黄登仙隧道支护参数现场试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合武广铁路客运专线黄登仙隧道开挖支护施工实例,通过施工现场调研、收集和整理相关技术资料以及对现场大量实测数据研究分析的基础上,采用现代力学理论和先进的数值模拟技术,研究隧道开挖后的变形与破坏机理,用以确定影响隧道变形的主要因素。对开挖后采用的锚杆、锚索支护加固机理进行分析,进一步优化隧道的支护型式与支护参数,大大的提高了锚杆、锚索支护技术水平,对现场施工中的实际应用有重大意义。
     隧道开挖后的锚杆支护主要作用在于控制锚固区围岩的离层、滑动、节理张开及新裂隙产生等现象的发生,通过锚杆的作用来阻止隧道围岩的进一步变形与破坏,抑制隧道围岩弯曲变形、拉伸与剪切破坏的产生,保持锚杆锚固范围的围压整体性,在锚固区内形成刚度较大的承载结构,进而提高隧道锚固区内围岩的整体强度和稳定性。因此,对锚杆支护系统的刚度要求较高,特别是锚杆预紧力起着决定性作用。锚索的作用主要是将锚杆支护形成的次生承载结构与深部围岩相联系,提高次生承载结构的稳定性,同时充分调动深部围岩的承载能力,使更大范围内的岩体共同承载变形载荷。并可通过施加较大的预紧力,挤压岩层中层理、节理等不连续面,增加了不连续面之间的抗剪力,从而使隧道围岩的整体性进一步增强。
     本文参考引用了一个锚杆在张拉荷载下的剪应力分布模型,根据该模型对锚杆进行的力学分析和计算曲线与现场实测应力分布情况相对照,两者基本一致,由于采用的全长粘结锚杆的设计理论与锚杆的实际工作状态存在较大差别,工程实际中的锚杆设计长度应以潜在不稳定体的分布深度为依据。提高孔壁接触面的抗剪强度是提高全长粘结锚杆锚固力的重要环节。
     在对现场大量实测数据深入分析研究的基础上,本文运用通用有限元程序Flac3D对隧道所采取的不同断面形状、不同支护形式进行模拟分析,为了进一步验证研究效果,本文又采用了离散元程序UDEC对隧道的底臌变形机理进行了数值模拟进行验证,得出了在隧道开挖施工中不同隧道支护形式下隧道围岩的位移规律。
     最后在综合各研究成果的基础上,同时结合现场实际情况,对隧道的不同支护方案设计对比分析,进行了断面规格优化、支护参数优化、支护工艺优化、施工方法优化等分析研究,并进行了各方案的经济分析,最终确定隧道断面采用马蹄形断面,反底拱掘进,高强螺纹钢锚杆全长锚固,配合锚网索喷进行永久支护。该支护方案为解决软弱围岩段变形破坏问题的最优可行方案。
This paper gives research on the construction procedures of the great-section soft wall rock railway tunnel’s excavation and timbering, utilizing the construction of the railway tunnel from Wuhan to Guangzhou as an example and adopting series of researching methods. Based on the field investigation, collection of related datum at home and abroad, study and analysis of lots of field measurement datum, this dissertation studies on the deformation and damage mechanics of deep tunnels, defines the main factors of affecting the tunnel deformation, analyzes the acting mechanics and common acting effect of rock bolts and rock cables, defines the support formation and parameters which fit the deep tunnels. The support technological level of rock bolts and cables is prominently improved. The support difficulty of deep tunnel in particular conditions is solved.
