硅对重金属复合污染土壤中草坪草生理生化性质和重金属吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的迅速发展,生态系统中化学污染物质含量急剧增加,工农业生产和人类健康面临着严重挑战。尤其是土壤中重金属污染物的大量聚集导致的土壤重金属污染,对人类生活产生了严重影响。如何治理这些污染土壤、降低重金属在土壤-植物系统中的迁移等已成为人们关注的焦点。
     该论文综述了土壤-植物系统中重金属污染的研究进展,概述了Si元素对植物生长及其抑制植物吸收重金属的重要作用。结合Si对缓解植物重金属毒害的作用机制,本研究选取多年生黑麦草(Lolium perenne L.)、高羊茅(Festuca arundinacea Schreb)进行盆栽试验,采用正交试验设计的方法,研究了Cd、Zn和Pb复合污染条件下Si对草坪草生理生化特性以及土壤-草坪草系统中重金属元素迁移的影响。
     研究结果表明:(1)在Cd、Zn、Pb复合污染条件下,随着Cd浓度的提高,黑麦草生物量受到显著抑制,50 mg·kg~(-1)Zn和Pb有利于黑麦草生物量的积累,但当Zn、Pb的添加量分别达到300 mg·kg~(-1)和350 mg·kg~(-1)时,黑麦草地上部分、地下部分生物量都会受到显著抑制:相同浓度下,Cd、Zn、Pb对高羊茅和黑麦草叶绿素a、叶绿素b以及叶绿素总量的影响存在差异,但当Cd添加量超过1 mg·kg~(-1)、Zn和Pb超过50 mg·kg~(-1)时,黑麦草和高羊茅叶绿素含量均会降低;两种草坪草叶绿素对Cd、Zn和Pb的敏感程度不同,黑麦草叶绿素含量对Zn的浓度较为敏感,50 mg·kg~(-1)Zn对其有一定的促进作用;1 mg·kg~(-1)Cd对高羊茅叶绿素含量存在刺激作用,能提高其叶绿素含量。Cd、Zn、Pb会影响黑麦草和高羊茅CAT和POD活性,黑麦草CAT和POD对1mg·kg~(-1)Cd有积极的响应,Zn的添加量高于50 mg·kg~(-1)时会降低其CAT活性,而Pb高于50 mg·kg~(-1)时可以提高两种酶的活性,黑麦草两种酶对Zn浓度的响应时间有所不同,POD相对滞后;随着Cd、Pb浓度的提高,高羊茅CAT活性会受到显著抑制,但CAT活性对Zn浓度有着积极响应,而POD活性则随着重金属浓度的增加有所提高。此外,Cd、Zn和Pb对高羊茅叶片相对含水量的影响作用不显著且整体上没有规律;土壤中Cd、Zn和Pb添加量的提高会导致高羊茅叶片中MDA含量的大量积累,其中Pb的影响最为显著。
     (2)Si对黑麦草生物量的影响作用极显著。Si可以通过提高黑麦草叶绿素含量以及降低叶绿素a/b值而改善光合能力、缓解叶片衰老,但在黑麦草生长初期要控制Si的浓度;Si虽然也能够缓解高羊茅叶片老化程度,但Si对高羊茅叶绿素含量的影响并没有表现出良好的规律性。Si能够显著激发黑麦草和高羊茅CAT的活性,并在加强POD活性的同时将其保持在一个适当的水平。同时,Si可以显著提高高羊茅叶片相对含水量,并且对高羊茅叶片MDA含量有极显著的降低作用。
     (3)黑麦草和高羊茅对Cd、Zn和Pb的吸收都表现出明显的剂量-效应关系;随着Si浓度的增加,黑麦草和高羊茅Cd、Pb、Zn含量均呈现逐渐降低的趋势,两种草坪草Cd、Zn、Pb含量与Si的添加量都分别呈现强的负线性关系;此外,随Si浓度的上升,黑麦草土壤Zn、Cd、Pb的交换态和碳酸盐结合态均呈现下降趋势,而铁锰氧化物结合态和残余态逐渐增加,从而降低了重金属的生物有效性,抑制了重金属在土壤-植物系统中的迁移。从变化幅度而言,Cd的交换态下降最大,其次是Zn和Pb;相比之下,高羊茅对不同形态的Cd、Zn、Pb吸收能力要高于黑麦草。
     该论文研究表明,Si元素在土壤重金属污染防治方面具有良好的前景,它与具有较强生态适应性和竞争能力的水土保持型草坪草联合使用,能为土壤重金属污染治理提供新的途径和方法。
With the rapid development of industry and agriculture, there is a significant increase of chemical pollutants in ecosystems, which becomes a big challenge for global development and human health, especially for soil heavy metal contamination. How to control polluted soil and reduce the mobility of heavy metals in soil-plant system has become the focus.
