可展开太阳能聚焦系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可折叠/展开结构具有质量轻、收拢体积小、发射成本低等优势,这为构建大聚焦比、大口径的空间太阳能聚焦器提供了一条有效的解决途径,因此,开展高效可展开太阳能聚焦器系统的研究对于推动空间太阳能高温利用的发展有着重要的意义。本文对可展开太阳能聚焦器系统中的一些关键技术进行了研究和性能分析,提出了大口径、大收纳比、可高效折叠/展开的空间可展开太阳能聚焦器系统的设计方案,探索了性能提高的策略,完成了可展开聚焦器系统的优化设计和分析。
     本文首先基于悬臂梁假设,利用ANSYS软件对充气支撑结构进行了静态和模态分析。结果表明:低阶频率(前3阶频率)几乎不受内压的影响;内压对于高阶频率(后7阶)的影响较大;内压在影响结构固有频率的同时也改变了结构的振型。
     利用有限元方法对充气展开的非线性动力力学控制方程进行了离散求解,以一个开口面积为20m2、焦距为8m的充气结构模型为研究对象,对其一次、三次折叠未充气状态的支撑杆及反射部件的展开过程进行了动态仿真计算。对比支撑杆一次折叠和三次折叠展开过程中内压随时间的变化可以得出支撑杆内压变化与其折叠次数无关。充气展开过程中,在充气薄膜材料上有褶皱的出现,这将影响展开后反射部件的聚焦性能。
     根据蒙特卡洛光线跟踪法及光线的镜面反射定律,分析了充气式可展开太阳能聚焦器的聚焦性能,并通过调整充入气体参数、聚焦器的结构壁厚和结构形式等对其展开过程及聚焦性能进行优化。结果表明:单一壁厚薄膜反射面结构展开后的聚焦效率约为50%;通过调整薄膜壁厚沿径向的变化,可以有效改善充气反射面展开聚焦性能,聚焦效率最大可达60%;成型反射面结合充气式或机械式支撑杆的新型聚焦器的展开聚焦效率可以达到理想设计值。
     为了克服充气式展开聚焦器在充气过程中存在的褶皱问题,整个聚焦结构采用由充气薄膜材料预制成型的多组小尺寸的聚光镜片叠装,在空间展开为大面积的聚焦器。采用Pro/E软件进行参数化三维建模、装配,对新型聚焦器的展开锁定机构设计,并对可伸展支撑结构进行抗压性能、抗弯性能和振动特性进行研究。在支撑杆顶端受30N轴向和径向力时,可展开支撑杆结构具有优异的抗压和抗弯性能,支撑结构的安全系数非常高;第5阶振型对应的结构位移最大,约为0.1m。
     对预制成型的折叠聚焦器在空间展开的预期过程进行了运动仿真,获得了展开轨迹曲线及位置曲线等相关数据,并对存在各种误差时展开结构的聚焦性能进行了分析。研究表明:组装镜片能够按照预期实现由收纳状态到工作状态的展开过程,并最终达到了预期的展开锁定效果;支撑杆长度伸缩误差对焦点精度的影响比支撑杆孔径间隙误差的影响要大;存在轴间隙误差时,焦点坐标位置x和y误差均在半径为3mm的圆内变化,焦点位置误差不具有规律性;随着指向误差、焦面位置误差及镜面加工误差的增大,聚焦器焦面光斑半径增大,并且由圆形光斑逐渐演变为椭圆形,能流峰值降低,整个焦面接收的总能量保持守恒。镜面误差对焦面能流和光斑形状的影响最大,应合理设置接收面的大小和位置。
     利用FLUENT软件对吸热器内的流动换热性能进行了数值模拟,并对吸热器结构进行优化,使每根吸热管内工质的流量均匀。根据蒙特卡洛光线跟踪法及光线的镜面反射定律,采用优化后的新型太阳能聚焦系统展开结构的几何模型计算吸热管壁面接收的太阳能热流。结果表明:优化后的吸热管内氦气的流动不均匀性小于5%,氦气的出口温度分布均匀,整个出口氦气的平均温度约为1125K,最大温差为50K。
Deployable structure has been regarded as an effective solution to build a large storage ratio andlarge aperture space solar concentrator system, due to its’ advantages of light weight, small storagevolume, and low emission cost. Therefore, it is very important to study the deployable concentratorsystem in the development of space solar high temperature utilization. In this paper, some keytechnologies of deployable solar concentrator system were investigated numerically, and theirperformances were analyzed, and then design scheme of deployable solar concentrator system wasproposed. The Optimization of deployable solar concentrator system was performed by exploring thestrategies for improving performance.