     The main role of rock bolts support in deep tunnel is to control the separating and sliding between rock layer beddings, opening of joints and generating of new fractures in the range of anchoring of rock bolts in surrounding rock mass, to stop the dilating and damage of surrounding, to restrict the generating of bend deformation, tension and shearing damage, to keep the whole stability of rock mass in the depth of anchoring of rock bolt. The second support structure with high stiffness appears in this range. The whole strength and stability in the anchoring range of rock bolts is enhanced greatly. So the stiffness of rock bolts support system is very important especially the pre-tension of rock bolts has the key role. At the same time, the more pre-tension is required, the more strength of rock blots is required. In order to distribute the pre-tension of rock blots into deep rock mass, the surface parts, which are plates, steel belts and steel nets, also play an important role in the support system. The first main role of rock cables is to link the secondary support structure formed by rock bolts with the deep surrounding, to enhance the stability of secondary support structure, and to use the support ability of deep rock mass to enlarge the range of surrounding rock mass of bearing deformation load. The second is to press discontinuities of the rock layer beddings and joints through applying the large pre-tension. The shearing resistance between these discontinuities increases so that the whole stability of tunnel surrounding is enhanced further.
     A shear stress distribution model of fully capsulated rock bolt is established under tension load. According to the mechanic analysis to rock bolt using the model, the computing curve is identical with the measurement stress distribution. That shows the model fits to the engineering practice very well. Because the design theory of fully encapsulated rock bolt of material mechanic is greatly different from the practical working state of rock bolt, the design of rock bolt in practical engineer ought to depend on the real depth of latent un-stability rock mass. Enhancing the shear strength of interface between rock bolt and wall of hole is an importance step of increasing the anchoring ability of fully encapsulated rock bolt.
     Based on analyzing the great deal of field measurement datum, Flac3D and UDEC which are international general programs are used to simulate different cross section shape, different support formation and the up-lift mechanics of tunnel floor. The displace regulars of surrounding under different support formations in deep tunnels are successfully studied.
     Finally, based on the integration of all study results, combined with different support schemes of deep tunnel are designed, the size of cross section, the support parameters, the support arts and operation method and so on are optimized. And the economical analysis of all schemes is conducted. The best scheme of support that cross section is horseshoe, back inverted arch digging, high strength thread steel rock bolts fully encapsulated, rock cables, steel nets and spraying concrete is chosen. It is the best scheme to solve the deformation and damage problem of tunnel.
引文
[1]金晶.世界及中国能源结构.能源研究与信息,2003, 19(1): 20~26
    [2]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践.北京:科学出版社, 2006
    [3]何满朝.深部开采工程岩石力学的现状及其展望.中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社, 2004: 88~94
    [4] Russo-Bello F, Murphy S K. Longwalling at great depth in geologically disturbed environment-the way forward, The journal of South Institute of Mining and Matallurgy, 2000: 91~100
    [5]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社, 2002
    [6]董方庭.巷道围岩松动圈支护理论及其应用技术.北京:煤炭工业出版社, 2001
    [7]朱效嘉.锚杆支护理论进展.光爆锚喷, 1996(3): 1~4
    [8]陆士良,姜耀东.支护阻力对软岩巷道围岩的控制作用.岩土力学, 1998, 19(1): 1~6
    [9]顾金才,沈俊,陈安敏等.锚索预应力在岩体内引起的应变状态模型试验研究.岩石力学与工程学报, 2000, 19 (增): 917~921
    [10]郑颖人等.地下工程锚喷支护设计指南.北京:中国铁道出版社, 2002
    [11]许兴亮.锚固岩体中锚杆预紧力的作用.江苏煤炭, 2004,(2): 38~39
    [12]郑雨天,朱浮声.预应力锚杆体系—锚杆支护技术发展的新阶段.矿山压力与顶板管理, 1995,12(1): 2~7
    [13] "Computer Automated Finite Element Analysis - A Powerful Tool for Fast Mine Design and Ground Control Problem Diagnosis and Solving", Proc. 5th Conference on the Use of Computers in the Coal Industry, West Virginia University, June, 1996.
    [14] "Localized Horizontal Stress and its Effect on Ground Control", Proc. 18th International Conference on Ground Control in Mining", West Virginia University, August, 2001.
    [15] "Roof Control Analysis in North River Mine", Proc. 19th International Conference on Ground Control in Mining, West Virginia University, August, 2000.
    [16] "Tensioned Cable Bolts as Primary Support: Update", Proc. 20th International Conference on Ground Control in Mining, West Virginia University, August, 2001.
