松辽盆地营城组火山岩地层和构造控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地营城组是目前油气勘探开发的重点层系之一。营城组分割在不同的断陷之中,有火山岩地层、也有碎屑岩地层。在地震剖面上这两种类型的地层的反射特征的区别具有一定的相似性,而且界面均为不整合界面。火山岩地层特征及其结构在不同的断陷之间,同一断陷的不同部位,以及与碎屑岩地层的对比,是油气勘探中的基本地质问题。其研究精度制约着油气勘探的开发与进展。
     本文以松辽盆地东南缘、徐家围子断陷的营城组火山岩地层为研究对象,通过地质与地球物理相结合的方法,利用露头剖面资料、钻井资料、测井资料、地层地震资料来研究松辽盆地火山岩地层的划分、对比,以及火山岩旋回、期次形成的成因机制。通过制作平衡地质剖面和绘制断层位移变化曲线,分析火山岩地层发育的构造控制。通过对火山构造及级别的研究,分析徐家围子断陷火山岩盆地发育的构造控制。
Yingcheng formation is one of the mainly reservoir beds in oil/gas explorationand development in Songliao basin. It developed in different fault depressions,including both volcanic strata and clastic strata. The seimic reflectances of both typesof strata have something similarity in seismic frofiles, and the surfaces areuncomformity surfaces. It is a basic geological problem in oil and gas exploration thatthe stratigarphy and archetecture of volcanic srata correlating in the different faultdepressions and in the different parts of the same depression or with the clastic stratadeveloped during the same time. The precision of this research influences theprogresses of the oil and gas exploration and development.
     This study is aimed at volcanic strata of Yingcheng formation in eastern marginand Xujiaweizi fault depression of Songliao basin combining geology withgeophysics researching dividion,correlation, mechanism of volcanic cycle and statgeof Yingcheng formation using outcrops data, drilling data, logging data and seismicdata. By making balanced cross sections and drawing fault displacement curves, toanalyse the tectonic control of the growth of volcanic strata. Through analysis of thevolcanic sructures and ranks to discuss the development of volcanic basin inXujiaweizi fault depression.
     The main achivements are followings in this paper:
     1. The main rock types of Yingcheng formation in Songliao basin are lava andpyroclastic rocks. Lava rocks are with5types including rhyolite, andesite, basalt,perlite, pitchstone and dacite. Pyroclastic rocks are with10types including breccialava, tuff lava, ignimbrite breccia, ignimbrite tuff, agglomerate lava, cryptoexplosion breccia, tuff, breccia, agglomerates, tuffites, tuffaceous sedimentary rocks.
     2. According to the measured and collected dating data, the time spans for themembers of Yingcheng formation and volcanic cycle are given. It is120-134Ma formember1of Yingcheng formation, it is115-120Ma for member2of Yingchengformation, and it is110.7-115Ma for the member3of Yingcheng formation. It iswithin10Ma for the time spans of volcanic cycles of Yingcheng formation, and thechronostratigraphic framework with1-10Ma scale is established.
     3. The volcanic facies of Yingcheng formation is classified into5facies and15sub-facies. The facies are volcano vent, explosive, effusive, extrusive and volcanicsedimentary. Volcano vent includes volcanic neck, subvolcanic rocks, hiddenexplosive breccias. Explosive includes airfall, base surge, pyroclastic flow. Effusiveincludes lower, middle and upper effusive sub-facies. Extrusive includes inner,intermediate and extrusive sub-facies. Volcanic sedimentary facies includes thepyroclastic deposit containing debris re-transportation pyroclastic deposit and tuffwith coal intercalation sub-facies.
     4. The cooling unit or flue/cumulative unit is the basic original unit of volcanicstrata in Yingcheng Formation and this basic unit is using in deviding volcanic strata,developping in considerable scale and scope with a certain geometric featuresreflecting forming mechanisms. There are four types of cooling unit of Yingchengformation in the outcrop areas in the southeast margin Xujiaweizi fault depression ofSongliao basin, including pyroclastic, lava, pyroclastic+lava and lava+pyroclastic.
     5. Volcanic eruption stage (strata of sub cycle) is stacked by cooling units in thespatial and temporal context. There are7types of volcanic stages of YingchengFormation in Songliao basin, including vapor explosion, lava explosion, volcanicsedimentary, vapor-lava explosion, lava-vapor explosion, vapor-volcanic sedimentaryand vapor-lava-volcanic sedimentary.