     Based on the cantilever beam assumption, static and modal analysis on the inflatable supportstructure was carried out by using the ANSYS software. The results show that low frequencies (first3order frequencies) are hardly affected by internal pressure; pressure has greater impact on highfrequencies (last7order frequencies); internal pressure impacts on natural frequency of structure butalso changed the vibration mode of the structure.
     Nonlinear dynamic mechanical control equations of inflatable structure were solved by using thefinite element method. A large size inflatable structure model which had an aperture of20m2, the focallength of8m, was simulated. The deployment dynamic simulation of one-fold and three-foldun-inflated state supporting rod and a reflecting member were carried out. Compared the pressurevariation with time during the one-fold supporting rod unfolding process to three-fold’s, the pressurein supporting rod has nothing to do with its folding number; wrinkle will be produced on theinflatable membrane material during inflatable deployment process, which will affect theconcentrating performance of the unfolded reflection unit.
     Based on the Monte Carlo ray tracing method and light specular reflection law, concentratingperformance of space inflatable solar concentrator was analyzed. Deployment process andconcentrating performance were optimized by adjusting the filling gas parameters, structure thicknessand modifying inflatable concentrator structure form. The results show that the focusing efficiency ofdeployed thin film reflector structure with same wall thickness is about50%; focusing efficiency canbe effectively improved up to60%by adjusting the film thickness along the radial direction; thedeployed focusing efficiency of pre-forming reflecting surface combined with inflated or mechanicalsupporting structure can reach the ideal design value.
     To overcome the wrinkle problem produced during the inflation processes, the wholeconcentrator structure was assembled by a plurality of groups of small size concentrating mirrorsprefabricated by inflatable membrane, which was deployed in space. Parametric3D modeling andassembly were accomplished by Pro/E software in this thesis. Unfolding and locking mechanism weredesigned, and the compressive strength, flexural properties and vibration characteristic of stretchablesupport structure were also analyzed. The results show that deployable supporting rod structure haveexcellent compression resistance and bending resistance of support structure, when applying30Naxial and radial force in the top end of the supporting rod, the safety coefficient is very reliable;maximum structure displacement which is corresponding to fifth order vibration mode, was about0.1m. Thus resonance should try to be avoided during deployment process.
     The expected movement process of new concentrator from folding assembly state into spaceworking state was simulated. The unfolding trajectory curve, location curve and other relevant datawere obtained. Concentrating performance was analyzed with the presence of various errors fordeployable structure. The results show that the expected unfolding process of the assembled mirrorscan be realized, and the anticipated expansion and locking effect also can be achieved; the supportingrod original length tolerances on the accuracy of the focus effects is larger than that of the supportingrod aperture parameters tolerances; when shaft clearance error existing, x coordinate position errorand y position error of the focus are moved in a circle of3mm radius. Focus position error is irregular;with the pointing error, position error and focal plane mirror surface machining error increasing, theconcentrator focal spot radius increases, and varied from circular spot into oval gradually, energy flowpeak value reduced, the total energy received by whole focal plane keep conservation. Mirror errorhas the highest affects on energy flux distribution and spot shape of focal plane, so receiving planesize and position should be set reasonably.
     Flow and thermal transfer characteristics of working fluid in receiver were simulated numericallyby FLUENT software. The receiver structure was optimized to balance the flow rate of working fluidin every tube. Based on the deployed concentrator’s geometric structure, the solar energy heat fluxdistribution on tubes’ wall was simulated numerically by employing Monte Carlo ray tracing methodand light specular reflection law. The results show that, helium flow rate non-uniformity is less than5%after optimization. Helium exit temperature is uniform, and the average temperature is1125K,maximum difference in temperature is50K.
引文
[1] National Space Science Date Center. NSSDC ID:1960-009[EB/OL].http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1960-009A,1960-08-12/2011-08-19.
    [2] Freeland R E, Bilyeu G D. In-Step Inflatable Antenna Experiment. Acta Astronautica,1992,30:29~40.
    [3]江燕.美进行首次空间充气天线成形试验.国际太空,1996,(8):2~4.
    [4] Willey C E, Lin J K H, Cadogan D P, et al. A Hybrid Inflatable Dish Antenna System forSpacecraft.42ndAIAA/ASME/ASCE/AHC Structure, Structural Dynamics and MaterialsConference&Exhibit: AIAA Gossamer Spacecraft Forum, Seattle WA USA,2001,AIAA-2001-1258.
    [5] Gunna T. Deployable Tensegrity Structures for Space Applications [Doctoral Thesis]. Stockholm,Royal Institute of Technology,2002.
