废旧氢—镍电池中镍和稀土元素的回收处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧氢-镍电池中含有33~42%的镍,10%左右的钴及10%的稀土元素,对废旧氢-镍电池的回收处理不仅有利于缓解镍供需缺口增加带来的经济压力,而且有利于环境保护,因此回收处理废旧氢-镍电池极具研究开发价值。
     本论文采用湿法冶金处理方法对废旧氢-镍电池中有价金属元素镍及稀土元素的回收提纯进行了详细的研究。采用X射线荧光分析技术,对所收集的废旧氢-镍电池进行了定性分析,确定所收集的电池为AB5型富铈储氢合金氢-镍电池。通过对电池电极活性物质酸浸原理分析,提出以镍元素浸出率作为衡量电池电极活性物质浸出标准,并通过正交实验对废旧氢-镍电池电极材料中的有价金属元素的浸出率(溶出率)条件进行了优化研究分析。经研究发现,氢-镍电池正负极材料分开处理酸浸效果不及正负极材料混合处理时好,混合电极在固液比为1:100时,与6mol/L的盐酸溶液在95℃的恒温振荡器中浸溶6小时,可使电极中95%以的上的镍元素浸出
     本论文采用化学沉淀法对废旧氢-镍电池电极浸出液中有价金属元素进行了回收提纯。以草酸溶液作为沉淀剂,在室温下控制溶液pH值为0.5,采用磁力搅拌的方式正沉淀电极浸出液中的稀土元素,所得产品粒度小,结晶形态好,有效地实现了电极浸出液中稀土元素的分离提纯。采用次氯酸钠在控制溶液pH值为3.6的条件下氧化沉淀浸出液中钴元素,有效地实现了浸出液液中钴、镍元素的分离。采用饱和草酸溶液为沉淀剂,在控制溶液pH值为4的条件下,于室温下正沉淀浸出液中镍元素,得到α草酸镍水合物。与Pingwei Zhang的萃取分离技术相比,废旧氢-镍电池化学沉淀法所得产品形貌好,回收处理流程简单,试剂投加种类少,有利于废旧氢-镍电池回收处理工业化研究。
Metal hydride-nickel batteries(MHNB) were used as the power source of portable communication servieces since their industrialization. As the prohibition of heavy metals(such as mercury, lead and cadmium) increased, MHNB can substitue the main market of cadmium-nickel batteries. Spent metal-hydride-nickel batteries, which contain 33-42% nickel and 10% cobalt and 10% rare earth elements are a valueable source for the demanding market of nickel.
     This paper has focused on the recovery of nickel and rare earths from the spent metal hydride-nickel batteries(SMHB). Batteries used in this paper are all AB5 type nickel hydride batteries.X-ray fluorescent analysis is used to the charaterization of batteries. Hydrometallurgical processe is used to recycle metals as nickel and rare earths. Nickel is choosed as leaching criterion for its retardation kinectics. The best condition for the dissolving of metals in the SMHB is choosed by orthogonal experiments. It is found that the nickel leaching efficiency of mixed electrodes is better than the seperated electrodes. Mixed electrodes of negative and positive electrods are used for the recycling of nickel and rare earths. The leaching efficiency of nickel can reach to 95% in 6mol/L hydrochloric acid with the solid/liquid ratio of 1:100 at 95℃in 6 hours.
     Saturated oxalate solution is used as precititant of rare earths from the leachate of spent metal hydride-nickel batteries. Rare earth oxalate is abtained by precipitaiton at room temperature with the the pH of 0.5. The granularity of rare earth oxalate(REO)is small. SEM(Scanning Electron Microscopy) examination of REO shows the shape is flat. Cobalt is seperated from the leachate of leaching solution of SMHB by oxidation and precitation processes. Nickel is abtained asα-oxalate salt by precipitaion. The product of nickel oxalate is small and fine. Compared with Ping wei Zhang, et al, the processes used in this paper for the recovery of nickel and rare earths are rather simple, they can be industrializatin processes for the recycle of metal hydride-nickel batteries.