     The research progress on heavy metal pollution in soil-plant system and the effects of silicon on plant growth and heavy metal uptake are reviewed in the paper. Ryegrass and tall fescue were selected for pot experiments with orthogonal experiment design L_9(3~4) and L_(16)(4~5) in the greenhouse to study the effects of silicon addition on physiological-biochemical properties and heavy metal uptake in soil-turfgrass system under the soil compound pollution of Cd, Zn and Pb.
     The results showed that:
     (1) Under the compound pollution, the biomass of ryegrass was significantly inhibted by increasing Cd application, 50 mg·kg~(-1) Zn and Pb can facilitate the biomass accumulation, but both shoots and roots biomass were inhibited at 300 mg·kg~(-1) Zn and 350 mg·kg~(-1) Pb. Cadmium, Zn and Pb of the same concentration differently affected chlorophyll a, b and total content of chlorophyll for tall fescue and ryegrass. However, chlorophyll content of both turfgrass decreased when Cd application was higher than 1 mg·kg~(-1), and Zn and Pb application higher than 50 mg·kg~(-1). The sensitivity of these two kinds of turfgrass' chlorophyll to Cd, Zn and Pb were different: ryegrass was sensitive to Zn and 50 mg·kg~(-1) Zn increased its chlorophyll content; 1 mg·kg~(-1) Cd stimulated and increased chlorophyll content of tall fescue. Cadmium, Zn and Pb affected the CAT and POD activities of the turfgrass as well: ryegrass showed a positive response of CAT and POD at 1 mg·kg~(-1) Cd; CAT activity was reduced if Zn application was higher than 50 mg·kg~(-1), while both CAT and POD activities were increased if Pb application was higer than 50 mg·kg~(-1). Compare with CAT, there was lag of POD to Zn concentration for ryegrass. The CAT activity of tall fescue was significantly inhibited with increasing Cd and Pb concentration but it had positive response to Zn. The POD activity increased with increasing Cd, Zn and Pb concentration. In addition, there was no significant effect of Cd, Zn and Pb on relative water content of tall fescue without regular rules in general. MDA accumulated significantly in tall fescue with increasing Cd, Zn and Pb in soil especially for Pb.
     (2) Effects of Si on biomass accumulation of ryegrass were very significant. By increasing chlorophyll content and reducing chlorophyll a/b in ryegrass, Si helped to improve capability of photosynthesis and slow down lamina senescence, but its concentration should be under control in the initial growth period of ryegrass. Although Si can slow down lamina senescence of tall fescue, there was no regulation to show its effect on chlorophyll content. Silicon stimulated CAT activity for both ryegrass and tall fescue, and kept POD activity at an appropriate level. Meanwhile Si increased lamina's relative water content and reduced MDA content of tall fescue significantly.
     (3) Obvious dose-effect was found for Cd, Zn and Pb uptake by the turfgrass. With increasing Si concentration, Cd, Zn and Pb uptake by ryegrass and tall fescue decreased gradually. There was a significant negative linear correlation between Si addition and Cd, Zn and Pb concentration in the turfgrass. With increasing Si addition, soil exchangeable and carbonate-bound Zn, Cd and Pb decreased, while Fe-Mn oxides and residual fraction increased gradually, and thus reduced heavy metal bioavailability and inhibited the mobility of heavy metals from soil to ryegrass. As for the variation, exchangeable Cd decreased most, followed by Zn and Pb. Tall fescue had stronger ability to take up Cd, Zn and Pb than ryegrass.