    [17] "Roof Instability Rating (RIR) System and Its Application at Enlow Fork Mine", Proc. 20th International Conference on Ground Control in Mining, West Virginia University, August, 2001.
    [18]李万喜,刘建民.全长黏结式注浆锚杆抗拔力分析[J].探矿工程,2004,(6):6–8
    [19]尤春安.全长黏接式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339–341
    [20] Farmer I W. Stress distribution along a resin grouted rock anchor[J].International Journal of Rock Mechanics and Mining Sciences,1975,12(2):347–351.
    [21]朱焕春,荣冠,肖明,等.张拉荷载下全长黏结锚杆工作机制试验研究[J].岩石力学与工程学报,2002,21(3):379–384
    [22]岳向红,刘明贵,李祺.锚杆检测技术研究进展[J].土工基础,2005,19(3):83–85
    [23]姚显春,李宁,陈蕴生.隧洞中全长黏结式锚杆的受力分析[J].岩石力学与工程学报,2005,24(13):2271–2274
    [24] Sun X. Grouted rock bolt used in underground engineering in soft surrounding rock or in highly stressedregions[A]. In:Stephansson Oed. Proceedings of the International Symposium on Rock Bolting[C].Rotterdam:A. A. Balkema,1984.93–99.
    [25]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用.东北工学院出版社,1991
    [26]刘汉东、张勇、贾金禄.岩土工程数值计算方法,黄河水利出版社,2001
    [27]李先炜.岩石力学与支护.中国矿业大学研究生讲义,2000,12: 2~7
    [28]北京科技大学力学教研室.松散介质力学,1983
    [29]周维垣主编.高等岩石力学.水利电力出版社,2005
    [30]黄运飞、冯静.计算工程地质学,兵器工业出版社,1992
    [31] Bardet, J.-P., and R. F. Scott. (1985)“Seismic Stability of Fractured Rock Masses with the Distinct Element Method,”in Research and Engineering Applications in Rock Masses (Proceedings of the 26th U.S. Symposium on Rock Mechanics), Vol. 2, pp. 139-150. Boston: A. A. Balkema.
    [32] Cundall, P. A. (1971)“A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems,”in Proceedings of the Symposium of the International Society of Rock Mechanics (Nancy, France, 1971), Vol. 1, Paper No. II-8.
    [33] Cundall, P. A., and R. D. Hart. (1985)“Development of Generalized 2-D and 3-D Distinct Element Programs for Modeling Jointed Rock,”Itasca Consulting Group; U.S. Army Corps of Engineers, Misc. Paper SL-85-1
    [34]尚岳全.岩体稳定和区域稳定数值模拟模型边界条件确定方法.岩石力学与工程学报,18(2),1999:201~209
    [35]王泳嘉.拉格朗日元法及其在锚固工程中的应用.国际岩石与锚固灌浆技术进展,1996,5
    [36]尚岳全、孙红月.岩土力学数值模拟结果应用中应注意的问题.地质灾害与地质环境,Vol. 8,No.4,1999:22~26
    [37]郑榕明,陈文胜,葛修润,冯夏庭.金山店铁矿地下开采引起地表变形规律的离散元模拟研究.岩石力学与工程学报,21(8),2002:1130~1135
    [38]唐学军.电算在金川下向高进路回采胶结充填法中的应用.金川有色金属公司,1987
    [39] Itasca Consulting Group, Inc. FLAC3d (Fast Lagrangian Analysis of Continua in 3 Dimensions), 1997
    [40]杨硕.采动损害空间变形力学预测.煤炭工业出版社,1994
    [41]麻凤海等.利用神经网络预测开采引起的地表沉陷.阜新矿业学报,1995(3):40~43
    [42] Cundall P A ,Marti J,Last N C,etal. Computer modeling of jointed rock mass. U. S. Army Eng. WES Tech. Rep (No.78~4). 1978
    [43]乔河、唐春安、李晓.采动诱发岩体移动破坏过程数值模拟研究.工程地质学报,Vol. 6, No.4, 1998:351~354
    [44]周先明、张鸿恩、张卫焜、常忠义.金川二矿区1号矿体大面积充填体-岩体稳定性有限元分析.岩石力学与工程学报,Vol.12,No.2,1992:95~104
    [45]苏永华,方祖烈,高谦.大跨度地下硐室开挖的模拟分析.矿业研究与开挖,18(4),2000
    [46] Cundall, P. A., and R. D. Hart. (1992)“Numerical Modeling of Discontinua,”Engr. Comp., 9(2), 101-113.
