兖州中的硫在热解/气化中的释放及其对NH_3和HCN生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物和硫氧化物是燃过程中产生的主要有害物之一,也是我国“烟型”大气污染的主要污染物之一。为了减少氮氧化物和硫氧化物的形成与排放,需对其形成机理及影响其生成的因素有深刻的认识,在此基础上,设计合理的工艺过程,最终达到减少污染物排放的目的。本文在前人工作的基础上,针对原及脱硫在不同气氛下热解/气化过程中NH3、HCN和H2S形成与释放的行为进行了研究,以期对热转化过程中中硫和氮的释放规律和相互影响有进一步的认识。
     实验选用兖州原(YZ),以及研磨后经酸(HCl和HN03)、微波处理,逐级脱硫后的样作为实验用样,采用固定床反应器进行快速升温和程序升温热解/气化实验,并用离子色谱定量分析氮氧化物和硫氧化物的前驱体-NH3、HCN和H2S的生成量。反应气氛为Ar、C02、5%O2/CO2和10%O2/CO2,实验温度为773K、873K.973K、1073K、1173K,得到的主要研究结果如下:
     (1)热解/气化过程中H2S的形成
     三种样H2S的生成率随温度的变化呈现出一致的趋势,程序升温过程中,873K时达到最大值,随后随温度升高而降低;快速升温过程中,973K时达到最大,随后酸洗脱硫与其它两种出现不同的趋势。H2S的生成与中硫的存在形态有关,温度较低时,H2S主要来源于黄铁矿和不稳定含硫有机物的分解,此时H2S的生成量较大;温度较高时,H2S的生成主要来源于较稳定的含硫化合物分解,此时H2S的生成量较低。脱硫后的样在热解和气化过程中生成的H2S产率减小,这说明酸洗或酸洗微波脱除的含硫化合物是中的无机硫和热稳定性相对较弱的有机硫。
     H2S的生成率随温度的变化受气氛的影响,在Ar和CO2气氛下,H2S的生成率随温度的升高而增大,在973K时出现峰值;5% O2/CO2和10%O2/CO2气氛下,H2S的生成率随温度的升高而降低,且氧含量越高H2S的生成率越低。
     程序升温热解过程中,H2S的生成主要集中在程序升温阶段;快速热解过程中,H2S的生成主要集中在进样阶段。中硫的脱除对程序升温和恒温阶段以及进样和非进样阶段释放的H2S的比例有影响,中硫含量越低,恒温阶段及非进样阶段H2S生成的比例越高,说明H2S的生成主要源于挥发分的释放,新生焦产生的H2S与中硫的形态有关。
     (2)热解/气化过程中NH3和HCN的形成
     原和脱硫快速升温热解生成的NH3均表现为随温度的升高而增大,在1073K出现最大值后降低,HCN的生成率均随温度的升高而线性增大;程序升温热解中,随温度升高NH3和HCN的生成率增大,973K时出现一最大值后降低。
     快速热解过程中,中硫的脱除促进NH3的生成但抑制HCN的生成;程序升温热解过程中,硫的脱除表现为促进NH3和HCN的生成。程序升温CO2气化过程中,硫含量越低的生成NH3产率越大,而HCN生成率在原热解中最大;快速升温CO2气化过程中,原和酸洗的NH3和HCN的生成率基本相当,而硫含量低的酸洗微波共脱硫NH3和HCN的释放率均明显降低。
     模型化合物吡啶和噻吩混合气体热解生成的NH3和HCN小于吡啶热解,特别是NH3生成量明显降低,说明中硫的释放和NH3生成存在竞争。
     进样方式不同主要影响挥发分的析出和半焦与挥发分的相互作用,进而影响HCN和NH3生成所必需的含氢基团的形成及其向表面迁移的难易程度,快速升温热解/气化过程中,NH3和HCN的生成率均明显大于程序升温热解过程。
     三种样的NH3和HCN在快速升温热解进样阶段的释放均远大于非进样阶段;程序升温热解的升温阶段远大于恒温阶段,硫的脱除明显改变了在进样阶段或程序升温阶段的释放比例。
The NOX and SOX are the main gas pollutants during coal combustion. In order to reduce the emission of NOX and SOX, it is necessary to understand the formation of NOX, SOX and their precursors during coal pyrolysis and gasification. The formation and destruction of NOX, SOX precursors during coal pyrolysis and gasification are affected by many factors. Based on the previous work on the formation of NOX precursors during coal pyrolysis and gasification, the main purpose of this study was to experimentally investigate the release rules and mechanism of NH3. HCN and H2S during pyrolysis and gasification of raw coal and desulfurized coal.