     In a word, Si has a good potential to control soil heavy metal pollution. Silicon addition to some kinds of turfgrass with strong ecological adaptability could be a new option to control heavy metal pollution in soil-plant system.
引文
[1]安志装,王校常,施卫明,等.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-396.
    [2]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [3]蔡德龙,牛安妮.硅肥对甘蔗的增产效果研究[J].地域研究与开发,1997, 16(1): 93-95.
    [4]常建军,莫重辉,代朝艳.狼毒有毒成分的提取与毒性试验[J].黑龙江畜牧兽医,2002,12:1-2.
    [5]陈翠芳,钟继洪,李淑仪,施硅对抑制植物吸收重金属镉的效应研究进展[J].生态学杂志,2007,26(4):567-570.
    [6]陈国祥,施国新,何兵,等.Hg, Cd对莼菜越冬芽光合膜光化学活性及多肽组分的影响[J].环境科学学报,1999, 19(5):521-525.
    [7] 陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社,1996.
    [8]陈怀满,郑春荣,周东美,等.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.
    [9]陈俊,范文宏,孙如梦,等.新河污灌区土壤中重金属形态分布及其生物有效性研究.环境科学学报,2007,27(5):831-837.
    [10]陈平平.硅在水稻生活中的作用[J].生物学通报,1998,33(8):5-7.
    [11]陈同斌,范稚莲,雷梅,等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义[J].科学通报,2002, 47(15):1156-1159.
    [12]程杰,高压军.镉毒害对小麦生理生态效应的研究进展[J].水土保持研究,2006, 13(6):218-222.
    [13]崔德杰,硅钾肥对不同水分条件下冬小麦光合作用日变化的影响[J].土壤通报,1999,30(1):38-39.
    [14]代全林.重金属对植物毒害机理的研究进展[J].亚热带农业研究,2006, 2(2): 129-133.
    [15]丁海东,齐乃敏,邵耀椿,等.重金属(Cd~(2+), Zn~(2+))胁迫对番茄幼苗抗氧化酶系统的影响[J].上海农业学报,2004,20(4):79-82.
    [16]多立安,高玉葆,赵树兰.重金属递进胁迫对黑麦草初期生长的影响[J] .植物研究,2006,26(1):117-122.
    [17]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    [18]范业成.硅在水稻营养中的作用及有效施用的研究[J].土壤肥料,1992, 3: 25-27.
    [19]高怀友.基于食品安全的区域土壤环境质量评价方法研究与信息系统开发[M].南开大学博士论文,2005:16-20.
    [20]宫海军,陈坤明,王锁民,等.植物硅营养的研究进展[J].西北植物学报,2004, 24(12):2385-2392.
    [21]顾明华,黎晓峰.硅对减轻水稻铝胁迫效应及其机理研究[J].植物营养与肥料学报,2002,8(3):360-366.
    [22]顾继光,林秋奇,胡韧.土壤植物系统中重金属污染的治理途径及研究展望[J].土壤通报,2005,36(1):128-133.
    [23]管恩太,蔡德龙.硅营养[J].磷肥与复肥,2000,15(5):64-66.
    [24]郭观林,周启星.中国东北北部黑土重金属污染趋势分析[J].中国科学院研究生院学报,2004,21(3):386-392.
    [25]侯彦林,郭伟,朱永官.非生物胁迫下硅素营养对植物的作用及其机理[J].土壤通报,2005,36(3):426-429.
    [26]郝怀庆,施国新,杜开和.Hg~(2+)对水鳖(Hydrocharis dubla)叶片生理生化及超微结构的毒害效应[J].湖泊科学,2001,13(2):163-168.
    [27]何翠屏,王慧忠.重金属镉、铅对草坪植物根系代谢和叶绿素水平的影响[J].湖北农业科学,2003,5:60-63.
