粘土矿物的化学特征.科学通报,1997.42(007):p.730-734.
    144. Chough, S. and D. Kim, Dispersal of fine-grained sediments in the southeastern Yellow Sea; a steady-state model. Journal of Sedimentary Research,1981.51(3):p.721.
    145. Park, Y. and B. Khim, Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology,1992.104(1-4):p.205-213.
    146.王昆山,石学法和林振宏,南黄海和东海北部陆架重矿物组合分区及来源.海洋科学进展,2003.21(001):p.31-40.
    147.杜俊民,朱赖民和张远辉,南黄海中部沉积物微量元素的环境记录研究.海洋学报,2004.26(006):p.49-57.
    148. 蓝先洪和中顺喜,南黄海中部沉积岩心的稀土元素地球化学特征.海洋通报,2002.21(005):p.46-53.
    149.蓝先洪等,南黄海表层沉积物衡土元素分布与物源关系.中国稀土学报,2006.24(006):p.745-749.
    150. 蓝先洪等,南黄海NT1孔沉积物衡土元素组成与物源判别.地球化学,2009.38(002):p.123-132.
    151.李军和赵京涛,冲绳海槽中部沉积物稀土元素地球化学特征及其在古环境变化研究的应用.自然科学进展,2009.19(12).
    152.李双林,东海陆架HY126EA1孔沉积物稀土元素地球化学海洋学报,2001.23(003):p.127-132.
    153. 李双林和李绍全,黄海YA01孔沉积物稀土元素组成与源区示踪.海洋地质与第四纪地质,2001.21(003):p.51-56.
    154. 刘宝林等,南海北部陆坡海洋沉积物稀土元素及物源和成岩环境.海洋地质与第四纪地质,2004,24(004):p.17-23.
    155.王中波,杨守业和李从先,南黄海中部沉积物岩芯常量元素组成与古环境.地球化学,2004.33(005):p.483-490.
    156. 严杰等,鸭绿江河口及近岸地区稀土元素的物源指示意义.海洋地质与第四纪地质,2010.30(004):p.95-103.
    157. 杨守业等,黄海周边河流的稀土元素地球化学及沉积物源示踪.科学通报,2003.48(11):p.1233-1236.
    158.张宵宇等,稀土元素在长江口及邻近陆架表层沉积物中的分布及物源示踪研究.中稀土学报,2009(002):p.282-288.
    159.周晓静等,稀土元素作为示踪标记在海洋沉积动力学中应用前景的初步探讨.海洋学报,2010(001):p.67-82.
    160. 朱赖民等,南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报,2006.26(003):p.495-500.
    161. Benson, L., et al., Rare-earth elements and Nd and Pb isotopes as source indicators for Labrador Sea clay-size sediments during Heinrich event 2. Quaternary Science Reviews,2003. 22(8-9):p.881-889.
    162. Borrego, J., et al., Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Marine Pollution Bulletin,2004. 49(11-12):p.1045-1053.
    163. Censi, P., et al., Yttrium and REE signature recognized in Central Mediterranean Sea (ODP Site 963) during the MIS 6-MIS 5 transition. Palaeogeography, Palaeoclimatology, Palaeoecology. In Press, Corrected Proof.
    164. Chaillou, G., et al., Rare earth elements in the modern sediments of the Bay of Biscay (France). Marine Chemistry,2006.100(1-2):p.39-52.
    165. Hsu, S.C., et al., Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry,2010.120(1-4):p.116-127.
    166. Kylander, M.E., et al., Rare earth element and Pb isotope variations in a 52 kyr peat core from Lynch's Crater (NE Queensland, Australia):Proxy development and application to paleoclimate in the Southern Hemisphere. Geochimica et Cosmochimica Acta,2007.71(4):p. 942-960.
    167. Pattan, J.N., et al., Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean. Chemical Geology,1995.121(1-4):p.201-215.
    168. Qiao, S., et al., Metals in suspended sediments from the Changjiang (Yangtze River) and Huanghe (Yellow River) to the sea, and their comparison. Estuarine, Coastal and Shelf Science,2007.74(3):p.539-548.
