四国海盆岩芯沉积物元素地球化学特征及物源初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋沉积物是一个巨大的信息库,它储存着丰富的有关地球历史和环境演化的信息。陆架海及其延伸海域的沉积物,沉积速率快,记录信息分辨率高,同时包含大量陆源碎屑沉积,是开展海陆相互作用以及全球变化研究的理想场所。作为西北太平洋边缘的弧后盆地,四国海盆海底地势相对平坦,沉积物保存连续而且完整,对探讨西北太平洋古海洋环境演变具有重要意义。
     本文选择位于四国海盆南部和中部的F120909(54cm)和F130601(88cm)两岩芯沉积物,通过对其粒度和元素地球化学特征的分析,研究该区域的沉积环境,并进一步讨论其物质来源。
     粒度分析表明,两岩芯沉积物粒度垂向上总体比较均一,主要是粘土质粉砂,但不同层位也稍有差别,表现为自下而上粒度由细逐渐变粗,尤其是表层部分,含砂量有所增加,体现出陆源碎屑沉积的增强。
     常量元素分析结果显示,两岩芯中主要氧化物依次为SiO2、Al2O3和Fe2O3,此三项约占所有氧化物总含量的75%以上。整个岩芯自下而上各常量组分变化不大,其平均值均与大洋沉积物基本接近;两岩芯中SiO2/Al2O3、Fe2O3/Al2O3和TiO2/Al2O3的比值最接近深海粘土的比值特征。对于岩芯F130601,在30cm~20cm深度上有明显的MnO富集异常,可能与海底热液事件记录有关。从微量元素组成看,两岩芯分别在不同层位上都表现出了Co、Ni、Cu、Pb等元素的富集显示,可能反映了火山物质的影响。微量元素配分模式显示,除明显富集Ba和Th外,其它元素含量均与北美页岩类似;而REE配分曲线较平缓,无明显Eu异常和Ce异常,也与北美页岩类似。上述元素地球化学特征表明,四国海盆沉积物应以半远洋和远洋沉积为主。
     根据两岩芯所处位置和四国海盆的沉积动力环境,再结合物源判别图的分析结果,我们认为:在深海底流的作用下,岩芯F130601的沉积物主要来源于南海海槽,包括陆源碎屑沉积和火山碎屑沉积;而对于F120909,由于地处盆地南部,远离大陆,陆源性较F130601稍弱,火山物质(可能主要来源于四国海盆中央的扩张带及九州海脊)的影响更为明显。
Marine sediment is very huge database, which has abundant records about the evolution of the environment and the earth. The sediment from the continent shelf and outspread area is characteristic of rapid sedimentary rate and high resolution. Besides, massive terrigenous clastic material is included, which is propitious to the study of land-ocean interaction. Shikoku basin, located at the margin of northwest Pacific, is a typical back-arc basin. The smooth terrain there has stored a mass of sediment which contains a lot of information for the environment evolution. Thus, the study of the sediment in Shikoku basin and the adjacent area is of great importance to understanding the paleo-environment of northwest Pacific.
     In this paper, two sediment cores F120909 (54cm) and F130601 (88cm) from south and middle Shikoku basin are chosen for grain size analysis and element geochemical analysis, including major elements and rare elements. Further more the sedimentary environment and their provenance are also discussed.
     Grain size analysis shows that, the two sediment cores are mainly made of clayey silt, generally uniform but small changes in different depths. Subsection comparision indicates that the grain size coarsing upwards gradually, especially in the surface where sand is unignored. It probably reveals the enhancement of terrigenous clastic material.
     Major elements analysis shows that the main components in the sediment cores are SiO2, Al2O3 and Fe2O3, which account for as much as 75%. There is no obverse change in both cores, which are quite similar with ocean mean value. Through comparision of SiO2/Al2O3, Fe2O3/Al2O3 and TiO2/Al2O3 with sediment from other typical areas, the sediment in Shikoku Basin is most close to deep-sea clay. For core F130601, it has an obvious MnO enrichment at 30cm to 20cm depth, probably by seafloor hydrothermal activity. Rare elements analysis reveals both cores are riched in Ba and Th. The other elements are more or less the same with NASC. According to the NASC-normalized REE distribution, both curves are nearly aclinic and there is no Ce and Eu abnormity. According to the geochemistry result above, it is concluded that Shikoku basin is characterized by hemipelagic and pelagic deposit.