     In this paper, Yanzhou raw coal, which contains high sulfur, was chosen as experimental sample (noted as Y-YZ). After Y-YZ coal was washed with nitric acid, pyrite was removed, and this desulfurised coal sample was noted as S-YZ. Treating S-YZ with NaOH and microwave, a part of organic sulfur was also removed, this coal was noted as S+W-YZ. The formation of NH3, HCN and H2S during fast heating and programmed-heating pyrolysis/gasification by using a quartz fixed-bed reactor coupled with IC analyzer. The release of H2S during coal pyrolysis/gasification was researched. The effect of several factors, such as temperature, feeding method, atmosphere and sulfur in coal, on the formation of HCN and NH3 were also studied systematically.
     Main results are as follows:
     (1) Formation of H2S during coal pyrolysis/gasification
     The yields of H2S from three coals pyrolysis with temperature have the same change trend. It increases in the lower temperature range and reaches a maximum value, which is 973K for fast heating process and 873K for programmed-heating process. The fromation of H2S has relationship with sulfur form in coal. Pyrite and unstable organic sulfur compound can decompose into H2S when temperature is lower than 973K. For stable organic sulfur compound in coal, it is hard to form H2S even at higher temperature. The yields of H2S from desulfrised coal pyrolysis were lower than that from raw coal. This shows that inorganic sulfur and unstable organic sulfur were removed after coal was treated with acid and microwave.
     The yield of H2S from coal pyrolysis in Ar is higher than that from coal gasification in oxidative atmosphere. The higher oxygen content in gas is, the lower yields of H2S is.
     H2S mainly come from the pyrolysis of coal during temperature heated for programmed-heating process and feeding period for fast heating process. The sulfur in coal have obvious effect on the ratio of H2S formed in the periods of constant temperature and not feeding. This shows that H2S is mainly released from volatiles and the H2S from fresh char is related with the forms of sulfur in coal.
     (2) Formation of NH3 and HCN during coal pyrolysis/gasification
     The yields of HCN increases with the increase of pyrolysis temperature in fast heating process. The yields of NH3 also increases with the increase of temperature to the maxmum value at 1073K and then deceases. For programmed heating process, The yields of NH3 and HCN increase with temperature increasing and reache the maxmum value at 973K. The feeding ways influence the release of volatile and the interaction of volatile and char. This can affect the availability of H radical, which is necessary for HCN and NH3 formation. As a result, the yields of HCN and NH3 changed.
     Effect of atmosphere on the release of NH3 and HCN was investigated in CO2,5%O2/CO2 and 10%O2/CO2. The exist of CO2 has two effects on NH3 formation. One is inhibiting NH3 formation. This is mainly due to depletion H radical by CO2 adsorption on coal surface. The other one is favoring NH3 formation. The reason for this is that gasification of coal in CO2 can generate more radicals. These two effects compete when reaction proceeds, and will leads to different results. In 5%O2/CO2 and 10%O2/CO2, NOx will be formed from oxidative reaction of HCN and NH3 with O2.
     The yield of NH3 from desulfurised coal pyrolysis and gasification was higher than that from raw coal. The result from the model compounds pyrolysis also shows that formation of HCN and NH3 decreases when thiophene exists in reaction system. This indicated that the existence of sulfur has influence on the formation of NH3 and HCN. In other word, formation of H2S competes with formation of HCN and NH3.
     The yields of HCN and NH3 from the pyrolysis of coal in the period of temperature heated for programmed-heating process and feeding period for fast heating process are dominant. The sulfur in coal have obvious effect on the ratio of HCN and NH3 formed in the periods of constant temperature and not feeding.
引文
[1]Thmas K M. The release of nitrogen oxides during char combustion [J]. Fuel,1997, 76(6):457-473.