     6. Volcanic cycle(strata of cycle) is stacked by volcanic stages(strata of subcycle)) in the spatial and temporal context. Its time span is within10Ma as the thirdorder sequence. There are3types of volcanic cycles of Yingcheng formation in Songliao basin,including clastic type, lava type, and mixed type of clastic and lava.
     7. The strata both of volcanic cycles and volcanic stages of Yingcheng formationare confined by unconformities. The volcanic strata of member1is divided into3volcanic cycles and9volcanic stages, and the volcanic strata of member3is dividedinto4volcanic cycles and9volcanic stages.
     8. The fault displacement and rate curves of Yingcheng Formation areestablished. Based on these curves and the regular devepment pattern of theextensional basin, the forming and development of the volcanic stratagraphy both instages order and cycles order are all controlled by the faulting.
     The fault activities caused the volcanic eruption, and the tectonic subsidence andthe collapse of craters controlled conservation of the volcanic rocks. The verticaldisplacement determined the tectonic subsidence of the basin, and the horizontalthrow determined basin stretching. Both also determined the range of the basin byfault dip and its changes or the geometry of fault plane. The important causes of theconservation of volcanic strata were tectonic subsidence and the collapse of craters.Only a suitable settlement for subsidence of basin and accumulation of volcanicmaterials could preserve comparatively complete volcanic strata. If volume ofvolcanic materials were larger than the extension space, the volcanic rocks could beeroded severely. On the contrary, that could be well preserved, while the clasticsequence could be formed and the volcanic rocks could exist as systems tracts orinterlayers.
     9. Volcanic structures can be distinguished into three classes: Ⅲ is volcanicedifice, Ⅱ is volcanic edifice assembly and Ⅰis volcanic edifice assembly group.The volcanic edifices of Yingcheng formation can be recognised four mainly types,including shield volcano, composite volcano, pyroclastic cone and lava dome. Amongthem, Ⅱis controlled by regional fault and depression-uplift structure, and Ⅰiscontrolled by large regional faults and trending fundamental structure. The sizes andfeatures of volcanic structure of Ⅱ are same with single fault depression of Songliaobasin, including volcanic uplift and volcanic depression. Xujiaweizi fault depressionis a V type of volcanic depression, in which the Yingcheng formation developed. The volcanic structure of Ⅰ is the same as the group of fault depression in Songliaobasin.
     10. The relationship between lithology and reservoir features of the volcanicrocks is summarized. The lithology was the main influence factor of the physicalproperties. The airhole rhyolite, rhyolitic tuff and breccia are better in physicalproperties. Changes of physical properties of the volcanic lava areittle in the deep, butchanges of pyroclastic rocks are clear.
     11. The relationship between facies and reservoir features of the volcanic rocksis summarized. Volcanic facies control the reservoir features of the volcanic rocks,thereservoir features are good in upper effusive sub-facies,inner extrusive sub-facies,and hidden explosive breccias sub-facies. It is also good in volcanic neck sub-faciesand pyroclastic flow sub-facies.
     12. It is significant to predict reservoir in the volcanic strctural stratigraphicframework. The favorable reservoirs are predicted in the framework.
引文
[1] A. D. Gibbs. Balanced cross-section construction from seismic sections in areas of extensionaltectonics [J]. Journal of Structural Geology.1983,5(2):153-160.
    [2] Berndt C, Planke S, Alvestad E, et al. Seismic volcanostratigraphy of the Norwegian Margin:constraints on tectonomagmatic break-up processes[J]. Journal of the Geological Society,2001,158(3):413-426.
    [3] Breitsprecher K, Thorkelson D J,Schwab D L, et al. Volcanic stratigraphy and petrology of theeastern margin of the Kamloops Group near Enderby,British Columbia:Geological Survey ofCanada[J]. Current Research,2000:1-7
    [4] Bull, Jonathan M. et al. Magmatic and tectonic history of Iceland's western rift zone at LakeThingvallavatn[J]. Bulletin of the Geological Society of America,2005,117(11-12):1451-1465
    [5] Cas R A F, Wright J V. Volcanic successions modernand ancient [M]. London: Allen&Unwin,1987.59-333.
    [6] Contreras J, Scholz C H, King G C P. A model of rift basin evolution constrained by first-orderstratigraphic observations [J].J Ceophy.s Research,1997, B102:7673-7690.
    [7] Cowie,P A, Gupta, S and Dawers, N H. Implication of fault array evolution for synriftdepocentre development: insight from a numerical fault growth model[J]. Basin Res,2000,12:241-261.
    [8] Cowie P A, Scholz C H. Physical explanation for displacement-length relationship for faultusing a post-yield fracture mechanics model[J]. J Strut Ceol,1992,14:1133-1148.
