泉州湾沉积物粒度和元素组成特征及其沉积环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文依托台海横向课题《金门海岸防护对策暨渔村海岸复育可行性研究》,通过对泉州湾底质调查所获沉积物样品进行系统的粒度和地球化学分析,阐述了研究区沉积物粒度参数特征和元素分布特征,进而探讨了粒度参数及元素组合特征所反映的现代沉积动力环境。
     研究区内砂是最主要的沉积物类型。砂的频率直方图以推移组分为主,含量在95%以上;粉砂和粘土质粉砂以跃移组分为主,第二跃移组分大于第一跃移组;砂质粉砂以跃移和悬浮组分为主,第一跃移组分大于第二跃移组分,频率直方图表现为三峰。沉积物元素组成以SiO_2和Al_2O_3含量为最高,两者之和占总化学成分的69.97%~85.59%不等,说明沉积物的化学成分以硅酸盐和铝硅酸盐为主。
     口门内和口门外的大部分海域的沉积物粒径较粗,搬运方式以推移为主。口门和大坠岛的西北海域的沉积物类型多样,悬浮搬运比重增加。以上两区物质来源多为陆源碎屑,前者富集SiO_2、K_2O、Nb、Zr,其余大部分元素含量较低后者富集Al_2O_3、Fe_2O_3、MgO、P、Mn、Ti、Pb、Zn、Cr、Co等。各化学分区具有独特的元素分布特征,与根据粒度划分的沉积动力环境分区具有较好的一致性。
     依据沉积物粒度特征将研究区划分为3个沉积环境亚类:Ⅰ类沉积区,沉积物主要为砂质,指示了强水动力条件下的高能环境;Ⅱ类沉积区,沉积物主要是粘土质粉砂,指示了潮流为主的水动力条件;Ⅲ类沉积区,沉积物主要是砂质粉砂,指示了复杂的水动力条件。
     研究区元素的R型因子分析表明,泉州湾沉积物主要来自陆源碎屑矿物,而沉积水动力对陆源碎屑的输运、分选和改造作用则是导致研究区沉积物粒度和元素地球化学组成空间分异性的主导因素,另外人为改造也在一定程度上影响着底质沉积物元素地球化学的分异性。
Sedimentary environment in the estuary is a key problem of modern sedimentation research.This paper relies on the horizontal subject with Taiwan,which named FEASIBILITY STUDY OF COASTAL PROTECTION AND RESTORATION IN QUEMOY(JIN-MEN).By analyzing the granularity and geochemical characteristics of the investigated sediment,which are derived from contiguous sea regions of Quanzhou estuary,we depicted Granularity parameters and distribution characteristics,and made further studies on the transportation action of the sediments,enrichment rules of elements,and elements distribution controlling factors.Then the modern depositional dynamic environment has been discussed in this paper on the basis of the granularity parameters and the elements combination characteristics.
     Sand is the major sediment type in study area.Histogram to the frequency of sand over the main component,the content in more than 95%;clayey silt and silty sand saltation separation of components from different linear sections,the second component is greater than saltation saltation the first group;Sandy silt to saltation and suspension components in the first than the second component saltation saitation component,frequency histogram sambong performance.Elements in the sediment SiO_2 and Al_2O_3 content in the highest,the total chemical composition of the total of 69.97%~85.59%range on the chemical composition of sediments in the main silicate and aluminum silicate.
     Inside and outside of estuary the most mouth waters coarse sediment particle size, handling time-based approach to.Entrance doors and falling waters of the island's north-west of sediment types,including clayey silt,sandy silt and a small portion of the sand,silty sand,increase the proportion of suspended transport.Source material for more than two regions for land-based sources of debris,the former enriched SiO_2, K_2O,Nb,Zr,most of the remaining elements of the latter low-enriched Al_2O_3,Fe_2O_3, MgO,P,Mn,Ti,Pb,Zn,Cr,Co,Ni,V.Each chemical element has a unique geographical distribution,divided in accordance with the deposition of particle dynamic environment with a better consistency Division.
     The modern sedimentary environment in Quanzhou Estuary can be classified into three types based on the characteristics of sediments granularity.Ⅰtype of sedimentary cover all areas of sandy,silty sand deposition areas,are under strong hydrodynamic conditions of the high-energy environment;Ⅱtype deposits sediment type is clayey silt,the complexity of the hydrodynamic condition is relatively sTablele but moderate;Ⅲtype deposition mere value of the cumulative probability map from the four sections of a straight line,double jump may be associated with the emergence of waves and the scouring effect of the return,on behalf of a strong role in the election of Britain waves,normally found in beach sand.