    [28]何忠俊,洪常青,熊俊芬,等.氮锌复合作用对黑麦草生长和生理生化特性影响的研究[J].土壤通报,2005,36(5):726-730.
    [29]胡文.土壤-植物系统中重金属的生物有效性及其影响因素[J].[博士学位论文].北京:北京林业大学,2008.
    [30]黄秋婵,韦友欢,黎晓峰.硅对镉胁迫下水稻幼苗生长及其生理特性的影响[J].湖北农业科学,2007,46(3):354-357.
    [31]黄玉山,罗广华.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526.
    [32]黄雅曦,李季,李国学,等.污泥资源化处理与利用中控制重金属污染的研究进展[J].中国生态农业学报,2006,14(1):156-158.
    [33]黄延南,刘军,张振贤.苗期叶面施硅对生姜叶片膜脂过氧化及保护酶活性的影响[J].中国生态农业学报,2007,15(3):58-60.
    [34]黄宇,邹冬生,王华.龙须草对土壤理化性质的影响研究[J].土壤通报,2003,34(5):409-413.
    [35]纪秀娥,张美善,于海秋,等.植物的硅素营养[J].农业与技术,1998,2:11-13.
    [36]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [37]姜勇,梁文举.污灌对土壤重金属环境容量及水稻生长的影响研究.中国生态农业学报,2004,12(3):124-127.
    [38]李德明,贺立红,朱祝军.几种重金属离子对小白菜种子萌发及生理活性的影响[J].种子,2005,24(6):27-29.
    [39]李德明,朱祝军.镉对植物光合作用的影响[J].广东微量元素科学,2005,12(5):61-65.
    [40]李敏,徐琳,赵美琦.冷季型草坪建植与管理指南[M].北京:中国林业出版社,2002.
    [41]李春喜,鲁旭阳,邵云,等.As Zn复合污染对小麦幼苗生长及生理生化反应的影响[J].农业环境科学学报2006,25(1):43-48.
    [42]李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响[J].植物生态学报,2000,24(2):238-242.
    [43]李双顺,林贵珠.丙二醛对苋菜叶片光合作用的影响[J].植物生理学通讯,1988,24(3):41-44.
    [44]李兆君,马国瑞,徐建民,等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238.
    [45]梁永超,丁瑞兴,刘谦.硅对大麦耐盐性的影响及其机制[J].中国农业科学,1999,32(6):75-83.
    [46]林大松,徐应明,孙国红,等.土壤重金属污染复合效应对小白菜生长及重金属累积的影响[J].农业环境科学学报,2006,25(增刊):72-75.
    [47]林伟,张燕,周娜娜,等.铅污染对黄瓜幼苗脯氨酸及叶绿素含量的影响[J].安徽农学通报,2006,12(11):86-87.
    [48]林玉锁,李波,张孝飞.我国土壤环境安全面临突出问题[J].环境保护,2004(10):39-42.
    [49]刘登义,王友保.Cu、As对作物种子萌发和幼苗生长影响的研究[J].应用生态学报,2002,13(2):179-182.
    [50]刘恩玲,王亮.土壤中重金属污染元素的形态分布及其生物有效性[J].安徽农业科学,2006,34(3):547-548,557.
    [51]刘建新.镉锌交互作用对玉米幼苗生理生化特性的影响[J].宜春学院学报(自然科学),2004,26(6):54-57.
    [52]刘霞,刘树庆,王胜爱,等.重金属复合污染对土壤微生物生态特征的影响研究[J].农业环境科学学报,2007,26(增刊):17-21.
    [53]刘自学,陈光耀.草坪草品种指南[M].北京:中国农业出版社,2002.
    [54]龙健,黄吕勇,腾应,等.集中牧草对铜尾矿重金属的抗性及其微生物效应[J].环境科学学报,2004,24(1):159-164.
    [55]龙瑞军,姚拓.草坪科学实习试验指导[M].北京:中国农业出版社,2004.
