混合细菌浸出铁矿石中磷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国虽然铁矿资源丰富、储量大,但贫矿多、富矿少,绝大多数铁矿石都需要进行选矿处理以满足冶炼要求,尤其是我国储量丰富的高磷赤铁矿石资源尚未得到利用。研究铁矿石脱磷技术,对提高国内铁矿质量和促进我国钢铁工业的发展具有重要的现实意义。传统的物理分选法脱磷效果并不理想,化学方法由于成本高且对环境的高污染也使其应用受到限制,而微生物湿法冶金技术因其经济性及环保性而备受关注。嗜酸氧化亚铁硫杆菌(Acidithiobacillusferrooxidans,简称At.f菌)以及嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans,简称At.t菌)能利用空气中的氧气来氧化还原态的铁或硫,从而获得能量并浸出矿石中的有用物质,因此已成为湿法冶金的主要浸矿细菌。由于各种浸矿菌在矿物浸出中所起的作用不同,且混合菌的使用又可起到优势互补的作用,因此利用混合菌的协同作用进行脱磷研究是可行的。
     本文对At.t菌和At.f菌进行了初步的研究,然后利用两种细菌的混合协同作用进行浸矿,研究了不同浸矿工艺条件对浸矿效果的影响。通过摇瓶试验结果表明:单独的At.f菌和At.t菌都对赤铁矿有一定的脱磷作用,当它们按照体积比At.f菌:At.t菌为1:2混合浸矿时脱磷效果较单独菌种浸矿好,脱磷率可以达到84%;10%的细菌接种量对混合菌浸矿比较适宜,更高的接种量并不能增强除磷效果;矿浆初始pH值的大小对脱磷效果影响较大,在pH值为1.8~2.5条件下,细菌脱磷能力较强,当初始pH值>4时,几乎没有脱磷效果;摇瓶试验中矿浆浓度对细菌的脱磷效果有着很大的影响,当矿浆浓度超过5%时,细菌生长明显受到抑制作用。
     由于At.t菌与At.f菌对亚铁离子、元素硫的不同作用,为了优化混合菌的培养基组份,本文研究了在不同亚铁含量,单质S含量及添加黄铁矿条件下的混合菌的浸矿情况。试验结果表明:亚铁离子作为At.f菌的能源物质直接影响了浸矿效果,当培养基中亚铁含量为零时,细菌脱磷率仅为36%,随着亚铁离子的增多,脱磷率也随之增加;在不影响脱磷率的情况下,培养基中S的含量可以减少为原来的75%;黄铁矿也能作为混合菌的能源物质,对矿石脱磷有促进作用,当黄铁矿的配比占原矿质量的20%时,浸矿效果较好,但浸矿周期增加。
The iron ore resources are abundant in our country,but lean ore is much more than the rich,and most iron ore needs mineral dressing before smelting.The studies of removing phosphorus are vital for improving the quality of domestic iron ore and have great practical significance for promoting the development of Chinese iron and steel industry.Traditional physical methods are not effective,the costs of the chemical method is very high and makes it limited for it's high pollution to the environment,but microbial hydrometallurgical technology is received much concern because of it's economical efficiency and being environmentally friendly. Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans can make use of oxygen to oxidize reduced iron or sulfur to gain energy,and leach the available materials,and so they have become the main bacteria in the process of hydrometallurgy.As the result of the different effects of various bacteria,mixed microorganisms have complementary advantages,hence,it's feasible for mixed microorganisms to remove the phosphorus in iron ore.