     The result of element analysis by R-factor of study area shows that sediments of Quanzhou estuary most likely come from terrigenous clastic.The dominant factors which make the difference of the granularity and geochemical characteristics and its spatial distribution are transportation,sorting and transformation effect by hydrodynamic.In addition,man-made alteration is a certain extent of geochemical spatial distribution.
引文
[1]徐茂泉,陈友飞.海洋地质学[M].厦门:厦门大学出版社,1999:1-103.
    [2]Harald GD.A review of heavy minerals in clastic sediments with case studies from the alluvial-fan through the near shore marine environments[J].Earth-science Review;1998;45:103-106.
    [3]Werner E,Kerstin P.The heavy mineral record in the Pliocene to Quaternary Sediments of the CIROS-2 drill ore,Mcmurdo Sound,Antarctica[J].Sedimentary Geology;1999;128:238-239.
    [4]Moncton AC,Claoue-Long J C,Hallsworth C R.Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones[J].Marine and Petroleum Geology.2001;18:319-320.
    [5]何起祥.沉积地球科学的历史回顾与展望[J].沉积学报,2003,21(1):10-18.
    [6]何起祥.中国海洋沉积地质学[M].北京:海洋出版社,2006.
    [7]Gabriel P J,Juan A M,Borrego J,et al.Evolution of estuarine facies in a tidal channel environment;SW Spain:evidence for a change from tide-to wave-domination.[J]Marine Geology;1998;147:43-62.
    [8]Buynevich I.V.,FitzGerald,D.M.Textural and compositional characterization of recent sediments along a paraglacial estuarine coastline,Maine,USA[J].Estuarine,Coastal and Shelf Science,2003,56(1):139-153.
    [9]蓝先洪.中国近岸海域的沉积环境地球化学[J].海洋地质动态,2004,20(2):1-4.
    [10]Grossman E E,Eittreim S L,Field M E,et al.Shallow stratigraphy and sedimentation history during high-frequency sea-level changes on the central California shelf[J].Continental Shelf Research,2006,26(10):1217-1239.
    [11]McLaren,P.An interpretation of trends in grain-size measurements[J].Jour.Sed.Petrology;1981,v.51,:611-624.
    [12]Gao S,Collins M.Analysis of grain size trends for defining sediment transport pathways in marine environments[J].Coastal Res.v.10,1994:70-78.
    [13]肖尚斌,李安春,蒋富清,等.近2 ka来东海内陆架的泥质沉积记录及其气候意义[J]. 科学通报.2004.49(21):2233-2238.
    [14]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势[J].海洋与湖沼.2000,31(6):604-610.
    [15]赵一阳,喻德科,黄海沉积物地球化学分析[J],海洋与湖沼,1983,14(5)432-445.
    [16]蓝先洪.黄河、长江和珠江三角洲近代沉积物的沉积化学特征[J],台湾海峡,1995,14(1):44-45.
    [17]P.W.BalIs,S.HulI,B.S.Miller et al.Trace metal in Scottish estuarine and Coastal sediments[J].Marine Pollution Bulletin,1997,34(1):42-50.
    [18]S.D.W.Comber,A.M.Gunn and C.Whalley.Comparison of the Partitioning of trace metals in the Hurnber and Mersey Estuaries[J].Marine Pollution Bulletin,1995,30:851-860.
    [19]B.Rubio,M.A.Nombela,F.Vilas,Geochemistry of major and trace elements in sediments of the Ria de Vigo(NW Spain):an assessment of metal Pollution[J],Marine Pollution Bulletin,2000,40(11):968-980.
    [20]洪亚山.晋江泥沙淤积分析[J].水利科技科,1989,4(1):74-76.
    [21]许爱玉,骆炳坤,陈松.泉州湾表层沉积物中重金属的地球化学特征[J].台湾海峡,1989.vol 8(1):383-388.
    [22]陆凤山,廖康明,肖晖,等,泉州湾波浪分布特征研究[J].台湾海峡.1998.17(1):1-8.
    [23]刘浩,尹宝树.泉州湾潮汐、潮流及浅滩干湿变化的数值研究[J].水动力学研究与进展,2006.21(6):693-699.
    [24]龚香宜,祁士华,吕春玲,等.福建省泉州湾表层沉积物中重金属的含量与分布[J].环境科学与技术,2007,30(1):27-34.
    [25]于瑞莲,胡恭任.泉州湾沉积物重金属形态特征及生态风险[J].华侨大学学报(自然科学版).2008,29(3):419-423.
    [26]王荔娟,于瑞莲,胡恭任,等.晋江感潮河段表层沉积物重金属污染特征[J].华侨大学学报(自然科学版),2008,29(1):148-151.