    [56]龙新宪.东南景天(Sedum alfredii)对锌的耐性和超积累机制研究[J].[博士学位论文].杭州:浙江大学,2002.
    [57]卢桂宁,党志,陶雪琴,等.农药污染土壤的植物修复研究进展[J].土壤通报,2006,37(1):189-193.
    [58]罗虹,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-97.
    [59]罗立新,孙铁珩,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75.
    [60]骆永明,严蔚东.铜锌交互作用和土壤γ-辐射对大麦和黑麦草生长的影响[J].土壤,2000,2:95-98.
    [61]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003.
    [62]马博英.铅、锌诱导的高羊茅叶片过氧化物酶活性变化[J].浙江教育学院学报,2008,4:77-80.
    [63]聂发辉.关于超富集植物的新理解[J].生态环境学报,2005,14(1):136-138.
    [64]聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报,2004,20(4):255-258.
    [65]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-16.
    [66]邵学新,吴明,蒋科毅.土壤重金属污染来源及其解析研究进展[J].广东微量元素科学,2007,4(14):1-6.
    [67]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [68]孙健,铁柏清,钱湛,等.Cu、Cd、Pb、Zn、As复合污染对灯心草的生理毒性效应[J].土 壤,2007,39(2):279-285.
    [69]孙铁军,滕文军,武菊英,等.禾草种植对荒沟客土理化性质的影响[J],中国草地学报,2007,29(4):86-91.
    [70]孙小霞.高羊茅对铅递进胁迫的生理响应[J].河南科技大学学报(自然科学版),2006,27(6):75-79.
    [71]孙毅,高玉山.硅肥的抗旱增产作用[J].国土与自然资源研究,2002(1):49-49.
    [72]束良佐,刘英慧.硅对盐胁迫下玉米幼苗生长的影响[J].农业环境保护,2001,20(1):38-40.
    [73]唐旭,郑毅,汤利.高等植物硅素营养研究进展[J].广西科学,2005,12(4):347-352.
    [74]唐咏,王萍萍,张宁.植物重金属毒害作用机理研究现状[J].沈阳农业大学学报,2006,37(4):551-555.
    [75]唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响[J].沈阳农业大学学报,2001,32(1):26-28.
    [76]滕应,骆永明,赵祥伟,等.重金属复合污染农田土壤DNA的快速提取及PCR DGGE分析[J].土壤学报,2004,41(5):735-741.
    [77]田福平,陈子萱,张自和,等.硅对植物抗逆性作用的研究[J].中国土壤与肥料,2007,3:10-14.
    [78]铁柏清,孙健,秦普丰,等.单一重金属污染对灯心草生长及重金属积累特性的影响[J].生态与农村环境学报,2006,22(2):65-70.
    [79]汪吴磊,苏德荣,郑芳芳.水分与草坪质量关系研究进展[J].草业科学,2008,25(7):104-108.
    [80]王广林,王立龙,李征,等.杂草对土壤重金属的富集与含量特征研究[J].生态学杂志,2005,24(4):639-643.
    [81]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605.
    [82]王焕校.污染生态学[M].北京:高等教育出版社,1999.
    [83]王慧忠,何翠屏.重金属离子胁迫对草坪草根系生长及其活力的影响[J].草业科学,2002,24(3):55-59.
    [84]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(6):73-75.
    [85]王凯荣.我国农业重金属污染现状及其冶理利用对策[J].农业环境保护,1997,16(6):174-178.
    [86]王库,徐礼煜,于天富.水土保持植物——芨芨草对土壤养分的影响[J].土壤,2002,3:170-172.
    [87]王荔军,李敏,等.植物体内的纳米结构SiO_2[J].科学通报,2001,46(8):625-632.
    [88]王世华,沈振国,刘传平,等.叶面施硅对水稻籽实重金属积累的抑制效应[J].生态环境,2007,16(3):875-878.
    [89]王树会.重金属汞对烟草种子发芽和幼苗中丙二醛的影响[J].农业网络信息,2007,7:144-146.