    [9] Cowie P A, Shipton Z K. Fault tip displacement gradient and process zone dimension[J].JStrnct Ceol,1998,20:983-997.
    [10] Cross T A. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous.Western Interior,USA. In: Wilgaus C K,et a1. Sea-level changes: An integrated approach.SEPM Special Publication[J],1988,42:371-380.
    [11] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cyclesand sediment accommodation[J]. In: Proceedings of Northwestern Europian SequenceStratim–aph-ConFess,1994,105-123.
    [12] Dawers N H, Anders M H, Scholz C H. Growth of normal faults: displacement-length scaling[J].Geology,1993,21:1107-1110.
    [13] Dawers&Anders M H. Displacementlength scaling and fault linkage[J]. J Stnut Ceol,1995,17:607-614.
    [14] DePolo C M, Clark D G, Slemmons D B, et ol. Historical surface faulting in the basin andrange province, western North America: implications for fault segmentation [J].J Struct Ceol,1991,13:123-136.
    [15] Dula W. F.1991. Geometric models of listric normal faults and rollover folds. AmericanAssociation of Petroleum Geologists Bulletin75,1609-25.
    [16] Einsele G. Sedimentary basins: Evolution, Facies and Budget[J]. Berlin: Springer,2000:64-74.
    [17] Fisher R V, Schmincke H U. Pyroclastic rocks [M]. Heidelberg: Springer,1984,59-265.
    [18] Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesisof flooding surface bounded depositional units[J]. AAPG Bulletin,1989,73(1):125-142.
    [19] Gawthope R L, Leeder M R.Tectonicsedimentary evolution of active extensional basins[J].Basin Research,2000,12(3/4):195-218.
    [20] Gupta,S.&Cowie, P., Processes and controls in the stratigraphic development of extensionalbasins[J]. Basin Res,2000,12:185-194.
    [21] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea-leVels since the Triassic[J].Science,1987,235:1156-1166.
    [22] Jackson, J. A. Glossary of Geology (Fourth Edition)[M]. Virginia: American GeologicalInstitute,1997.
    [23] Jackson J A. Active normal faulting and crustal extension in continental extensional tectonics
    [M]. London: Geol Soc,1987,28(Spec.):1-17.
    [24] Jackson J A, White N J. Normal faulting in the upper continental crust:observations fromregiona of active extenlion [J].J Stnut Ceol,1989,11:15-36.
    [25] John H. Shaw, Stephen C. Hook, and Edward P. Sitohang. Extensional Fault-Bend Foldingand Synrift Deposition: An Example from the Central Sumatra Basin, Indonesia [J]. AAPGBulletin.1997,81(3):367-379.
    [26] Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuations in Euramerica[J]. GSABulletin,1985,96:567-587.
    [27] Kolotukhina S E. The volcanogenous facies of the lowerCarboniferous in central Kazakhstan[J]. Trudy,1940,42(12):17-20.
    [28] Lajoie J. Facies models15: Volcaniclastic rocks [J]. Geoscience Canada,1979,6(3):129-139.
    [29] Leeder M R, et al., Sedimentary and tectonic geomorphology adjacent to active an inactivenormal fault in Megara basin and Alkyonides Gulf, Central Greece[J]. J. Geol. Soc. London,1991,148:331-343
    [30] Ma Jinqing, Li Jintang, Feng Zongzhi. On volcano-tectonic associations and their geologicalmapping-an example from1∶50000regional geological surveying in Minqing area,Fujian[J]. regional geology of china,2000,19(2):198-204.
    [31] MacDonald G A. Volcanology [J]. Science,1961,133:673-679.
    [32] Miali A D, C E Miall. Sequence stratigraphy as scientific enterprise: the evolution andpersistence of conflicting paradigms[J].Earth-Science Reviews,2001,54:321-348.
    [33] Mitchum R M. Seismic stratigraphy and global changes of sea level. Part1: Glossary of termsused seismic stratigraphy, in Payton C. E, eds. Seismic Stratigraphy-Applications toHydrocarbon Exploration[J]. AAPG Memoir,1977,26:205-212
    [34] Mitchum R M, Vail P R, Sangree J B. Seismic stratigraphy and global change of sea level,part6: Stratigraphy interpretation of seimic refletion patterns in depositional sequences. In:Payton C E ed. Seismic Stratigraphy–Applications to hydrocarbon exploration. Tulsa,Oklahoma[J]. AAPG Mem,1977,26:117-133.