    [2]Leppalahti J, Kolijonen T. Nitrogen evolution from coal, peat and wood during gasification:Literature review [J]. Fuel Processing Technology,1995,43(1):1-45.
    [3]Li C Z. Advances in the Science of Vitrorian Brown Coal [M]. Elsevier,2004.
    [4]Buekley A N, Kelly M D, Nelson P F and et al. Inorganic nitrogen in Australian semi-anthlacites; implications for determining organic nitrogen functionality in bituminous coals by X-ray photoelectron spectroscopy [J]. Fuel Processing Technology, 1995,43(1):47-60.
    [5]GongBin. Identification of inorganic nitrogen in an Australian bituminous coal using X-ray photoelectron spectroscopy and time-of flight secondary ion mass spectrometry (TOFSIMS) [J]. International Journal of CoalGeology,1997,34(1-2):53-68.
    [6]Ohtsuka Y, Watanabe T, Asami K, etc. Char-Nitrogen Functionality and Interactions between the Nitrogen and Iron in the Iron-Catalyzed Conversion Process of Coal Nitrogen to N2 [J]. Energy & Fuels,1998(12):1356-1362.
    [7]Li F, Zhang Y F, Xie K C. Charaterization of the macromolecular structure of pingsuo coal macerals using 13C-NMR, XPS, FTIR and XRD techniques [J]. Fuel Sci. Technol. 1993(11):1113-1131.
    [8]Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of Nitrogen forms in Argonne Premium coals [J]. Energy & Fuels,1994(8):896-906.
    [9]Tsubouchi N, Ohshima Y, Xu C,Ohtsuka Y. Enhancement of N2 formation from the nitrogen in carbon and coal by calcium. Energy & Fuels [J],2001,15:158-162.
    [10]Kambara S, Takarada T, Yamamota Y,and et al. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis. Energy & Fuels [J].1993,7(6):1013-1020.
    [11]Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion [J]. Fuel,1995, 74(9):1247-1253.
    [12]Wojtowicz M A, Pels J R, Moulijn J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion [J]. Fuel,1995,74(4):507-516.
    [13]Pels J R, Kapteun F, Moulun J A,et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis [J]. Carbon,1995,33(11):264-1653.
    [14]Schmiers H, Friebel J, Streubel P and et al. Change of Chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis [J]. Carbon,1999,37 (12) 1965-1978.
    [15]Nelson P F, Buekley A N, Kelly M D.Functional forms of nitrogen in coals and the release of coal nitrogen as NOx precursors(HCNandNH3) [C].24th International Symposium on Combustion, The Combustion Institute, Pittsburgh.PA.1992: 1259-1267.
    [16]Nelson P F, Kelly M D, Womat M J. Conversio of fuel nitrogen in volatiles to NOx precursors under rapid heating conditions [J]. Fuel,1991,70(3):403-407.
    [17]Nelson P F, Buekley A N and Kelly M D. Functional forms of nitrogen in coal and the release of coal nitrogen as NOx precursors(HeNandNH3) [C].24th Symposium (International) on Combustion, The Combustion Institute,1992:1259-1267.
    [18]Tan L L, Li C Z. Formation of NOx and Sox Precursors during the Pyrolysis of coal and biomass, Part Ⅰ. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis [J]. Fuel,2000,79(15):1883-1889.
    [19]Given P H, SPackman W, Davis A and et al. Chemistry of some maceral concentrates from British coals [J]. Fuel,1984,63(12):1655-1659.
    [20]Bustin R M, Mastalerz M, Wilks K R.Direct determination of carbon oxygen and nitrogen contents in coal using the electron microprobe [J]. Fuel,1993,72(2):18185
    [21]Crelling J C, Thomas K M, Marsh H. The release of nitrogen and sulphur during the combustion of chars derived from lithotypes and maceral concentrates [J]. Fuel,1993, 3272(3):349-357.
    [22]Stanczyk K, Dziembaj R, Piwowarska Z and et al. Transformation of nitrogen structures in carbonization of model compounds determined by XPS [J]. Carbon,1995, 33(10):1383-1392.
    [23]Bartle K D, Wallace S.The functionality of nitrogen in coal and derived liquids:An XPS study [J]. Fuel Processing Technology,1986,15(3):351-361.