     In this paper,the preliminary physiology of At.t and At.f has been studied,and then these two kinds of bacteria were mixed to leach ore by synergistic action of them, and the effect of different processing conditions on the leaching has been studied.The shaking flask tests showed that At.f and At.t have a certain effect of dephosphorus on hematite when used separately.And when they are mixed in accordance with the volume ratio(At.f bacteria:At.t bacteria mixed 1:2),dephosphorization effect of leaching is better than single bacteria leaching,with a dephosphorization rate of up to 84%.The optimum bacterial inoculum is 10%,but higher inoculum does not enhance the dephosphorization.The initial slurry pH has greater impact on the dephosphorization.At pH 1.8~2.5,the ability of bacteria dephosphorization is stronger,but when the initial pH>4,almost no dephosphorization can be seen. Shaking-flask tests showed that pulp concentration has a great impact on bacteria dephosphorization,and when the pulp concentration is more than 5%,it significantly inhibits the growth of bacteria.
     As At.t and At.f play different roles on ferrous iron and elemental sulfur,in order to optimize the mixed bacteria culture medium components,the leaching of iron ore with mixed bacteria was studied at different levels of ferrous,elemental S and added pyrite content.The results show that ferrous ions as the energy of material has a direct impact on the leaching effects of At.f When the ferrous content of the medium is zero, the dephosphorization rate of At.f was only 36%.As the content of ferrous ions increases,dephosphorization rate also increases.Without affecting the dephosphorization rate,the content of the medium S can be reduced to 75%of the original.Pyrite can also be a mixed-strain energy of material.Dephosphorization of the ore can be promoted,when the ratio of pyrite ore quality accounted for 20%,the leaching effect is better,but the leaching cycle is increased.
引文
[1]魏以和,钟康年,王军.生物技术在矿物加工中的应用[J].国外金属矿选矿,1996.(1):1-13
    [2]王艳锦,郑正,周培国等.生物法烟气脱硫技术研究进展[J].中国电力,2006.39(6):56-60
    [3]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊,2006.(1):21-23
    [4]闫森.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000.(11):13-18
    [5]杨显万,邱定蕃著.湿法冶金[M].北京:冶金工业出版社,1998
    [6]Akeil A.Potential bioleaehing developments towards commercial reality:Turkish Metal mining's future.Minerals Engineering,2004.17(3):477-480
    [7]Klaus Boseeker.Bioleaching:Metal solubilization by microorganisms.FEMS Microbiology Reviews,1997.(20):591-604
    [8]宋翔宇.微生物浸出工艺特点及其历史现状和前景[J].河南地质,1999.17:75-77
    [9]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].冶金工业出版社,2003.9:3-4
    [10]邓立新.绿色冶金[J].化工教学,2002.(3):20
    [11]裘荣庆.微生物冶金的研究和应用现状[J].微生物学通报,1995.2(3):180-183
    [12]袁欣,袁楚雄,钟康年等.非金属矿物的微生物加工技术研究[J].中国非金属矿工业导刊,2000.3:12-14
    [13]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996.(1):14-27