    [35] N. J. White, J.A. Jackson and D.P. McKenzie. The relationship between the geometry ofnormal faults and that of the sedimentary layers in their hanging walls [J]. Journal ofStructural Geology.1986,8(8):897-909.
    [36] Paredes, J. M.et al.Volcanic and climatic controls on fluvial style in a high-energy system:The Lower Cretaceous Matasiete Formation,Golfo San Jorge basin, Argentina[J].Sedimentary Geology,2007,(202):96-123.
    [37] Peacock D C P, Sanderson D J. Displacements, segment linkage and relay ramp in normalfault zone [J]. J Stnu Ceol,1991,13:721-733.
    [38] Planke S, Symonds P A, Alvestad E, et al, Seismic volcanostratigraphy of large-volumebasaltic basaltic wxtrusive complexes on rifted margins [J]. Geophys,2000,105(8):19335-19351.
    [39] Renato M. Darros de Matos. Geometry of the Hanging Wall Above a System of ListricNormal Faults-A Numerical Solution [J]. The American Association of PetroleumGeologists Bulletin.1993,77(11):1839-1859.
    [40] Schlische R W. Half graben basin filling models: new constraints on continental extensionalbasin development [J]. Basin Research,1991,3:123-141.
    [41] Setterfield,T.N. et al. The McDougall-Despina fault set, Noranda, Quebec-Evidence forfault-controlled volcanism and hydrothermal fluid-flow[J]. Exploration and Mining Geology,1995,4(4):381-393.
    [42] Shanley K W, McCabe P J. Perspectives on the sequence stratigraphy of continemal strata [J].AAPG Bulletin,1994,78(4):544-568.
    [43] Sierra, Sonia et al. Stratigraphy, petrography and dispersion of the lower Permian syn-eruptive deposits in the Viar Basin, Spain[J]. Sedimentary Geology,2009,(217)1-29.
    [44] Sloss L L. Integrated facies analysis[J]. GSA Bulletin,1949:91-124.
    [45] Sloss L L. Sequence in the cratonic interior of North America[J]. GSA Bulletin,1963,74:93-114.
    [46] Tilling R I. Volcanoes[J]. U S Geological Survey: Eastern Publications Group Web Team,1997
    [47] Vail P R. Eustatic cycles from seismic data for global stratigraphic analysis[J]. AAPGBulletin,1975,59:2198-2199.
    [48] Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy, part Ⅰ:Seismicsequence stratigrapy interpretation procedure, In Bally A W, ed. Atlas of Seismicstratigrphy[J]. AAPG studies in Geology,1987,2:1-10
    [49] Vail P R, Bowman S A, Eisner P N, et al. The stratigraphic signatures of tectonics, eustasy,and sedimentology-an overview, In Einsele et al (eds.): Cycles and events in stratigraphy[J].Springer-Verlag Berlin Heidelberg,1991,617-659.
    [50] Vail P R, Mitchum R M, and Thompson S. Global cycles of relative changes of sea level, in:Seismic stratigraphy application to hydrocarbon exploration, Ed. By Payton C. E[J]. AAPGMemoir1977,26:99-116
    [51] Vail P R, MRchum R M, Todd R Get a1. Seismic stratigraphy and global changes of sea level.In: Payton C E, eds. Seismic stratigraphy-applications to hydrocarbon exploration[J]. AAPGMemoir,1977,26:49-212.
    [52] Van Wagoner J C, Posamentier H W, Mitchum R M. An overview of the fundamentals ofsequence stratigraphy and key definitions. In C K Wigus, B S Hastings, C G St C Kendall, HW Posamentier, C A Ross, J C Van Wagoner, eds. Sea-level changes: an integratedapproach[M]. SEPM Special Publication,1988,42:39-45
    [53] Van Wagoner J C, Mitchum R M, Campion K M and Rahmanion V D. Siliciclastic sequencestratigraphy in well, cores and outcrops-concept for high-resolution correlation of times andfacies[J]. AAPG Methods in Exploration Series,1990,(7):1-55.
    [54] Van Wagoner, J.C. et al., Siliciclastic sequence Stratigraphy in well logs, cores and outcrops:Concepts for high resolution correlation of time and facies[J]. AAPG, Meth. ExplorationSeries,7,1990.
    [55] Wang Pujun et al.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao Basin,NE China: constraints on stratigraphy and basin dynamics[J]. International Journal of EarthSciences,2002,91:331-340.
    [56] Watterson J. Fault dimension, displacements and growth[J].pure&appl Ceoph,1986,124:365-373.
    [57] Wheeler H E, Baselevel. lithosphere surface and time-stratigraphy[J]. GSA Bulletin,1964,75:599-610.
