锂云母提锂一次净化渣制取硫酸铝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为从硫酸盐法锂云母提锂浸出液中制备合格的碳酸锂产品,必须对浸出液进行分步净化除杂。一次净化渣就是通过用CaO调节浸出液的pH值,使浸出液中的Al3+形成氢氧化物沉淀所获得的产物。该产物一次净化渣渣量大,富含大量的Al、Ca成分。如果直接排放堆置,则造成资源的浪费和环境的污染。因此考虑回收一次净化渣中的铝钙资源,即降低环境污染又能创造一定的经济价值。
     本课题用硫酸浸出法回收净化渣中的铝钙成分。提铝制备硫酸铝主产品,钙则以硫酸钙的沉淀形式回收返回锂云母生产碳酸锂的主流程循环利用。为制备合格的硫酸铝产品,针对净化渣物相及成分特性,选择焙烧水浸工艺预先处理净化渣,浸出净化渣中大量的碱金属元素。在水浸过程中,研究了焙烧温度、焙烧时间以及单因素研究了水浸温度,水浸液固比、水浸时间等对各碱金属元素浸出率的影响。在最佳焙烧水浸工艺条件下,锂浸出率达到82.30%,钠浸出率达到79.68%、钾浸出率达到83.95%、铷浸出率达到86.86%、铯浸出率达到81.23%。
     经过焙烧水浸碱金属元素后的净化渣改称铝钙渣。首先用硫酸单级浸出铝钙渣,试验研究了32~34%硫酸用量、酸浸温度、酸浸时间、液固比、搅拌强度等因素与铝浸出率的关系。实验结果表明,在最佳工艺条件下硫酸单级浸出铝钙渣工艺制备的硫酸铝溶液浓度不高,而且硫酸铝溶液中游离酸过高,需要消耗大量的碱来中和,成本加大。
     考虑上述硫酸单级浸出工艺存在的问题,改用三级逆流连续浸出工艺,在单级浸出工艺参数的基础上进行适当调整,得到适宜的工艺条件,在此条件下,铝浸出率高达98%,相比较单级浸出工艺,铝浸出率提高了的大约2%。硫酸铝溶液浓度也得到大幅度提高。在三级逆流浸出过程中需要解决的主要问题就是二级阶段和三级阶段的硫酸铝溶液的沉降问题,选用非离子型聚丙烯酰胺作为絮凝剂,研究探索絮凝剂的浓度和加入量对沉降效果的影响。确定出絮凝剂最佳浓度和用量。
     最后蒸发浓缩收集的硫酸铝溶液,控制好输出电压,当烧杯底部开始出现白色粉末状硫酸铝后即停止加热,自然冷却后,可获取硫酸铝产品,经过检测分析,制备的硫酸铝产品符合工业硫酸铝一级品的质量标准。
For make qualified lithium carbonate from lifted lithium-leach liquor of lepidolite in sulfate, have to remove impurity step by step on leach liquor. First purification residue is production after formed hydroxide precipitates of Al3+ in leach liquor, by adjusting the pH of leach liquor by using CaO. This result is″residue″highly of first purification residue which is very high in Al and Ca, If the residue is discharged or piled up directly, it would be cause wasteful of resource and pollution of environment. Therefore, recovering the resource of aluminium and calcium in first purification residue is referenced, which not only reduces the environmental pollution but also has some economic value.
     This thesis recovers aluminium and calcium of purification residue by sulfuric acid leaching. Preparation main product of aluminum sulfate by abstracting aluminium, and calcium sulfate by precipitating calcium which return to main process flow of producing lithium carbonate for circulation utilization. For making a qualified product of aluminum sulfate, settling purification residue in advance is selected by means of roasting and water extraction which based on the phase characteristics and content of purification residue, the aim of that is leaching element of the alkali metal in purification residue. The factors that influenced leaching rate of element of the alkali metal are investigated during water extraction, including roasting temperature, roasting time, temperature, liquid-solid ratio and time of water extraction etc. Under the optimum conditions, leaching rate of lithium, sodium potassium, rubidium and cesium reaches 82.30%, 79.68%, 83.95%, 86.86% and 81.23% respectively.
     Purification residue after removing element of the alkali metal by roasting and water extraction is renamed aluminium-calcium residue. The relationship between leaching rate and factors is studied, which include the amount of sulfuric acid(32~34%), the temperature and time of acid extraction, liquid-solid ratio, stirring intensity etc in the process of single stage leaching aluminium-calcium residue by sulfuric acid. The results indicated that the concentration of aluminium sulphate solution is low in the optimum conditions which single stage extraction aluminium-calcium residue by sulfuric acid, and free acid content is higher in aluminium sulphate solution, that needs to use up a large number of alkali for counteracting and cost are enlarged.
     On the basis of the problems present in the single stage extraction, three stage upstream leaching is used instead. Adjusting technology parameters based on the single stage leaching to get appropriate conditions, in these conditions, the leaching rate of aluminium is as high as 98% which has a rise of 2% compared with single stage leaching, and the concentration of aluminium sulphate solution is raised substantially. Settlement of aluminium sulphate solution in the second and third stage is the major problem in the process of three stage upstream leaching. Influence of the concentration and amount of flocculant on settlement is studied when non-ionic polyacrylamide is selected for flocculant, and the best concentration and amount of flocculant are fixed.
     Finally, aluminium sulphate solution that have collected is used to evaporate, output voltage is controlled in this progress, removed from the heat when the white powder aluminium sulphate appeared in the bottom of the flask, the production of aluminium sulphate is obtained after being cooling naturally. The prepared aluminium sulphate measures up to the quality standard of grade-1 of the technical aluminium sulphate through detecting and analysis.