引文
[1]管从胜,杜爱玲,杨玉国.高能化学电源.北京:化学工业出版社,2005:3
    [2]袁华堂,邹雅冰,王一菁.贮氢材料及其应用研究进展.化学通报.2004.12:891~897
    [3]刘守平等.贮氢合金的开发与应用.重庆大学学报.2003.5 (26):143~146
    [4] LI Li,WU Feng,YANG Kai.Degradation analysis of nickel-metal hydride battery and its electrodes materials.Trans.Nonferrous Met.Soc.China,2004. 3 (14):446~450
    [5]徐艳辉,陈长聘,王晓林.废旧MH-Ni电池金属材料的再利用.电源技术.2002.2 (26):154~157
    [6]廖华,吴芳,罗爱平.废旧氢-镍电池正极材料中镍和钴的回收.五邑大学学报,2003,3,1 (17):52~56
    [7]刘慈.废旧电池的污染与回收利用[J].当代化工.2005.2 (34):89~90
    [8]国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社,2000.
    [9]王红芬,赵晓梅.废旧电池资源化技术的研究分析.中国环境管理干部学院学报.2005. 4 (15):77
    [10]王保士.国外废干电池的回收利用及其管理.再生资源研究.2002.2:36~39
    [11]周全法,尚通明.废电池与材料的回收利用.北京:化学工业出版社,2004.1~45
    [12]韩骥,陈绍伟.国内外废旧电池的管理与回收处理.环境卫生工程.2002.10 (4):117~179
    [13]李丽,吴锋,陈实,等.金属氢化物-镍电池的回收与循环再利用.现代化工.2003.23 (7):47~50
    [14]张建红,王军文.废旧电池的回收处理.山东煤碳科技.2005.2:41~42
    [15]邓斌,王荣,阎杰等.失效MH-Ni蓄电池电极材料的回收.电源技术.2002.26(7):233~249
    [16]韩东梅,南俊民.废旧电池的回收利用.电源技术.2005.29(2): 128~130
    [17]王成彦,邱定蕃,陈永强,等.国内外失效电池的回收处理现状.有色金属.2004.5:9~42
    [18]曹锡章,宋天佑,王杏乔.无机化学.武汉大学(第三版).北京:高等教育出版社,1994.10:1081~1097
    [19] Pingwei Zhang,Toshiro Yokoyama,et al. Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries.Hydrometallurgy,1998.50:61~75
    [20] Pingwei Zhang,Toshiro Yokoyama,et al.Recovery of metal values from spent nickel-metal hydride rechargeable batteries.Power Source,1999.77: 116~122
    [21]林才顺.废弃贮氢合金粉的湿法回收工艺.电源技术.2004.128,3:177~179
    [22]林才顺.废旧MH-Ni电池负极材料的回收利用.湿法冶金.2005.24,2:102~104
    [23]张志梅,张建,张巨生.废弃MH-Ni电池正极的回收.电池.2002.32,4:249 ~250
    [24] C.A.Nogueira,F.Margarido.Leaching behaviour of electrode materials of spent nickel-cadmium batteries in sulphuric acid media.Hydrometallurgy, 2004.72: 111~118
    [25] L.Pietrelli,et al. Rare earths recovery from NiMH spent batteries. Hydrometallurgy,2002. (66):135~139
    [26] Rong Wang,Jie Yan,Zhen Zhou,et al.Regeneration of hydrogen storage alloy in spent nickel–metal hydride batteries.Journal of Alloys and Compounds 2002.336:237~241
    [27]赵小山,冯江传.稀土草酸盐的溶解度与稀土氧化物粒度之间的关系及粒度控制.稀有金属.2003.1,27:167~169
    [28] J.Nan et al.Recovery of metals values from a mixture of spent lithium-ionbatteries and nickel-metal hydride batteries.Hydrometallurgy 2006.84: 75~80
    [29]吴君毅,古宏晨.搅拌釜中制备草酸铈的团聚尺寸模型研究.中国稀土学报.2002.20(3):270~273
    [30]高玮,古宏晨.稀土草酸盐沉淀过程中颗粒大小的控制.稀土.2000.21(1):11~13
    [31]顾珩,刘志强,李杏英,等.超细草酸镍沉淀过程中颗粒大小及形貌控制.广东有色金属学报.2006.16(3):176~179
    [32]童长钿,李启厚,赖复兴,等.超细草酸粒子的制备及其形状和粒度控制.湿法冶金.2003.3:23~28
    [33]谢德明,程惠三.MH-Ni电池失效研究.电池工业.2000.5(1):7~10
    [34]唐致远,荣强,宋世栋,等.金属氢化物-镍电池用隔膜的研究进展.现代化工.2003.23(增刊):52~54
    [35] H·海根.从废镍氢电池中再生回收镍、钴和稀土金属的闭路循环.国外金属矿选矿.2006.6:34~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700