    [58] Wilgus C K. Sea-level changes: An integrated approach[M]. SEPM Special Publication,1988,42
    [59]安俊义.东北及内蒙东部下白垩统划分与对比[J].东北煤炭技术,1991,(2):39-45.
    [60] C.K.威尔格斯,等编.徐怀大,等译.层序地层学原理(海平面变化综合分析)[M].北京:石油工业出版社,1993,1:515.
    [61]蔡希源,李思田等.陆相盆地高精度层序地层学-隐蔽油气藏勘探基础、方法与实践[M].北京:地质出版社,2003.
    [62]陈建文等.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000,7(4):371-378
    [63]陈建文,王德发,张晓东,李长山.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000,7(4):371-381.
    [64]陈新军等.松辽盆地十屋断陷层序地层研究.石油实验地质[J].2007,29(5):462-465.
    [65]程日辉.陆相层序地层学进展[J].岩相古地理,1996,16(4):56-61.
    [66]程日辉.陆相盆地充填层序的类型--以辽西地区中生代盆地为例[J].沉积学报,1997,15(3):166-170.
    [67]程日辉等.松辽盆地东缘下白垩统营城组二段火山碎屑沉积的过程、相和结构[J].吉林大学学报(地球科学版),2007,37(6):1166-1175.
    [68]程日辉等.徐家围子断陷有火山岩充填的层序地层特征[J].吉林大学学报(地球科学版),2005,35(4):469-474.
    [69]池英柳,张万选,张厚福,孙红军.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19-25.
    [70]迟元林,王璞珺,单玄龙等.中国陆相含油气盆地深层地层研究-以松辽盆地为例[M].吉林科学技术出版社,2000,20-141.
    [71]邓宏文.美国层序地层研究中的新学派一高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [72]邓宏文等.高分辨率层序地层学-原理及应用[M].北京:地质出版社,2002.
    [73]邓宏文,王洪亮,李熙酷.层序地层地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.
    [74]邓宏文,王洪亮,李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997,18(2):90-95.
    [75]《地球科学大辞典》编委会.地球科学大辞典,基础科学卷[M].北京:地质出版社,2006,992.
    [76]丁日新等.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版),2007,37(3):525-530.
    [77]董冬,杨申镳,段智斌.滨南油田下第三系复合火山相与火山岩油藏[J].石油与天然气地质,1988,9(2):346-355.
    [78]樊太亮等.吉尔嘎朗图凹陷沉积层序几何构型[J].石油与天然气地质,1998,19(2):99-105.
    [79]范晓.川西义敦古火山弧的火山建造[J].四川地质学报,2009,29(专辑):21-34.
    [80]付志方,王焕弟,邢卫新等.层序地层学研究现状及进展[J].勘探地球物理进展,2005,28(5):26-30.
    [81]高瑞祺,张莹,崔同翠.松辽盆地白垩纪石油地层[M].北京:石油工业出版社,1994:3-21.
    [82]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6-10.
    [83]郭占谦.火山活动与沉积盆地的形成和演化[J].地球科学,1998,23(1):59-64.
    [84]黄玉龙等.松辽盆地营城组火山岩旋回和期次划分-以盆缘剖面和盆内钻井为例[J].吉林大学学报(地球科学版),2007,37(6):1183-1191.
    [85]黄玉龙等.松辽盆地营城组火山岩旋回和期次划分[J].吉林大学学报(地球科学版),2007,37(6):1183-1191.
    [86]黄玉龙,王璞珺,冯志强等.松辽盆地改造残留的古火山机构与现代火山机构的类比分析[J].吉林大学学报(地球科学版),2007,37(1):65-72.
    [87]郝诒纯,苏德英,余静贤等.中国地层12·中国的白垩系[M].北京:地质出版社,1986:108-116.
    [88]侯启军.大庆探区油气勘探新进展与下步勘探方向[J].中国石油勘探,2004,(4):1-5.
    [89]侯启军等.火山岩油气藏-松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科学出版社,2009.
    [90]侯启军,冯志强,冯子辉等.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009.
    [91]胡玉双,李黎明.层序地层学在松辽东部有利勘探区带预测中的应用[J].大庆石油地质与开发,1999,18(2):10-12.
    [92]侯启军,赵志魁,王立武.火山岩气藏-松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科学出版社,2009.
    [93]吉林煤田地质勘探公司普查大队研究室.四平-其塔木煤田普查地质报告[M].1966.
    [94]吉林省地质矿产开发局.吉林省岩石地层[M].武汉:中国地质大学出版社,1997,210-220.