    [24]Li C Z, Kelly A N, Nelson P F. Proceedings of Australian symposium on combustion and the 4th Australian flame day [C], Gawler, South Australia, Nov.9-10,1995, Paper C2-2.
    [25]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel,1994,73(9):1398-1415.
    [26]Bonn B, Pelz G, Baumann H. Formation and decomposition of N2O in fluidized bed boilers [J]. Fuel,1995,74(20):165-171.
    [27]Wu Z H, Sugimoto Y, Kawashima H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification [J]. Fuel,2003,82: 2057-2064.
    [28]Tan L L, Li C-Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅱ. Effect of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal [J]. Fuel,2000,79(15): 1891-1897.
    [29]Li C Z, Nelson P F. Interactions of quartz zircon sand and stainless steel with ammonia implications for the measurement of ammonia at high temperatures [J]. Fuel,1996, 75(4):525-526,837-841.
    [30]Aho M J, Hamalainen J P, Tummavuori J L. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃ [J]. Fuel,1993,72.
    [31]Chang L P, Li C Z, Xie K C. Release of fuel-nitrogen during the gasification of Shenmu coal [J]. Fuel Proeessing Technology,2004,85(8-10):1053-1063.
    [32]OhtsukaY, Wu Z. Nitrogen release during fixed-bed gasification of several coals with CO2:Factors controlling formation of N2 [J].Fuel,1999,78(5):521-527.
    [33]Tan L L, Li C Z. Formation of NOx andSOx precursors during the pyrolysis of coal and biomass Part 111.Further discussion on the formation of HCN and NH3 during pyrolysis [J]. Fuel,2000,79(15),1899-1906.
    [34]Niehols K M, Hedman P O, Douglas S L. Release and reaction of fuel-Nina high-pressure entrained-coal gasifier [J].Fuel,1987,66(9):1339-1334.
    [35]常丽萍.热解、气化过程中含氮化合物的生成与释放研究[D].博士毕业论文,太原,太原理工大学,2004.
    [36]Takagi H, Isoda T, Kusakabe K. etc. Effects of coal structures on denitrogen during flash pyrolysis [J]. Energy & Fuels,1999(13):934-940.
    [37]林建英.岩显微组分热解、气化过程中氮的迁移机理[D].博士毕业论文, 太原,太原理工大学,2006.
    [38]Jensen A, Johnsson J E, Andries J and et al. Formation and reduction of NOx in pressurized fluidized bed combustion of coal [J]. Fuel,1995,74(11):1555-1569.
    [39]Hamalainen J P, Aho M J. Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure [J]. Fuel,1996,75(12):1377-1386.
    [40]Friebel J, Koepsel R F W. Fate of nitrogen during pyrolysis of German low rank coals-a parameter [J].Fuel,1999,78(8):923-932.
    [41]Wu Z, Sugimoto Y,Kawashima. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen [J]. Fuel,2001,80(2):251-254.
    [42]赵娅鸿.矿物质对热解、气化过程中氮迁移的影响[M].太原理工大学,2001年,山西太原.
    [43]谢克昌,凌大琦.的气化动力学和矿物质的作用[M].山西科学教育出版社,1990:283-370.
    [44]谢克昌,赵明举,凌大琦.矿物质对焦表面性质和焦-C02气化反应的影响[J]燃料化学学报,1990,15(4):316-323
    [45]Zhao Z, Qiu J, Li W and et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion [J]. Fuel,2003, 82(8):949-957.
    [46]Wu Z, Yoshikazu S, Hiroyukl K.The influence of mineral matter and catalyst on nitrogen release during slow pyrolysis of coal and related material:A comparative study [J].Energy & Fuels,2002,16(2):451-456.
    [47]Hippo E J, Walkerp L Jr. Reactivity of heat-treated coals in carbon dioxide at 900℃ [J].Fuel,1975,54(4):245-248.
    [48]徐秀峰,顾永达,陈诵英.铁催化剂对热解过程中氮元素迁移的影响[J].燃料化学学报,1998,26(1):18-23.
    [49]Ohtsuka Y, Wu Z H, Furimsky E. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal [J]. Fuel,1997,76(14/15): 1361-1367.