    [90]王淑英,马啸华.土壤重金属污染的危害及修复[J].商丘师范学院学报,2005,21(5): 122-125.
    [91]王艳,鄂巍,吴丹.铜、铅污染对翦股颖和高羊茅生理的影响[J].沈阳师范大学学报(自然科学版),2005,23(1):74-77.
    [92]王永锐,成艺,胡智群,等.硅营养抑制钠盐及铜盐毒害水稻秧苗的研究[J].中山大学学报(自然科学版),1997,36(3):72-75.
    [93]王友保,刘登义.铜砷及其复合污染对黄豆(Glycine max)影响的初步研究[J].应用生态学报,2001,12(1):117-120.
    [94]王泽港,骆剑峰.单一重金属污染对水稻叶片光合作用特性的影响[J].上海环境科学,2004,23(6):240-243.
    [95]王正秋.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J].过程工程学报,2002,2(6):558-562.
    [96]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1023.
    [97]韦朝阳,陈同斌,黄择春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [98]魏秀国,何江华.广州蔬菜地土壤重金属污染状况调查与分析[J].土壤与环境,2002,11(3):252-254.
    [99]吴英,魏丹,高洪生.硅在水稻营养中的作用及其有效条件的研究[J].土壤肥料,1992,1:41-43.
    [100]夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的应用[J].植物生理学通讯,2001,37(4):356-360.
    [101]夏增禄,李森照,李庭芳,等.土壤元素背景值及其研究方法[M].北京:气象出版社,1991.
    [102]邢雪荣,张蕾.植物的硅素营养综述[J].植物学通报,1998,15(2):33-40.
    [103]徐勤松,施国新.Cd、Cr(Ⅵ)单一及复合物对菹草叶绿素含量和抗氧化酶系统的影响[J].广西植物,2001,21(1):87-90.
    [104]徐勤松,施国欣,杜开和.锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系得研究[J].植物学通报,2001,18(5):597-604.
    [105]徐秋曼,陈宏,程景胜,等.镉对油菜叶细胞膜的损伤及细胞自身保护机制初探[J].农业环境保护,2001,20(4):235-237.
    [106]徐卫红,王宏信,王正银,等.重金属富集植物黑麦草对锌、镉复合污染的响应[J].生态毒理学报,2006,22(6):365-368.
    [107]徐卫红,熊治庭,王宏信,等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J].水土保持学报,2005,19(4):32-36.
    [108]许建光,李淑仪,王荣萍.硅肥抑制作物吸收重金属的研究进展[J].中国农学通报,2006,22(7):495-499.
    [109]杨超光,豆虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学,2005,8(1):116-121.
    [110]杨丹慧.镉离子对菠菜叶绿体光和系统Ⅱ的影响[J].植物学报,1989,31:702-707.
    [111]杨顶田,施国新,尤文鹏,等.Cr~(6+)污染对莼菜冬芽茎尖细胞超微结构的影响[J].南京师 范大学学报:自然科学版,2000,23(3):91-95.
    [112]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    [113]饶立华,覃莲祥,朱玉贤,等.硅对杂交水稻形态结构和生理的效应[J].植物生理学通讯,1986,22(3):20-24.
    [114]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-110.
    [115]袁祖丽,孙晓南,刘秀敏.植物耐受和解除重金属毒性研究进展[J].生态环境学报,2008,17(6):2494-2502.
    [116]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [117]张翠珍,邵长泉,孟凯,等.水稻施用硅肥效果及适宜用量研究[J].山东农业科学,1997,3:44-45.
    [118]张凤琴,王友绍,李小龙.复合重金属胁迫对秋茄幼苗某些生理特性的影响[J].生态环境学报,2008,17(6):2234-2239.
    [119]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005,24(4):458-60.
    [120]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523.
    [121]张金彪,黄维楠.镉胁迫对草莓光合的影响[J].应用生态学报,2007,18(7):1673-1676.
    [122]张军.硅钙肥对水稻产量、抗病性和抗倒伏性的影响[J].土壤肥料,2003(3):42-43.