    [95]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.224-230.
    [96]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1991,176-224.
    [97]吉林省区域地层表编写组.东北区域地层表-吉林省分册[M].北京:地质出版社,1979.71-80.
    [98]吉林省煤炭工业管理局地质局112队.营城煤田银矿山南部祥查地质报告[M].1956
    [99]吉林省煤炭工业管理局煤田地质勘探公司物探测量大队普查队.九台-其塔木1:10万地质测量总结报告[M].1964.
    [100]吉林省地质局区域地质调查大队.1:20万舒兰县幅(L-51-XXXI)区域地质测量报告
    [M].1980.
    [101]吉林省区域地质调查大队.吉林省地质志[M].1980,576-577.
    [102]纪友亮.层序地层学[M].上海:同济大学出版社,2005.
    [103]纪友亮等.断陷盆地油气汇聚体系与层序地层格架之间的关系研究[J].沉积学报,2008,26(4):617-623.
    [104]纪友亮,张世奇等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.
    [105]姜传金,陈树民,初丽兰,等.徐家围子断陷营城组火山岩分布特征及火山喷发机制的新认识[J].岩石学报,2010,26(1):63-72.
    [106]贾承造,赵文智,邹才能等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272.
    [107]贾军涛等.松辽盆地东南缘营城组地层序列的划分与区域对比[J].吉林大学学报(地球科学版),2007,37(6):1110-1122.
    [108]金伯禄,张希友.长白山火山地质研究[M].长春:东北朝鲜民族教育出版社,1994,40-49.
    [109]李宝芳,马文璞,张惠良,赵志根,李贵东.大别山北麓石炭纪盆地沉积和构造研究[J].地学前缘,2000,7(3):153-165.
    [110]李宏伟,邓宏文,肖乾华等.热欧地区残留可容纳空间分布及储集砂体预测[J].石油学报,2002,23(4):29-32.
    [111]李石,王彤.火山岩[M].北京:地质出版社,1980.20-40.
    [112]李思田.断陷盆地分析与煤聚积规律[M].北京:地质出版社,1988.
    [113]李思田,林畅松,解习农等.大型陆相盆地层序地层学研究一以鄂尔多斯中生代盆地为ff-J[J].地学前缘,1995,2(3-4):133-136.
    [114]李思田,夏文臣,杨士恭等.阜新盆地晚中生代沙海组浊流沉积和相的空间关系[J].地质学报,1985,1:61-73.
    [115]李喆,王璞珺,纪学雁,等.松辽盆地东南隆起区营城组火山岩相和储层的空间展布特征[J].吉林大学学报:地球科学版,2007,37(6):1224-1231.
    [116]林畅松等.“构造坡折带”-断陷盆地层序地层分析和油气预测的重要概念[J].地球科学,2000,25(3):260-266.
    [117]林宗满,任传慧.松辽盆地南部及其周缘下白垩统的层序[J].石油与天然气地质,1995,16(1):81-88.
    [118]刘嘉麒等.南极南设得兰群岛中-新生代火山作用与地质环境[M].极地研究,2002,14(1):1-11.
    [119]刘为付,朱筱敏.松辽盆地徐家围子断陷营城组火山岩储集空间演化.石油实验地质.2005,27(1):44-49.
    [120]刘文灿,孙善平,李家振.大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征[J].现代地质,1997,11(6):237-243.
    [121]刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物资源与灾害[M].长春:吉林大学出版社,1997,1-8.
    [122]刘震等.北部湾盆地涠西南凹陷流沙港组岩性圈闭形成条件[J].现代地质,2008,22(2):239-246.
    [123]罗静兰,曲志浩,孙卫等.风化店火山岩岩相、储集性与油气的关系[J].石油学报,1996,17(1):32-39.
    [124]马金清,李进堂,冯宗帜.火山构造组合研究和地质填图方法-以福建闽清测区1:5万区域地质调查为例[J].中国区域地质,2000,19(2):198-204.
    [125]蒙启安等.松辽盆地断陷期超层序界面的地质属性刻画及其油气地质意义[J].地质论评,2005,51(1):46-54.
    [126]闵飞琼等.营城组三段及二段岩性岩相和储层的精细刻画-基于标准剖面营三D1井全取心钻孔资料[J].吉林大学学报(地球科学版),2007,37(6):1203-1216.
    [127]裴江云等.共反射弧叠加方法在火山岩成像中的应用[J].地球物理学报,2004,47(1):106-111.