    169. Song, Y.-H. and M.S. Choi, REE geochemistry of fine-grained.sediments from major rivers around the Yellow Sea. Chemical Geology,2009.266(3-4):p.328-342.
    170. Vallelonga, P., et al., Lead isotopic compositions in the EPJCA Dome C ice core and Southern Hemisphere Potential Source Areas. Quaternary Science Reviews,2010.29(1-2):p.247-255.
    171. Winter, B.L., C.M. Johnson, and D.L. Clark, Strontium, neodymiurn, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean:Implications for sediment provenance and the source of trace metals in seawater. Geochimica et Cosmochimica Acta,1997.61 (19):p.4181-4200.
    172. Yang, S.Y., et al., Discrimination of geochemiccil compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Marine Geology,2002.186(3-4):p.229-241.
    173. Yang, S.Y., et al., A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews,2003.63(1-2):p.93-120.
    174.范德江和孙效功,沉积物物源定量识别的非线性规划模型-以东海陆架北部表层沉积物物源识别为例.沉积学报,2002.20(001):p.30-33.
    175. 刘明和范德江,长江、黄河入海沉积物中元素组成的对比.海洋科学进展,2009.27(001):p.42-50.
    176. Yang, S.Y., et al., The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters,2002.201(2):p. 407-419.
    177. 杨守业和李从先,黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报,2003.48(11).
    178. 乔淑卿和杨作太,长江口和黄河入海沉积物不同粒级组分中稀土元素的比较.海洋地质与第四纪地质,2007.27(006):p.9-16.
    179.孟宪伟和杜德文,长江,黄河流域泛滥平源细粒沉积物37Sr/86Sr空间变异的制约.地球化学,2000.29(006):p.562-569.
    180. Meng, X., et al., Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers:Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China. Frontiers of Earth Science in China,2008.2(4):p.418-426.
    181. 杨守业等,长江口晚新生代沉积物的物源研究:REE和Nd同位素制约.第四纪科学,2007.27(3).
    182. Choi, M.-S., et al., Identification of Ph sources in Yellow Sea sediments using stable Pb isotope ratios. Marine Chemistry,2007.107(2):p.255-274.
    183. 郭炳火等.,中国近海及邻近海域海洋环境2004,北京:海洋出版社.446.
    184. 翟世奎等,冲绳海槽的岩浆作用与海底热液活动1998,北京:海洋出版社.240.
    185. 胡邦琦,中国东部陆架海泥质区的物源识别及其环境记录,2010,中国海洋大学:青岛.p.162.
    186. 李广雪,杨子赓和刘勇,中国东部海域海底沉积环境成因研究2006,北京:科学出版社.
    187. 贾军涛,郑洪波和杨守业,长江流域岩体的时空分布与碎屑锆石物源示踪:同济大学学报:自然科学版,2010.38(009):p.1375-1380.
    188. 杨守业等,中韩河流沉积物微量元素地球化学研究.海洋地质与第四纪地质,2003.23(002):p.19-24.
    189. Park, Y. and B. Khim, Clay minerals of the recent fine-grained sediments on the Korean continental shelves. Continental Shelf Research,1990.10(12):p.1179-1191.
    190. 苏纪兰和黄大吉,黄海冷水团的环流结构.海洋与湖沼,1995.26(5):p.1-7.
    191. 苏纪兰和袁业立,中国近海水文2005,北京:海洋出版社.
    192. 王铮等,源区黑潮研究进展.海洋科学集刊,2007.
    193. 汤毓祥和李兴宰,南黄海环流的若干特征.海洋学报,2000.22(001):p.1-16.
    194. 中国水利部,中国河流泥沙公报,2006.
    195.2009年中国海洋环境质量公报http://www.soa.gov.cn/soa/hygb/A0109index 1.htm,2009.
    196. 程鹏和高抒,北黄海西部海底沉积物的粒度特征和净输趋势[J].海洋与湖沼,2000.31(6):p.604-615.
    197. 石学法等,南黄海现代沉积环境及动力沉积体系.科学通报,2001(0S1).
    198. 董爱国等,长江口及邻近海域表层沉积物中重金属元素含量分布及其影响因素.海洋学报(中文版),2009.31(6).