    [123]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8.
    [124]张绵.结缕草(Zoysia japonica)在镉(Cd)污染农田上开发与应用的研究[J].植物研究,2002,22(4):467-472.
    [125]张宁.镉(Cd~(2+))胁迫下凤眼莲伤害与抗性响应机制研究[D].沈阳农业大学.2004,49-50.
    [126]张书海,沈跃文.污灌区重金属污染对土壤的危害[J].环境监测管理与技术,2000,12(2):22-24.
    [127]张彦,张惠文,苏振成,等.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响[J].应用生态学报,2007,18(7):1491-1497.
    [128]张义贤.三价铬和六价铬对大麦毒害效应的比较[J].中国环境科学,1997,17(6):565-568.
    [129]张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-203.
    [130]张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    [131]张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望[J].2004,35(6):785-788.
    [132]张玉秀,徐进,王校,等.植物抗旱和耐重金属基因工程研究进展[J].应用生态学报,2007,18(7):1631-1639.
    [133]赵菲佚,翟禄新,陈荃,等.Cd、Pb复合处理下对植物膜的伤害初探[J].兰州大学学报(自然科学版),2002,38(2):115-120.
    [134]赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环 境科学学报,2005,25(2):186-191.
    [135] 郑世英,王丽燕,张海英.镉胁迫对两个大豆品种抗氧化酶活性及丙二醛含量的影响[J].江苏农业科学,2007,5:53-55.
    [136] 郑世英,张秀玲,王丽燕,等.Pb~(2+),Cd~(2+)胁迫对棉花保护酶及丙二醛含量的影响[J].河南农业科学,2007,8:43-46.
    [137] 周红卫,施国新,徐勤松.Cd污染水质对水花生根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯,2003,39(3):211-214.
    [138] 周建华,王永锐.硅营养缓解水稻Cd,Cr毒害的生理研究[J].应用与环境生物学报,1999,5(1):11-15.
    [139] 周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,19(2):103-108.
    [140] 朱志明.硅对汞毒害下玉米种子萌发代谢的影响[J].淮北师院学报,2001,22(4):41-43.
    [141] 邹春琴,高霄鹏,刘颖杰,等.硅对向日葵水分利用效率的影响[J].植物营养与肥料学报,2005,11(4):547-550.
    [142] Ahmad R, Zaheer S, Ismail S. Role of silicon in salt tolerance of wheat(Tritium aestivum L.) [J]. Plant Sci., 1992,85:43-50.
    [143] Anderson T H, Domsch K H. The metabolic quotient for CO_2 (q CO_2) as a specific activity parameter to assess the effect of environmental conditions, such as pH, on the microbial biomass of forest soils [J]. Soil Biology and Biochemistry, 1993, 25: 393-395.
    [144] Alan H . Grass its production and utilization. 2000, Blackwell Science Express.
    [145] Agarie S, Agata W, Kubota F, et al. Effects of silicon on transpiration and leaf conductance in rice plants [J]. Plant Production Science, 1998, 1(2): 89-95.
    [146] Baszynski. Photosynthetic activities of cadmium-treated tomato plant physiol [J]. Plant, 1980, 48: 365-370.
    [147] Bradbury M, Ahmad R. The effect of silicon on the growth of Prosopis juliflora growing in saline soil [J]. Plant and Soil, 1990, 125: 71-74.
    [148] Cassano L M, Martin M, Sbater B. Sensitivity of Superoxide Dismutase Transcript Levels and Activities to Oxidative Stress is Lower in Mature-senescent Than in Young Barley Leaves [J]. Plant Physiology, 1994, 106: 1033-1039.
    [149] Chander K, Brookes P C. Microbial biomass dynamics during decomposition of glucose and maize in metal-contaminated and noncontaminated soils [J]. Soil Biology and Biochemistry, 1991,23:917-925.
    [150] Cunningham S D, Berti W R, Huang J W. Remediation of contaminated soils and sludge by green plants. In: Hinchee Robert E, Means Jeffery L, Burns David R, Bioremediation of Inorganics [M]. Columbus, Ohio: Battelle Press, 1995.