    [128]彭勇民等.三江北段生达残留弧后盆地晚三叠世层序地层与演化[J].地球学报,1999,20(3):318-324
    [129]任德生,张兴洲,陈树民.松辽盆地徐家围子断陷芳深9井区火山岩储层裂缝预测[J].地质力学学报.2002(03)
    [130]任延广,朱德丰,万传彪等.松辽盆地北部深层地质特征与天然气勘探方向[J].中国石油勘探,2004,1(4):12-22.
    [131]任延广,朱德丰,万传彪等.松辽盆地徐家围子断陷天然气聚集规律与下步勘探方向[J].大庆石油地质与开发,2004,23(5):26-29.
    [132]齐井顺,李广伟,孙立东,等.徐家围子断陷白垩系营城组四段层序地层及沉积相[J].吉林大学学报(地球科学版).2009(06)
    [133]邱家骧,陶奎元,赵俊磊等.火山岩[M].北京:地质出版社,1996,10-22.
    [134]单玄龙,王璞珺,陈树民等.松辽盆地北部深层上侏罗-下白垩统地层对比及大地构造意义[J].长春科技大学学报,1999,29(增刊):8-12.
    [135]尚玉珂,王淑英.吉林九台营城组孢粉组合及古植被、古气候探讨[J].徽体古生物学报,1991,8(1):91-110.
    [136]舒萍等.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志,2007,26(3):239-246.
    [137]孙善平,刘永顺,钟蓉等.火山碎屑岩分类评述及火山沉积学研究展望[J].岩石矿物学杂志,2001,20(3):313-317.
    [138]陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社,1994,12-31.
    [139]王东坡,刘立.大陆裂谷盆地层序地层学的研究[J].岩相古地理,1994,14(3):1-9.
    [140]王洪亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997,18(2):96-102.
    [141]王华等.博湖坳陷八道湾组层序格架下的沉积构成研究[J].石油天然气学报,2007,29(4):15-22
    [142]王惠民,靳涛,杨红霞.银根盆地查干凹陷火成岩岩相特征及其识别标志[J].新疆石油地质,2005,26(3):249-252.
    [143]王玲等.松辽盆地徐家围子断陷营城组一、三段火山喷发期次划分及意义[J].中国石油勘探,2009,2:6-13.
    [144]王明艳.阿克库勒凸起古生界和三叠系碎屑岩系层序地层学与储层特征研究[M].博士论文,2005:5-7.
    [145]王璞珺等.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科学出版社,2008.
    [146]王璞珺,程日辉,王洪艳等.松辽盆地滨北地区油气勘探方向探讨[J].石油勘探与开发,2006,33(4):426-431.
    [147]王璞珺,迟元林,刘万洙等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449-456.
    [148]王璞珺,迟元林,任延广等.火山灰事件沉积在松辽盆地哑地层对比中的应用[J].吉林大学学报(地球科学版),2003,34(增刊):109-113.
    [149]王璞珺,冯志强,郑常青等.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科学出版社,2008.
    [150]王璞珺,冯志强,刘万洙,陈树民,单玄龙,吴何勇,程日辉,王玉华,边伟华,任延广,冯子辉,黄薇,唐华风,黄玉龙.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科学出版社,2008,99-102.
    [151]王璞珺,王树学,曲水宝等.松辽盆地火山事件研究-营城组火山岩特征[J].长春科技大学学报,1999,29(增刊):50-54.
    [152]王秀娟,孙贻铃,迟博,等.松辽盆地三肇地区油田储层裂缝及地应力特征[J].高校地质学报.1999(03)
    [153]王永春.吉林探区油气勘探理论与实践[M].北京:石油工业出版社,2007.
    [154]王永春.松辽盆地南部岩性油藏的形成条件与分布[M].北京:石油工业出版社,2001.
    [155]王永春,侯启军等.松辽盆地南部岩性油藏形成理论及高效勘探实践.“十五”重要地质科技成果暨重大找矿成果交流会材料二.“十五”地质行业获奖成果资料汇编,2006.
    [156]魏魁生.非海相层序地层学-以松辽盆地为例[M].北京:地质出版社,1996.
    [157]魏魁生,叶淑芬等.松辽盆地白垩系非海相沉积层序模式[J].沉积学报,1996,14(14):50-58.
    [158]魏志平,唐振兴,江涛等.长岭凹陷层序地层分析[J].石油与天然气地质,2002,23(2):170-173.
    [159]伍菁华,黄芸,张继武等.火山岩相地震识别方法在准噶尔盆地东部的应用[J].天然气工业,2007,27(增刊A):481-482.