     Considering the samples location and current mode, as well as the result from provenance discriminable diagram, it is inferred that: sediment in F130601 is mainly from Nankai Trough due to the contour current, including terrigenous clastic and volcaniclastic material; F120909, which is far from the continent, is less affected by Nankai Trough but appears more volcanic action affect, probably from the central Shikoku basin spreading center or Kyushu Ridge.
引文
[1] Baker E T, Feely R A, Tahashi. Chemical composition, side distribution and particle morphology of suspended particulate matter at DOMES site A, B and C: Relationship with local sediment composition. New York: Plenum Press. 1979. 201
    [2] Bhatia M R, Plate tectonics and geochemical compositon of sandstones. Geol., 1983 (91):611~627
    [3] Bishoff J L, Heath G R, Leinen M G, Geochemistry of deep-sea sediments from the Pacific manganese nodule province: DOMES site A, B and C. Bischoff J L, Piper D Z., Marine Geology and Oceanogeaphy of the Pacific Manganese Nodule Province, 1979, New York: Plenum Press. 397~436
    [4] deVries Klein G., Kobayashi K., et al., Initial Reports of the Deep Sea Drilling Project, 1980 (58): Washington (U.S. Government Printing Office)
    [5] Engel A E J, Celeste G, Chemical characteristics of oceanic basalts and the upper mantle, GSA Bull, 1965 (76):719~734
    [6] Fleet A J, Aqueous and sedimentary geochemistry of the rare earth elements, Amsterdam -Oxford-New York-Tokyo: Elsevier Science Publishers B. V., 1984
    [7] Folk R L, Andrews P B, Lewis D W, Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand. Geol. And Geophysics. 1970 (13):973~968
    [8] Folk R L, Ward W C, Brazos River bar, a study in the significance of grain size parameters. Sed. Petr. 1957 (27): 3~7
    [9] Gorsline. A review of fine-grained sediment origins, characteristics, transport, and deposition. In Stow, D.A.V., and Piper, D.J.W. (Eds.), Fine-Grained Sediments. Geol. Soc. Spec. Publ., 1984, 15:17~34
    [10] Haskin L A, Haskin M A, Frey F A, Wildman T R, Relative and absolute terrestrial abundances of the rare earths. In: Ahrens L.H. (ed), Origin and distribution of the elements, Oxford: Pergamon, 1968 (1):889~911
    [11] Henderson G M, Burton K W, Using 234U/238U to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet. Sci Lett, 1999, 170: 169~179
    [12] Huge R R.岩石地球化学(杨学明,杨晓勇,陈双喜译).合肥:中国科学技术大学出版社,2000. 112
    [13] Ito M., Horikawa K. Millennial- to decadal-scale fluctuation in the paleo-Kuroshio Current documented in the middle Pleistocene shelf succession on the Boso Peninsula, Japan. Sediment. Geol., 2000 (37):1~8
    [14] Ito. Spatial variation in turbidite-to-contourite continuums of the Kiwada and Otadai Formations in the Boso Peninsula, Japan: an unstable bottom-current system in a Plio-Pleistocene forearc basin. Sediment. Res., Sect. A, 1997 (67): 571~582.
    [15] Kevin T Pickering, Nicholas G Marsh, Brian Dickie. Data report: inorganic major, trace, and rare earth element analyses of the muds and mudstones from site 808 Proceedings of the Ocean Drilling Program, Scientific Results, 1993 (131):427~450
    [16] Kobayashi, Nakada. Magnetic anomalies and tectonic evolution of the Shikoku interact basin. Phys. Earth, 1978, 26: 391~402
    [17] Lee I.T., Ogawa Y., Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan. Isl. Arc, 1998 (7):315~329.
    [18] Oba T., Yasuda H., Paleoenvironmental change of the Kuroshio region since the last glacial age. Quat. Res., 1992 (31): 329~339.