    [151] Fliebach A, Martens R, Reber H H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge [J]. Soil Biology and Biochemistry, 1994,26: 1201-1205.
    [152] Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils A review [J]. Soil Biology and Biochemistry, 1998, 30: 1389-1414.
    [153] Gong H J, Chen K M, Wang S M, et al. Effects of silicon on growth of wheat under drought [J]. Plant Nutr, 2003, 26: 1055-1063.
    [154] Klumpp A, Hinternann T, Lina J S, et al. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties [J]. Environmental Pollution, 2003, 126(3): 313-321.
    [155] Kukkola E, Rautio P, Huttunen S. Stress indications in copper-and nickel-exposed Scots pine seedlings [J]. Environmental and Experimental Botany, 2000,43:197-210.
    [156] Llamas A U, Cornelia I, Sanz A, et al. Cd~(2+) effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots [J]. Plant and Soil, 2000, 219:21-28.
    [157] Matoh T, Kairusmee P, Takahashi E. Salt-induced damage to rice plant sand alleviation effect of silicate [J]. Soil Sci. Plant Nutr., 1986, 32: 295-304.
    [158] Ohtonen R, Lahdesnaki P, Markkola A M. Cellulose activity in forest humus along an industry pollution gradient in Oulu, northern Finland [J]. Soil biology and biochemistry, 1993, 26: 97-101.
    [159] Rahman M T, Kawamura K, Koyama H, et al. Varietal differences in the growth of rice plants in response to aluminum and silicon [J]. Soil Science and Plant Nutrition, 1998, 44(3): 423-433.
    [160] Reeves R D, Baker A J M, Brooks R. Abnormal accumulation of trace metals by plants [J]. Mining Environmental Management, 1995, 3(3):4-8.
    [161] Rauret G, Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Environmental Monitoring, 1999 , 1: 57-61.
    [162] Richard R B, Patricia A B, David L E, et al. Soluble silicon its role in crop and disease management of greenhouse crops [J]. Plant Disease, 1995,4: 329-336.
    [163] Savant N K., Snyder G. H, Datnoff L E. Silicon management and sustainable rice production [J]. Adv.Agron, 1997,58: 151-199.
    [164] Savant N K, Konrnd G H, Datnoff L E, et al. Silicon nutrition and sugarcane production: a review [J]. Plant Nutr, 1999, 22: 1853-1903.
    [165] Sheinberg O, Rubin B, Rabinowitch H D, et al. Loading beans with sub lethal levels of copper conditioning to oxidative stress [J]. Journal of Plant Physiology, 2001, 158: 1415-1421.
    [166] Sheoran I S. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeon pea [J]. Photosynthesis Research, 1990, 23: 345-351.
    [167] Sresty T V S, Madhava R K V. Ultra structural alterations in response to zinc and nickel stress in the root cells of pigeon pea [J]. Environmental and Experimental Botany, 1999, 41: 3-13.
    
    [168] Stobart A K. The effect of Cd~(2+) on the biosynthesis of chlorophyll in leaves of barley physiol [J]. Plant, 1985,63:293-298.
    [169] Tarhanen S. Ultra structural responses of the Lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition [J]. Annals of Botany, 1998, 82: 735-746.
    [170] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51 (7): 844-851.
    [171] Ure A M, Quevauviller P, Muntau H. Speciation of heavy metals in soils and sediments An account of the improvement and harmonization of extraction technique undertaken under the auspices of the BCR of the commission of the European communities [J]. International Journal of Environmental Analytical Chemistry, 1993, 51: 134-151.
    [172] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction, an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22: 1167-1169.
    [173] Zhang C L, Gong H J, Wang S M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought [J]. Plant Science, 2005, 169: 313-321.
    [174] Zhou X M, Guo J X, Wang Y, et al. Dynamics of Zn between soil and plant in Northeast Leymus Chinensis grassland [J]. Journal of Forestry Research, 2006, 17(3): 206-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700