    [47] Cundall, P. A., and J. Marti. (1979)“Some New Developments in Discrete Numerical Methods for Dynamic Modelling of Jointed Rock Masses,”in Proceedings of the Rapid Excavation and Tunnelling Conference, 1979 (Atlanta, June 1979), Vol. 2, pp. 1466-1477
    [48] B.H.G.布雷迪,E.T.布朗.地下采矿岩石力学.煤炭工业出版社,1990
    [49]龚晓南.土工计算机分析.中国建筑工业出版社,2000,10
    [50]谷德振.岩体工程地质力学基础.北京:科学出版社,1979
    [51]山口梅太郎,山富二郎.充填体对地表稳定性影响的试验研究,1991
    [52]蔡美峰、孔广亚、贾立宏.岩体工程系统失稳的能量突变判断准则及其应用.北京科技大学学报,Vol.19,No.4,1997:325~328
    [53]马明君,方祖烈.西石门矿盘区开采过程的三维应力分析.化工矿山技术,21(6),1992
    [54]麻凤海.岩层移动及动力学过程的理论与实践.煤炭工业出版社,1997
    [55] J.P.Seidel,C.M.Haberfield,The Application of Energy Principle to the Determination of the Sliding Resistance of Rock Joints,Rock Mechanics and Rock Engineering , (1995)28(4):211~226
    [56]张玉祥,包四根.复杂地质体中地下硐室的施工优化与稳定性评价.岩石力学与工程学报,19(6),2000:722~725
    [57]陈宗基.应力释放对开挖工程稳定性的重要影响.岩石力学与工程学报,11(1),1992
    [58]彭续承主编.充填理论及应用.中南工业大学出版社,1998
    [59]刘宝琛编著.矿山岩体力学概论.湖南科学技术出版社,1982
    [60]于学馥、刘同有.金川的充填机理与采矿理论,金川镍矿开采的工程地质与岩石力学问题(上册).金川有色金属公司,中国岩石力学与工程学会金川分会,1996: 126~136
    [61] [苏]土尔察尼诺夫,H.A.开采急倾斜矿脉时岩石的移动与压力.赣州冶金研究所情报室译,1972
    [62]解世俊.金属矿床地下开采.冶金工业出版社,1986
    [63]中国岩石力学与工程学会岩石锚固与注浆技术专业委员会编.中国锚固与注浆工程实录选,北京。科学出版社1999
    [64]江西冶金学院等.盘古山钨矿下部中段地压活动及其控制方法研究(岩移观测专题报告).科研成果报告,1985
    [65]解世俊.矿床地下开采理论与实践.冶金工业出版社,1990
    [66]孙均.地下工程设计理论与实践.上海:上海科学技术出版社,1996
    [67]周成浦.矿山充填体在采矿中的作用和充填体的设计.镍钴矿冶,1980,No.4: 10~16
    [68]长沙矿山研究院.对锡矿山南矿岩层及地表移动问题的探讨.科研成果报告,1979
    [69]于学馥.地下工程围岩稳定性分析.北京:煤炭工业出版社,1983
    [70]方祖烈,井如兰.金川二矿区无矿柱大面积连续开采稳定性三维离散元分析.见:面向国民经济可持续发展战略的岩石力学与岩石工程.北京:中国科学技术出版社,1999
    [71]李先炜,付学敏.不规则岩块点荷载试验的研究.岩土工程学报,1987,Vol.9(1):1~11
    [72]李先炜.关于莫尔理论中受拉区代表圆及包络线方程问题.地下工程,1983,No.4:17~21
    [73]杨晓东锚固与注浆技术手册中国电力出版社, 2009年10月第二版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700