    [50]徐明艳.固有矿物质、铁/钙添加剂对热解过程中氮、硫分配的影响[M].硕士毕业论文,太原,太原理工大学,2006.
    [51]赵娅鸿.矿物质对热解、气化过程中氮迁移的影响[M].硕士毕业论文,太原,太原理工大学,2003.
    [52]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel,1994,73(9):1398-1415.
    [53]Miura K, Mae K, Shimada M etc. Analysis of formation rates of sulfur-containging gases during pyrolysis of various coals [J]. Energy & Fuels,2001,15:629-636.
    [54]Wu Z H, Sugimoto Y, Kawashima H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification [J]. Fuel,2003,82: 2057-2064.
    [55]秦玲丽.金属化合物对热解过程中氮、硫转化的影响[M].硕士毕业论文,太原,太原理工大学,2007.
    [56]Wu Z, Ohtsuka Y. Remarkable formation of N2 from a Chinese lignite during coal pyrolysis [J]. Energy & Fuels,1996,75:1280-1281.
    [57]Tsubouehi N, Ohtsuka, Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium N2 formation [J]. Fuel,2002,81(18):2335-2342.
    [58]赵宗彬,李文,李保庆.半焦负载Na-Fe催化还原NO的研究[J].环境化学,2002,21(1):19-25.
    [59]赵宗彬,李文,李保庆.半焦负载钙和铁催化还原NO的研究[J].环境科学,2001,22(5):17-20.
    [60]赵宗彬,管仁贵,李保庆.CO和02气氛下中矿物质对NO-半焦还原反应的影响[J].燃料化学学报,2001,29(3):232-237.
    [61]常慧,李保庆.S02气氛下半焦负载Na, Ca, Fe对NO-半焦还原反应的影响[J].中国矿业大学学报,2003,32(2):152-156.
    [62]Sermra K. Desulfufrization of a Turkish lignite at various gas atmospheres by pyrolysis: Effect of mineral matter [J].Fuel,2003,82(12):1509-1516.
    [62]Matsumoto S, Walker P L Jr. Char gasification in steam at 1123K catalyted by K, Na, Ca and Fe-Effect of H2,H2S,and COS [J].Carbon,1986,24(30):277-283.
    [63]Liu Y, Chen D, Xu T. Catalytic reduction of SO2 during combustion of typical Chinese coals [J]. Fuel processing Technology,2002,79(2):157-169.
    [64]陈鹏.中国中硫的赋存特征及脱硫[J].炭转化,1994,17(2):1-9.
    [65]朱之培,高晋生.化学[M].上海:上海科学技术出版社1984.
    [66]辜敏,张代均,陈昌国.的温和净化脱硫方法研究进展[J].化工,1999,(2):3-6.
    [67]赵爱武.的微波辅助脱硫试验研究[J].炭科学技术.2002,30(3):63-64.
    [68]马涛.关于中脱硫法的探讨[J].内蒙古炭经济,2001.(1):58-61.
    [69]张军,解强等.微波技术用于炭燃前脱硫的综述[J].炭加工与综合利用.2007,2:43-45.
    [70]王素珍.一种中硫在加氢热解过程中硫的脱出规律和脱出过程的动力学研究[M].硕士毕业论文,太原,太原理工大学,2009.
    [71]郝振佳,曹新鑫,焦红光.微波技术在脱硫领域中的应用及发展[J].上海化工2009,34(11):28-31.
    [72]王建成,鲍卫仁等.中硫的超声波和微波辐射脱除[J].太原理工大学学报,2003,34(6):744-746.
    [73]谢建军,杨学民等.热解过程中硫氮分配及迁移规律研究进展[J].化工进展,2004,23(11):1214-1218.
    [74]李斌,杜霞茹,李庆峰等.灰分对高硫热解部分气化硫变迁的影响[J].环境科学.2004,25(1):149-153.
    [75]段伦博,赵长遂等.O_2/CO_2气氛下烟燃烧过程中硫的析出特性[J].中国电机工程学报,2008,28(35):9-13.
    [76]齐永琴,李文.义马的流化床热解脱硫研究[J].中国矿业大学学报,2003,32(2):128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700