    [19] Okada H., Ohta S., Photographic evidence of variable bottom-current activity in the Suruga and Sagami Bays, central Japan. Sediment. Geol., 1993 (82):221~237
    [20] Pearce J A, Kempton P D, Nowell G M, Noble S R. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systerms. Journal of Petrology, 1999 (40): 1579~1611
    [21] Piper D Z,Rare earth elements in ferromanganese nodules and other marine phase, Geochim. et Cosmochim. Acta, 1974 (38):1002~1007
    [22] Piper D.Z., Rare earth elements in the sedimentary cycle: a summary, Chemical Geology, 1974 (14): 285~304
    [23] Satoru Haraguchi, Teruaki Ishii, Jun-Ichi Kimura, Yasuhiko Ohara. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol. 2003 (145): 151~168
    [24] Shimamura Kiyoshi. Sedimentation and Tectonics of Zenisu Ridge, Eastern Nankai Trough and Suruga Trough Regions, The science reports of the Tohoku University. Second series, Geology, 1988 (58):107-167
    [25] Shipboard Scientific Party, Leg 190 Preliminary Report: Deformation and fluid flow processes in the Nankai Trough accretionary prism. ODP Prelim. 2000, Rpt., 190
    [26] Sun S S, Chemical composition and origin of the earth’s primitive mantle, Geochim. Cosmochim Acta, 1982 (46): 179~192
    [27] Taft B.A. Characteristics of the flow of the Kuroshio south of Japan. In Stommel, H., and Yoshida, K. (Eds.), Kuroshio: Physical Aspects of the Japan Current: Seattle (Univ. Washington Press), 1972: 165~216.
    [28] Taft B.A. Structure of the Kuroshio south of Japan. J. Mar. Res., 1978 (16): 77~117.
    [29] Taft B.A., Robinson A.R., Schmitz W.J., Current path and bottom velocity of the Kuroshio. J. Phys. Oceanogr., 1973 (3): 347~350.
    [30] Taira A., Niitsuma N., Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size, and detrital modal analyses. In Kag ami, H., Karig, D.E., Coulbourn, W.T., et al., Init. Repts. DSDP, 87: Washington (U.S. Govt. Printing Office), 1986: 611–632.
    [31] Turekian K, Wedephol K., Distribution of the element in some major units of the earth’s crust. GSA Bulletin, 1961, 72 (2): 175~191
    [32] Underwood M.B., Steurer J.F., Composition and sources of clay from the trench slope and shallow accretionary prism of Nankai Trough. In Mikada H., Moore G.F., Taira A., Becker K., Moore J.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 190/196, 2003, 1~28
    [33] Wedepohl K. H., Spurenanalytische Untersuchungen an Tiefseetonen aus dem Atlantik: Ein Beitrag zur Deutung der geochemischen Sonderstellung von pelagischen Tonen. Geochimica et Cosmochimica Acta, 1960, 18 (3~4): 200~231
    [34] Worthington L.V., Kawai H., Comparison between deep sections across the Kuroshio and the Florida Current and the Gulf Stream. In Stommel, H., and Yoshida, K. (Eds.), Kuroshio: Physical Aspects of the Japan Current: Seattle (Univ. Washington Press), 1972: 371~386.