    [27]李朝新,刘振夏,胡泽建,等.泉州湾泥沙运移特征的初步研究[J].海洋通报,2004,23(2):25-31.
    [28]李朝新,刘焱光,刘振夏,等.泉州湾泥沙运移与冲淤变化[J].海洋科学进展,2008,26(1):26-34.
    [29]杨娟.泉州海岸带灾害及防灾减灾系统研究[D].重庆:西南大学硕士毕业论文,2007.
    [30]陈玉仁,丁祥焕,吴维灿,等.晋江下游平原-泉州湾的形成机制与地震活动[J].华南地震.1982.2(2):16-37.
    [31]赵今生,赵子丹,秦崇仁,等.海岸河口动力学[M].北京:海洋出版社,1993.
    [32]潘玉萍,沙文钰.闽浙沿岸上升流的数值模拟[J].海洋预报;2004;21(2):86-95.
    [33]傅子琅,胡建宇.台湾海峡海流结构及海水通量[J].热带海洋;1995;14(3):75-80.
    [34]林伟东.台湾海峡海流结构及海水通量[J].水利科技;2004,3:12-14.
    [35]吴传明,郭宣福.晋江流域水资源现状分析评价[J].水利科技;2003,3:6-7.
    [36]杨道媛,马成良,孙宏魏,等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术.2002;8(5):27-30.
    [37]程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较[J].沉积学报;2001:19(3):449-455.
    [38]王蒙光.九龙江河口湾沉积物粒度和元素地球化学特征对沉积动力环境的指示[D].厦门:厦门大学硕士论文,2008.
    [39]王蒙光,雷怀彦,史跃中.应用因子分析与系统聚类方法划分现代沉积环境--以九龙江河口区为例[J].厦门大学学报(自然科学版),2008,47(3):431-437.
    [40]国家石油和化学工业局.碎屑岩粒度分析方法[S].中华人民共和国石油天然气行业标准.1999.
    [41]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1982.
    [42]徐振邦,娄元仁.数学地质基础[M].北京:北京大学出版社,1994.
    [43]杨威,卢文喜,李平,等.因子分析法在伊通河水质评价中的应用[M].水土保持研究,2007.14(1):113-114.
    [44]林炳煌,雷怀彦,官宝聪,等.九龙江河口表层沉积物元素特征及地球化学意义[J].厦门大学学报(自然科学版),2009,48(3):450-455.
    [45]吕红华,任明达,柳金诚,等.Q型主因子分析与聚类分析在柴达木盆地花土沟油田新近系砂岩储层评价中的应用[M].北京大学学报(自然科学版),2006,42(6):740-745.
    [46]李玉中,陈沈良.系统聚类分析在现代沉积环境划分中的应用--以崎岖列岛为例[J].沉积学报,2003,21(3):487-494.
    [47]李伟,王建新.R型聚类分析在确定成矿岩体中的应用--以延边复兴-杜荒岭金矿化集中区为例[J].世界地质,2003,22(2):147-151.
    [48]韩震.R型聚类分析在遥感信息和地球物理信息复合处理中的应用[J].山东矿业学院学报,1997,16(1):5-11.
    [49]赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社.1994:1-203.
    [50]蒋富清,李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J].沉积学报,2002,20(4):680-686.
    [51]佩蒂庄.沉积岩(中译本)[M].北京:石油工业出版社,1981,49.
    [52]刘岫峰.粒度分析及其在沉积学研究中的应用[A].沉积专辑[C].成都地质学院沉积岩研究室,1981,21-61.
    [53]赖内克,辛格.陆源碎屑沉积环境(中译本)[M].北京:石油出版社,1984,112-116.
    [54]Jia Jianjun,Wang Yaping,Gao Shu,et al.Interpreting grain-size trends associated with bedload transport on the intertidal flats at Dafeng,central Jiangsu coast[J].Chinese Science Bulletin,2006,51(3):341-351.
    [55]王庆杰,马民涛.因子分析在环境科学与环境工程中的应用[J].北京工业大学学报,2000,26(增刊):72-76.
    [56]Gary A.Smith and Joan E.Lotosky,What factors control the composition of andesitic sand [J].Journal of Sediment Research,1995,65(1):91-98.
    [57]Park,Y.A,Choi,Factor analysis of the continental shelf sediments off the southeast coast of Korea and its implication to the depositional environments[J].Oceanology.Soc.Kor.,1986,21:34-45.
    [58]王昆山.南黄海和东海北部陆架碎屑矿物组合分区及生源差别[D].青岛:青岛海洋大学硕士论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700