    [14]林启美,王华,赵小蓉等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001.28(2):26-30
    [15]Comustin et.al.,Bioteehnology and Bioengneering.1992,39:1121-1127
    [16]李宏煦,刘晓荣.黄铁矿和镍黄铁矿混合细菌浸出过程的原电池效应[J].有色金属,2002.54(2):47-51
    [17]胡凯光.细菌浸矿机理和影响因素[J].中国矿业,2004,13(4):73-77
    [18]李宏煦,王淀佐.生物冶金中的微生物及其作用[J].有色冶金,2003.55(2):58-63
    [19]罗立群,张泾生.我国炼铁原料市场的分析研究[J].武汉理工大学学报,2005.27(9):67-69
    [20]袁致涛,高太印,万忠,等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007.(1):1-6
    [21]罗立群,高志,孙洁.难选铁矿石微生物脱磷技术.金属矿山[J].2008.58-61
    [22]余远兵.磷泥同收转炉蒸磷工艺.适用技术市场[J]1992.(3):10-11
    [23]汤树森.高效溶磷黑曲霉株的筛选及溶磷机理与条件的研究[J].微生物通报,1983.63(4):671-678
    [24]Delvasto P,V alverde A,Ballester A,et al.Diversity and activity of phosphate bioleaching bacteria from a highphosphorus iron ore[J].Hydrometallurgy,2008.92(3/4):124-129
    [25]J.W.C.Wong,Xiang,L.,Gu,X.Y.,Zhou,L.X.,.Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source.Chemosphere,2004.55(1):101-107
    [26]Costa and Medronho.Biotechnology Letters.1990.40:233-238
    [27]黄剑聆,杨云妹,谢洪.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].1994.(2):25-29
    [28]何良菊,张维庆,魏德洲.高磷贫碳酸锰矿石微生物的脱磷机理[J].中国锰业,1999.17:29-32
    [29]姜涛,金勇士,李骞.氧化亚铁硫杆菌浸出铁矿石脱磷技术[J].中国有色金属学报,2007.17:1718-1722
    [30]E.Donati,G.Curutchet,et al.Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferroxidans and Thiobacillus thiooxidans.Process Biochem[J],1996.31(2):129-134
    [31]L.Falco,C.Pogliani.A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans.Hydrometallurgy[J],2003.71:31-36
    [312]Harrsion A P.Characteristics of Thiobacillus fferrooxidans and other iron-oxidizing bacteria with emphasis on nucleic acid analyses[J].bioteachnol Appl Biochem,1986.8:249
    [33]徐文静.氧化亚铁硫杆菌和氧化硫硫杆菌的混合培养及其浸铜机制的研究[D].兰州:兰州大学,2006
    [34]王建伟.混合细菌及紫外诱变对低品位黄铜矿浸出研究[D].成都:成都理工大学,2008
    [35]魏德州.资源微生物技术[M].冶金工业出版社,1996:425
    [16]徐晓军,孟运生,宫磊等.氧化亚铁硫杆菌紫外线诱变及对低品位黄铜矿的浸出[J].矿冶工程,2005.(01):34-36
    [27]郑士民,严望明,钱新民.自养微生物.北京:科学出版社,1983
    [38]沈艳杰,龚文琪,雷绍民等.氧化亚铁硫杆菌的形态及对Fe~(2+)的氧化研究[J].生物技术,2005.(02)
    [39]邸进申,邱建辉,赵新巧.氧化亚铁硫杆菌分离复壮的研究[D].河北工业大学学报,2002.31(1):84-87
    [40]赵新巧,耿冰.氧化亚铁硫杆菌分离复壮及固定化研究[J].微生物学报,2003.43(4):487-491
    [41]武华平,袁斌.氧化亚铁硫杆菌的筛选及其特性研究[J].矿冶工程,2004.(04)
    [42]范秀容,李广武,沈萍.微生物学实验[M].北京:人民教育出版社,1989
    [43]R.E.布坎南,N.E.吉本斯等.伯杰氏细菌鉴定手册[M].北京:科学出版社,1984
    [44]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996.(1):14-27
    [145]周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定[J].光谱学与光谱分析,2004.24(9):1140-1143
    [46]王长秋,马生凤,鲁安怀等.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志,2005.24(6):607-611
    [47]余远兵.磷泥回收转炉蒸磷工艺[J].适用技术市场,1992.(3):10-11
    [48]席仁荣,吴振强.化工机械与设备--搅拌气升式生物反应器的研究进展[J].中国学术期刊文摘,2008.14(14):12-12
    [49]张丽霞.含钴黄铁矿在悬浮固体鼓泡塔中间歇生物浸出期间细菌数的估算及与机械搅拌反应器的比较[J].湿法冶金,2004.23(1):33-33
    [50]M·杰里克,杨晓军,等.用非常嗜热细菌浸出黄铜矿精矿[J].国外金属矿选矿,2002.39(2):37-41
    [51]温建康,阮仁满.高砷硫低镍钴硫化矿浸矿菌的选育与生物浸出研究[J].稀有金属,2007.31(4):537-542
    [52]王艳锦,郑正,周培国,等.不同培养基中氧化亚铁硫杆菌生长及沉淀研究[J].生物技术,2006.16(4):70-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700