    [35]任明达,王乃梁.现代沉积环境概论.北京:科学出版社,1981
    [36]何起祥等.中国海洋沉积地质学.北京:海洋出版社,2006. 431~432
    [37]刘季花,张丽洁,梁鸿峰.太平洋CC48孔沉积物稀土元素地球化学研究.海洋与湖沼,1994,25(1):15~22
    [38]刘英俊.元素地球化学.北京:北京出版社,1984. 194~215
    [39]吴明清,王贤党.东海沉积物的稀土和微量元素.地球化学,1991,(1):40~45
    [40]吴明清.冲绳海槽沉积物稀土和微量元素的某些地球化学特征.海洋学报,1991,13 (1):75~81
    [41]姚伯初,蓝先洪,邱燕.西沙西南海域表层沉积物的地球化学特征.海洋地质与第四纪地质,1998,18(1):23~25
    [42]孟宪伟,王永吉,吕成功.冲绳海槽中段沉积地球化学分区及其物源指示意义.海洋地质与第四纪地质,1997,17 (3):37~43
    [43]孟庆勇,李安春,靳宁,徐兆凯,刘建国.东菲律宾海柱状样沉积物磁性特征.海洋地质与第四纪地质,2006,26(3):57~63
    [44]徐兆凯,李安春,徐方建,孟庆勇,李传顺,刘建国.东菲律宾海表层沉积物中元素的赋存状态.海洋地质与第四纪地质,2007,27(2):51~58
    [45]徐兆凯,李安春,蒋富清,孟庆勇,李传顺,刘建国.东菲律宾海深水区新型铁锰结壳的特征和成因.海洋地质与第四纪地质,2006,26(4):91~98
    [46]徐兆凯,李安春,蒋富清,李铁刚,孟庆勇,靳宁.东菲律宾海晚中新世末期以来古海洋学环境演化的新型铁锰结壳记录.中国科学D辑,2007,37(4):512~519
    [47]徐兆凯,李安春,蒋富清,李铁刚.东菲律宾海新型富铁锰结壳的古海洋学环境记录.中国地质大学学报,2006,31(3):301~308
    [48]李国胜,杨锐,张洪瑞.中太平洋第四纪沉积物地球化学特征及沉积环境.沉积与特提斯地质,2007,27(3):33~43
    [49]李常珍,李乃胜,林美华.菲律宾海的地势特征.海洋科学,2000,24(6):47~51
    [50]李绍全,李双林,陈正新等.东海外陆架EA01孔末次冰期最盛期的三角洲沉积.海洋地质与第四纪地质,2002,22(3):19~25
    [51]杨競红,王颖,张振克等.宝应钻孔沉积物的微量元素地球化学特征及沉积环境探讨.第四纪研究,2007,27(5):736~749
    [52]杨锐,李国胜,张洪瑞.中太平洋CC区第四系沉积物地球化学特征及物源.物探与化探,2007,31(4):293~297
    [53]熊应乾,刘振夏.冲绳海槽DGKS9603孔细粒沉积物元素组合特征及其意义.海洋学报,2004,26(2):61~71
    [54]王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社,1989. 137~153
    [55]石学法,陈丽蓉,李坤业,杨惠蓝.西菲律宾海沉积物矿物组合及其他地质意义.海洋与湖沼,1994,25(3):328~335
    [56]石学法,陈丽蓉,马建国,柴之芳.西菲律宾海沉积物稀土元素地球化学.矿物学报,1996,16(3):260~267
    [57]石学法,陈丽蓉.西菲律宾海晚第四纪沉积地球化学特征.海洋与湖沼,1995,26(2):124~131
    [58]秦蕴珊,陈丽蓉,石学法.西菲律宾海风成沉积物的研究.科学通报,1995,40(17):1595~1597
    [59]蒋富清,李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义.沉积学报,2002,20(4):680~686
    [60]袁迎如,陈冠球,杨文达.冲绳海槽沉积物的特征.海洋学报,1987,9 (3):353~359
    [61]许淑梅,张晓东,翟世奎.四国海盆起源与沉积环境演化.海洋地质与第四纪地质,2004,24(2):119~123
    [62]许淑梅,翟世奎,张爱滨,张晓东,张怀静.长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义.沉积学报,2007,25(5):759~766
    [63]赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994.
    [64]赵一阳.中国海大陆架沉积地球化学的若干模式.地质科学,1983,(4):307~314
    [65]金秉福,林晓彤,张云吉,林振宏.冲绳海槽中段近4万年来沉积物属性和来源.海洋通报,2006,25(4):49~56
    [66]陈道华,蒋少涌,刘坚.西沙海槽表层沉积物地球化学特征及其地质意义.海洋地质与第四纪地质,2005,25(2):37~43
    [67]靳宁.帕里西维拉海盆西北部海域粘土矿物分布特征研究:[硕士学位论文].青岛:中科院海洋所,2006
    [68]高志友.南海表层沉积物地球化学特征及物源指示:[博士学位论文].成都:成都理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700