    199. McManus, J., Grain size determination and interpretation. Techniques in sedimentology,1988. 85.
    200. 鲍献文等,北黄河潮流.余流垂直结构及其季节变化.中国海洋大学学报,2010.40(11).
    201. 赫崇本等,黄海冷水团的形成及其性质的初步探讨.山东海洋学院学报,1985(C00):p.286-286.
    202. 蓝淑芳,黄海暖流水的调查研究.海洋科学,1993.1.
    203. 乐肯堂,冬季黄海暖流水的起源.海洋学报,1992.14(002):p.9-19.
    204. 杨守业,李从先和张家强,苏北滨海平源冰后期古地理演化与沉积物物源研究.古地理学报,2000,2(002):p.65-72.
    205.张家强和丛友滋,苏北陆区古潮成沙体沉积动力环境及物源.海洋学报,1998.20(003):p.82-90.
    206. 赵娟,范代读和李从先,苏北海岸带潮成辐射砂脊群的形成及其古地理意义.古地理学报,2004.6(001):p.41-48.
    207.王桂芝和高抒,黄渤海水体交换,悬沙特征及其对渤海海峡沉积的影响.海洋通报,2002.21(001):p.43-48.
    208. 秦蕴珊和李凡,黄河入海泥沙对渤海和黄海沉积作用的影响.海洋科学集刊,1986.27:p.126-135.
    209. Gao, S., et al. Transport and resuspension of fine-grained sediment over the Southeastern Yellow Sea. in Proceedings of the Korea-China International Seminar on Holocene and Late Pleistocene Environments in the Yellow Sea Basin.1996.
    210. Shen, H.T., Comparative studies of estuaries bordering the Yellow Sea. China Journal Oceanologic Limnology,1990.21(5):p.449-457.
    211.张荣敏等,山东半岛近岸海区现代沉积速率分析.海洋地质动态,2009.25(009):p.15-18.
    212. 齐君等,化黄海沉积速率及其沉积通量.海洋地质与第四纪地质,2004.24(002):p.9-14.
    213. 刘升等,东海内陆架泥质区沉积速率.汇算清缴地质与第四纪地质,2009.6.
    214. 李风业和朴龙安,南黄海东部泥区沉积速率和物源探讨.海洋科学,1999(005):p.37-40.
    215. 李凤业,高抒和贾建军,黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,2002.33(4):p.364-369.
    216. Peterson, R.N., et al., Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers. Continental Shelf Research,2008.28(19):p. 2700-2707.
    217. Ren, M.-E. and Y.-L. Shi, Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research,1986.6(6):p. 785-810.
    218. Oguri, K., et al., Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep Sea Research Part 11:Topical Studies in Oceanography,2003.50(2):p. 513-528.
    219. Keller, G.H. and Y. Yincan, Geotechnical properties of surface and near-surface deposits in the East China Sea. Continental Shelf Research,1085.4(1-2):p.159-174.
    220. Hong, G.-H., et al., Lead-210 andpoloniuin-210 in the winter well-mixed turbid waters in the mouth of the Yellow Sea. Continental Shelf Research,1999.19(8):p.1049-1064.
    221. Cluing, Y. and W.C. Chang, Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough. Continental Shelf Research.15(2-3):p. 149-164.
    222. Lim, D.I., et al., Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Progress In Oceanography,2007.73(2):p.145-159.
    223. Wei, T., et al., Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science,2007.71(1-2):p.37-46.
    224. 李本川和李成治,苏北平源海岸地貌特征及沿岸泥沙动态.海洋科学,1980.3.
    225. Eisma, D. and P.L. de Boer, Intertidal deposits:river months, tidal flats, and coastal lagoons1998:CRC.
    226. 张怀静等,三峡工程一期蓄水后江口及其邻近海域悬浮物浓度分布特征.环境科学,2007.28(008):p.1655-1661.
    227. Che, Y., Q. He, and W.-Q. Lin, The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Marine Pollution Bulletin,2003.46(1):p.123-131.
    228. Hedges, J.I. and R.G. Keil, Sedimentary organic matter preservation:an assessment and speculative synthesis. Marine Chemistry,1995.49(2-3):p.81-115.
    229. 石学法等,东海闽浙沿岸泥质区沉积特征与古环境记录.海洋地质与第四纪地质,2010.30(4):p.19-30.