    [6]马小飞,宋燕平,韦娟芳,等.充气式空间可展开天线结构概述.空间电子技术,2006,(3):10~15.
    [7] Black J T, Cobb R G, Swenson E D, et al. Rigidizable Inflatable Get-Away-Special ExperimentSpace Flight Data Analysis. Journal of Spacecraft and Rockets,2011,48(3):477~487.
    [8] Fang H F, Lou M. Deployment Study of a Self-Rigidizable Inflatable Boom. Journal ofSpacecraft and Rockets,2006,43(1):25~30.
    [9] Yahya R S, Robert A H. ARISE: A Challenging25m Space Antenna Design. Antennas andPropagation Society International Symposium, Orlando FL USA,1999(3):1524~1527.
    [10]刘晓峰,谭惠丰,杜星文.充气太空结构及其展开模拟研究.哈尔滨工业大学学报,2004,36(4):508~512.
    [11]刘晓峰,谭惠丰,杜星文.充气太空管展开模拟.哈尔滨工业大学学报,2004,36(5):685~688.
    [12]刘晓峰,杜星文,谭惠丰.薄膜充气管充气展开特性试验.上海航天,2007,(6):56~60.
    [13]徐彦,关富玲,马燕红.充气可展开天线的反射面设计及精度测量.浙江大学学报(工学版),2007,41(11):1921~1926.
    [14]卫剑征,苗常青,杜星文.充气平面天线结构展开过程仿真分析.哈尔滨工业大学学报,2007,39(9):1398~1402.
    [15]苗常青,李学涛,马浩.空间充气展开天线支撑结构的模态分析.哈尔滨工业大学学报,2005,37(11):1589~1591.
    [16]唐宝富,徐东海,朱瑞平.空间充气展开天线初步研究.现代雷达,2008,30(4):82~84.
    [17]闫军.空间充气结构展开动力学仿真探讨.全国结构动力学学术研讨会.中国南昌,2007,268~275.
    [18]李学涛,苗常青,马浩,等.空间充气天线支撑结构动载作用下力学分析.首届全国航空航天领域中的力学问题学术研讨会,中国成都,2001,81~85.
    [19]陶宏新,胡振东.空间充气展开天线支撑结构尺寸优化.计算机辅助工程,2007,16(3):132~135.
    [20] Thomson M W. The AstroMesh Deployable Reflector. Proceedings of the1999IEEEInternational Antennas and Propagation Symposium and USNC/URSI National Radio ScienceMeeting,1999,1516~1519.
    [21]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[硕士学位论文].西安:西安电子科技大学,2005.
    [22] Gunnar T. Deployable Tenegrity Structure for Space Application.Technical Reports SwedenRoyal Institute of Technology,2002.
    [23] Masayoshi M, Yoshiaki O. Stiffness Design of Deployable Satellite Antennas in DeployedConfiguration. Journal of Spacecraft and Rockets,1998,35(3):380~386.
    [24] Hiroaki T, Ken-ichi H, Yoichi K. Deployment Test Methods for a Large Deployable MeshReflector. Journal of Spacecraft and Rockets,1997,34(6):811~816.
    [25] Meguro A, Harada S, Watanabe M. Key Technologies for High-accuracy Large Mesh AntennaReflectors.Acta Astronautica,2003,(53):899~908.
    [26]寇艳玲.ETS-VIII卫星相控阵馈电大型可展开天线.无线通信技术,2001,(2):48~52.
    [27] Akira M, Akio T. Technology Status of the13m Aperture Deployment Antenna Reflectors forEngineering Test Satellite VIII. Acta Astronautical,2000,47(2):117~152.
    [28]陈烈民.卫星太阳翼展开运动分析.中国空间科学技术,1994,(2):21~26.
    [29]陈烈民.两次展开太阳翼的展开运动分析.航天器工程,2001,10(3):19~23.
    [30]白争锋,田浩,赵阳.基于ADAMS航天器太阳帆板展开与锁定动力学仿真.机械设计与制造,2006,(11):124~126.
    [31]安源,谷松,金光.卫星太阳翼展开运动的分析及仿真.中国光学与应用光学,2009,2(1):29~35.
    [32]周志成.航天器太阳翼展开锁定分析.中国空间科学技术,1992,(4):2~6.
    [33]郭峰,黄振华,邓扬.基于ADAMS航天器刚性太阳帆板动力学仿真分析.机械设计与制造,2004(4):71~73.
    [34]梁小光,丁竹生,焦映厚,等.卫星太阳翼阻尼器参数选定方法.哈尔滨工业大学学报,2011,43(7):71~75.