    [160]吴颜雄等.营城组一段及下段岩性岩相和储层的精细刻画-基于标准剖面营一D1井全取心钻孔资料[J].吉林大学学报(地球科学版),2007,37(6):1192-1202.
    [161]谢家莹.冷却单元、流动单元与堆积单元[J].火山地质与矿产,1994,15(1):75-76.
    [162]谢家莹等.中国东南大陆中生代火山地质及火山-侵入杂岩[M].北京:地质出版社,1996.
    [163]谢家莹,蓝善先,张德宝等.运用火山地质学理论研究竹田头火山机构[J].火山地质与矿产,2000,21(2):87-95.
    [164]谢家莹,陶奎元.中国东南大陆中生代火山地质及火山-侵入杂岩[M].北京:地质出版社,1996,40-71.
    [165]解习农.断陷盆地构造作用与层序样式[J].地质论评,1996,42(3):398-412.
    [166]解习农.松辽盆地梨树凹陷深部断陷沉积体系及层序地层特征[J].石油实验地质,1994,16(2):144-151.
    [167]解习农,任建业,焦养泉,等.断陷盆地构造作用与层序样式.地质论评,1996,42(3):239-244.
    [168]邢光福等.香港九龙破火山的地层结构与划分讨论[J].地质论评,2007,53(5):664-674.
    [169]徐耳土.层系地层学理论用于我国断陷盆地分析中的问题[J].石油与天然气地质,1991,12(1):52-55.
    [170]徐怀大.陆相层序地层学研究中的某些问题[J].石油与天然气地质,1997,18(2):83-89.
    [171]徐怀大.如何推动我国层序地层学的发展[J].地学前缘,1995,2(3):103-113.
    [172]徐启平.西秦岭地区的麦秀群[J].地层学杂志,1994,18(4):282-288.
    [173]薛良清.层序地层分析在裂谷盆地油气勘探中的应用[J].石油学报,2000,21(5):7-12.
    [174]薛夏焉.层系地层学在湖相盆地中的应用探讨[J].石油勘探与开发,1990,17(6):29-34.
    [175]杨辉等.松辽盆地北部徐家围子断陷火山岩分布及天然气富集规律[J].地球物理报,2006,49(4):1136-1143
    [176]颜耀敏,王英民,祝彦贺,等.准噶尔盆地西北缘五八区佳木河组含火山岩系沉积模式[J].天然气地球科学,2007,18(3):386-388.
    [177]杨春志,沈德安.吉林省松辽盆地东缘中生代含煤地层层序划分与对比[J].吉林地质,1986,5(3):50-59.
    [178]叶得泉,黄清华,张莹等.松辽盆地白垩纪介形类生物地层学[M].北京:石油工业出版社,2002:11–50.
    [179]叶得泉,钟筱春,石宝珩等.中国北方含油气区白垩系[M].北京:石油工业出版社,1990:60–85.
    [180]于文卿,孙希.松辽盆地演化历史和铀成矿地质条件[J].吉林地质,1997,16(4):34-41.
    [181]于秀英,程日辉,王璞.裂谷盆地构造控制地形-沉积体系演化研究与面临问题[J].世界地质,2004,23(2):123-127.
    [182]张川波,赵东甫,张秀英等.松辽盆地东缘晚期中生代一个新的重要含煤层位[J].长春地质学院学报,1991,21(3):241-247.
    [183]章凤奇等.松辽盆地东南缘晚中生代火山事件的锆石年代学与地球化学制约[J].岩石学报,2009,25(1):39-54.
    [184]赵澄林.辽河盆地火山岩与油气[M].北京:石油工业出版社,1999.
    [185]赵国连,何顺利.松辽盆地徐家围子裂陷式盆地的层序发育特点[J].西北地质,2002,35(1):28-40
    [186]赵俊青,纪友亮,张世奇等.陆相高分辨率层序界面识别的地球化学方法[J].沉积学报,2004,22(1):79-86.
    [187]赵文智等.松辽盆地深层火山岩气藏地质特征及评价技术[J].石油勘探与开发,2008,16(2):1-26.
    [188]赵玉光等.西准噶尔前陆盆地二叠纪火山-沉积序列与盆地演化耦合[J].地质论评,2000,46(5):532-535.
    [189]朱筱敏等.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003,21(2):283-287.
    [190]邹才能,贾承造,赵文智等.松辽盆地南部岩性-地层油气藏成藏动力和分布规律[J].石油勘探与开发,2005,32(4):125-130.
    [191]左悦.油燕沟地区火山岩储层裂缝的研究[J].特种油气,2003,10(1):103-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700