    230. Redfield, A., B. Ketchum, and F. Richards, The influence of organisms on the composition of sea-water.1963.
    231. Meyers, P.A., Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimaticprocesses. Organic Geochemistry,1997.27(5-6):p.213-250.
    232. Aller, R., et al., Reinineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Research,1996.16(5-6):p.753-786.
    233. Sikes, E., et al., Sources of organic matter in a coastal marine environment:Evidence from n-alkanes and their d@ u 1 @ u 3 C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry,2009.113(3-4):p.149-163.
    234. Zabel, M., et al., Late Quaternary Climate Changes in Central Africa as Inferred from Terrigenous Input to the Niger Fan. Quaternary Research,2001.56(2):p.207-217.
    235.刘菲菲,长江口及其邻近海域表层沉积物中元素形态分布特征及其对三峡一期蓄水的响应,2009,中国海洋大学.
    236. Lin, F.-J., S.-C. Hsu, and W.-L. Jeng, Lead in the southern East China Sea. Marine Environmental Research,2000.49(4):p.329-342.
    237. Chen, J., et al., Zn isotopes in the suspended load of the Seine River, France:Isotopic variations and source determination. Geochimica et Cosmochimica Acta,2009.73(14):p. 4060-4076.
    238. Chaillou, G., et al., The behaviour of arsenic in muddy sediments of the Bay of Biscay (France). Geochimica et Cosmochimica Acta,2003.67(16):p.2993-3003.
    239. Birch, L., K.W. Hansehnann, and R. Bachofen, Heavy metal conservation in Lake Cadagno sediments:Historical records of anthropogenic emissions in a meromictic alpine lake. Water Research,1996.30(3):p.679-687.
    240. Zwolsman, J.J.G., B.T.M. Van Eck, and C.H. Van Der Weijden, Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt estuary, southwestern Netherlands:Impact of seasonal variability. Geochimica et Cosmochimica Acta,1997.61(8):p.1635-1652.
    241. Abe, K., Y. lshihi, and Y. Watanabe, Dissolved copper in the Yellow Sea and the East China Sea--Cu as a tracer of the Changjiang discharge. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2003.50(2):p.327-337.
    242. Taylor, S.R., Abundance of chemical elements in the continental crust:a new table. Geochimica et Cosmochimica Acta,1964.28(8):p.1273-1285.
    243. Attrill, M.J. and R.M. Thomes, Heavy metal concentrations in sediment from the Thames Estuary, UK. Marine Pollution Bulletin,1995.30(11):p.742-744.
    244. Lee, C.S.L., et al., Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China--Evidence of the long-range transport of air contaminants. Atmospheric Environment,2007.41(2):p.432-447.
    245. Ligero, R.A., et al., Dating of marine sediments and time evolution of heavy metal concentrations in the Bay of Cadiz, Spain. Environmental Pollution,2002.118(1):p.97-108.
    246.董爱国等,长江口外海域岩心沉积物地球化学特征及其对人类活动的响应.海洋地质与第四纪地质,2009(004):p.107-114.
    247. 方习生,石学法和王国庆,长江水下三角洲表层沉积物粘土j矿物分布其影响因素.海洋科学进展,2007.25(004):p.419-427.
    248. 李国刚,中国近海表层沉积物中粘土矿物的组成、分布及其地质意义.海洋学报(中文版),1990.4.
    249. 朱凤冠,东海陆架区全新世地层中粘土矿物.东海海洋,1985.3(4):p.32-51.
    250. 刘志飞等,南海南部晚第四纪东亚季风演化的粘土矿物记录.中国科学D辑,2004.34(3):p.272-279.
    351.杨作升,黄河.长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系.海洋与湖沼,1988.19(4):p.336-346.
    252. Xu, K., et al., Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research,2009.29(18):p.2240-2256.
    253. Khadijeh, R.E.S., et al., Rare earth elements distribution in marine sediments of Malaysia coasts. Journal of Rare Earths,2009.27(6):p.1066-1071.
    254. 王中良和刘丛强,长江口水体混合过程中溶解态稀土元素分布特征.科学通报,2000.45(12):p.1322-1326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700