引文
[1]何朝晖.我国硫酸铝工业及发展现状[J],无机盐工业,2001,(3):17~18
    [2]乐志强.国外硫酸铝技术动态[J],无机盐工业,1992,(4):20
    [3]杨炳轩.铝盐及其衍生产品的应用探讨[J],无机盐工业,1984,(4):35
    [4] Sheng H. Lin, Mu C. Lo Synthesis of aluminum ammonium sulfate from waste aluminum processing solution by crystallization, Journal of Hazardous Materials,1998(63):211-222
    [5]傅宗昌.试论我国硫酸铝生产现状与发展[J],无机盐工业,1992,(2):33~38
    [6]郑成.硫酸铝溶液蒸发设备设计探讨[J],无机盐工业,1993,(1):29
    [7]乐志强.硫酸铝的开发[J],无机盐工业,1992,(5):19
    [8]山东淄博制酸厂全国硫酸铝情报协作组,国内硫酸铝生产技术概述,无机盐工业,1983,(2):1
    [9]蒋军华.浅谈煤系硬质高岭土的深加工[J],煤炭加工与综合利用,1994,(4):46
    [10]韩效钊,吴国荣,许民才.由明矾石矿生产硫酸铝的研究[J],现代化工,1996,(5):31~32
    [11]王雪枫,赵建茹.从毛矾石中制取硫酸铝及除铁工艺的研究,新疆工学院学报,1997,(12):280~283
    [12]周连江,乐志强.无机盐工业手册,下册[M],第二版,北京:化学工业出版社,1996:92
    [13]宋焕斌,张文彬.加强矿山复垦[J],保护土地资源,中国矿业,1998 (3)
    [14]姚重华.混凝剂与絮凝剂,北京,中国环境出版社,1991
    [15]周静尧.氧化铝精细化工的开发与应用[J],无机盐工业,1984,(9):29
    [16]任岳荣,朱自康等.硫酸铝铵热分解法制备高纯氧化铝的研究[J],无机盐工业,1991,(6):21
    [17]蒋敏波,张传志等.一步法高纯超细氧化铝粉的研制[J],无机盐工业,1996,(5):6
    [18]天津化工研究院编,无机盐工业手册(下)[M],北京:化学工业出版社,1987:214~221
    [19] HG/T2225- 200l.工业硫酸铝标准[S].
    [20]何元勇,傅宗昌.关于降低硫酸铝生产中硫酸消耗的探讨[J],无机盐工业,1992,(5):24
    [21]张德永.硫酸铝的生产现状及应用前景[J],世界有色金属,2007,(1):11~12
    [22] Ross V. Hyne, Scott P. Wilson.Toxicity of acid-sulphate soil leachate and aluminium to the embryos and larvae of Australian bass in estuarine water.Environmental Pollution, Volume,1997(97):221~227
    [23]汤鸿霄.无机高分子絮凝剂的基础研究,环境化学,1990,9(3):1~12
    [24]秦建昌,冯雪冬等.聚合硫酸铝的制备及形态特征[J],环境化学,2004,9(23):516
    [25]张民权.一种新型高效的水处理剂-复合硫酸铝铁[J],净水技术,1998,(1):24~26
    [26]田宝珍.铝铁共聚复合絮凝剂的研制及应用[J],工业水处理,1998,18(1):17~19
    [27] Henri?tte M. C. Put ,Anke C. M. Clerkx ,A. Boekestein ,Aluminium sulphate restrictsmigration of Bacillus subtilis in xylem of cut roses: a scanning electron microscopestudy[P],Scientia Horticulturae,1992(51):261~274
    [28] Loc V. Duong, Barry J. Wood, J. Theo Kloprogge.XPS study of basic aluminum sulphate and basic aluminium nitrate . Materials Letters.2005(59):1932~1936
    [29]方正东,汪敦佳.铝土矿加压法生产硫酸铝的工艺研究[J],矿物学报,2004,9(3):257~260
    [30]朱肖锋.铝土矿制备液体无铁硫酸铝的研究:[硕士学位论文] .天津:天津大学,2006
    [31]吴高安,贺小平,张佑红.高岭土生产硫酸铝的技术经济研究[J],湖北化工,1995,(3):42~43
    [32]康文通,李建军,李小云等.低铁硫酸铝生产新工艺研究[J],河北科技大学学报,2001,22(1):65~67.
    [33]乔元彪.利用煤矸石生产硫酸铝[J],化工环保,1998,18(2):120~122
    [34]刘春明,王雪枫,胡慧玲等.毛矾石生产硫酸铝工艺研究[J],无机盐工业,2002,34(5):24~26
    [35]蔡锡昌.用铝阳极化废渣生产硫酸铝[J],电镀与环保,1993,13(03):33~34
    [36]郭瑞九,郭大刚.用页岩石制备硫酸铝[J],化学世界,1999,(04):183~184
    [37]李平.硫酸铝溶液的沉降机理与分析[J],天津化工,2000,(1):12~13
    [38]祝增虎,朱朝梁,温现明等.碳酸锂生产工艺的研究进展[J],盐湖研究,2008,16(3):64~72
    [39] Burba,Ⅲ.Crystalline 3-layer lithium aluminates:United States Patent,4540509[P].1985
    [40] Goodenough,Robert D.Process for the recovery and seperation of lithium and alum from lithium aluminate complex[P].UniteState: US2977185
    [41] R.D.Goodenouhg,V.stenger.UnitedState:US2980479
    [42] D.Kaplan,IsraelJ.Chem.115
    [43]王德生,刘庆峰,刘斌等.碳酸化法制备α-Al(OH)3包覆CaCO3复合晶须[J],化工学报,2001,52(6):537~540
    [44]催益顺,梁玉祥,角兴敏.铝土矿制备硫酸铝的初步研究[J],四川化工与腐蚀控制,2000,3(6):14~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700