    [35]阎绍泽,蔡仁宇,丁袆,等.基于ADAMS的太阳电池阵动力学模拟参数化建模系统.电子机械工程,2011,27(3):18~23.
    [36]胡明,陈昌足,陈文华,等.复折展锁解式太阳翼展开动力学建模与仿真.中国机械工程,2011,22(9):1039~1043.
    [37]陈鹿民,阎绍泽,金德闻.卫星太阳帆板展开动力学仿真. MSC.Software中国用户论文集,2002,1~5.
    [38]王岩.可展开平面天线支撑机构构型综合与设计[硕士学位论文].哈尔滨:哈尔滨工业大学,2011.
    [39]梁志刚.星载可展开天线的结构设计与研究[硕士学位论文].西安电子科技大学,2010.
    [40]孙健.套筒式空间可展开结构的设计与动力学仿真分析[硕士学位论文].北京:中国科学院研究生院,2011.
    [41]肖宁聪,李彦锋,黄洪钟.卫星太阳翼展开机构的可靠性分析方法研究.宇航学报,2009,30(4),1704~1710.
    [42]胡国伟.可展开天线展开动力学分析与仿真研究[硕士学位论文].西安:西安电子科技大学,2011.
    [43]李团结,张琰,段宝岩.周边桁架可展开天线展开过程运动分析及控制.西安电子科技大学学报.2007,34(6):916~921.
    [44]张琰.周边桁架可展开天线展开过程仿真与分析[硕士学位论文].西安:西安电子科技大学,2008.
    [45]李团结,张琰,段宝岩.周边桁架可展开天线展开过程动力学分析及控制.宇航学报,2009,30(3):444~449.
    [46]安明明.空间可展开结构的分析与仿真研究[硕士学位论文].西安:西安电子科技大学,2009.
    [47] Barra O A, Franceschi L. The Parabolic Through Plants Using Blackbody Receivers:Experiments and Theoretical Analysis. Solar Energy,1982,28(2):163~171.
    [48] Body D A. A Cylindrical Blackbody Solar Energy Receiver. Solar Energy,1976,18(5):335~401.
    [49] Karni J, Kribus A, Doron P. The DIAPR: A High-Pressure, High-Temperature Solar Receiver.Journal of solar energy engineering,1997,119(1):74~78.
    [50] Kami J, Kribus A, Rubin R. The 'Torcupine'': A Novel High-Flux Absorber for Volumetric SolarReceivers. Journal of Solar Energy Engineering,1998,120(1):85~95.
    [51] James A H, Terry G L. Thermal Performance of solar Concentrator/Cavity receiver systems.Solar Energy,1985,34(2):135~142.
    [52] Seo T, Ryu S, Kang Y. Thermal Performance of the Receivers for the Dish Type Solar EnergyCollecting System of Korea. Proceeding of the International Solar Energy Conference. MadisonWisconsin,2000,303~306.
    [53] Reiner B, Thomas B, Thorsten D, et al. Solar-Hybrid Gas Turbine-based Power Tower Systems.Solar Energy Engineering,2002,124(1):15~25.
    [54] Kolb G J, Ho C K, Mancini T R. Power Tower Technology Roadmap and Cost Reduction Plan.Sandia Report,2011, Sand2011-2419.
    [55] Goods S H, Bradshaw R W. Constant Extension Rate Testing of IN625LCF in Molten NitrateSalt. Corrosion Science,1999,41(6):1119~1137.
    [56] Pacheco J E, Ralph M E, Chavez J M. Results of Using Molten Salt Panel and ComponentExperiment for Solar Central Receiver: Cold Fill, Freeze/Thaw, Thermal Cycling and Shock,and Instrument Test. Sandia Report,1994, Sand94-2525.
    [57] Bradshaw R W, Carling R W. A Review of the Chemical and Physical Properties of MoltenAlkali Nitrate Salts and Their Effect on Materials Used for Solar Central Receivers. SandiaReport,1987, Sand87-8005.
    [58] Goods S H. Slow Strain Rate Testing of21/4Cr-1Mo in Molten Nitrate Salt. Sandia Report,1983, Sand83-8214.
    [59] Strumpf H J, Coombs M G. Advanced Heat Receiver Conceptual Design Study: Final Report.National Aeronautics and Space Administration,1987.
    [60] Fujiwara M, Sano T, Suzuki K, et al. Thermal Analysis and Fundamental Tests on Heat PipeReceiver for Solar Dynamic Space Power System. Journal of Solar Energy Engineering,1990,112(4):177~182.
    [61] Hitoshi N, Tsutomu F, Takeshi H. An Experimental Study of a Solar Receiver for JEMExperiment Program,2000, AIAA-2000-2996.
    [62] Takeshi H, Hitoshi N, Tsutomu F J. Experimental Study on Stirling Engine Generator and SolarReceiver System for Future Space Application.35thIntersociety Energy Conversion EngineeringConference and Exhibit,2000,2,1111~1116.
    [63] Audy C, Fischer M, Messerschmid E W. Non-steady Behavior of Solar Dynamic PowerSystems with Stirling Cycle for Space Station. Aerospace Science and Technology,1999,12(1):49~58.
    [64] Laing D, Palsson M. Hybrid Dish/Stirling System: Combustor and Heat pipe ReceiverDevelopment. Journal of Solar Energy Engineering,2002,124(2):176~181.
    [65] Naito H, Kohsaka Y, Cooke D, et al. Development of a Solar Receiver for a High-EfficiencyThermonic/Thermoelectric Conversion System. Solar Energy,1996,58(4):191~195.
    [66] Guido W. Lopez. Startup Modeling of the Receiver of NASA’s2-Kilowatt Solar DynamicPower System. Journal of Propulsion and Power,1999,3(15):11~15.
    [67] Richard K S, Lee S M. Early Results from Solar Dynamic Space Power System Testing. Journalof Propulsion and Power,1996,5(12):91~95.
    [68] Kribus A, Doron P, Rubin R. A Multistage Solar Receiver: The Route to High Temperature.Solar Energy,1999,67(1):3~11.
    [69]丑乔力,葛新石,程曙霞,等.太阳能集热器中高效腔体式吸收器的研究.自然杂志,1995,18(1):56~58.
    [70]丑乔力,葛新石,程曙霞,等.腔体式吸收器与真空管吸收器的热性能比较.热能动力工程,1996,65(5):273~277.
    [71]刘志刚,张春平,赵耀华.一种新型腔式吸热器的设计与实验研究.太阳能学报2005,26(3):332~337.
    [72] Clausing A. An Analysis of Convective Losses from Cavity Solar Central Receivers. SolarEnergy,1981,27(4):295~300.
    [73] Umarov I, Fattakhov A, Umarov A, et al. Heat Loss in a Cavity-Type Solar Collector. AppliedSolar Energy,1983,19(3):35~38.
    [74] James A, Terry G. Thermal Performance of Solar Concentrator/Cavity Receiver Systems. SolarEnergy,1985,34(2):135~142.
    [75] Hogan R, Drver R, Stine W. Comparison of Cavity Solar Receiver Numerical Model andExperimental Data. Solar Energy Engineering,1990,112(3):183~190.
    [76] Steinfeld A, Schubnell M. Optimum Aperture Size and Operating Temperature of a SolarCavity-Receiver. Solar Energy,1993,50(1):19~25.
    [77] Seo T, Ryu S, King Y. Thermal Performance of the Receivers for the Dish-Type Solar CollectingSystem of Korean Institute of Energy Research. Proceeding of the International Solar EnergyConference, Madion Wisconsin,2000,303~306.
    [78]桂晓宏,袁修干,徐伟强.先进太阳能热动力系统单元热管吸热器仿真分析.宇航学报,2005,26(6):197~190.
    [79]邢玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究.太阳能学报,2003,24(3):622~626.
    [80] Cui H T, Wang Z H, Guo Y S, et al. Thermal Performance Analysis on Unit Tube for Heat PipeReceiver. Solar Energy,2006,80(1):875~882.
    [81]张春平,刘志刚,赵耀华.碟式聚光太阳能热发电系统用腔式吸热器性能分析.上海理工大学学报,2004,26(4):592~595.
    [82]侯欣宾,袁修干,邢玉明,等.太阳能热动力发电系统吸热器换热管试验及数值模拟.太阳能学报,2003,24(4):904~908.
    [83] Main J A, Peterson S W, et al. Beam-Type Bending of Space-based Inflatable MembraneStructures. Journal of Aerospace Engineering,1995,8(2):120~125.
    [84] Cadogan D, Stein J, Grahne M. Inflatable Composite Habitat Structures for Lunar and MarsExploration. Acta Astronautica,1999,44(7):399~406.
    [85] Arthur L, Palisoc Y H. Design Tool for Inflatable Space Structures.38thAIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference,Kissimmee Florida USA,1997,2922~2929.
    [86] Breivik N L, Watson I J, Ambur D R. Buckling of Long, Thin Inflatable Cylinder Loaded inAxial Compression.44thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Norfolk England,2003,4061~4074.
    [87] Wang J T, Johnson R A. Deployment Simulation Methods for Ultra-Lightweight InflatableStructures.2003: NASA/TM-2003-212410ARL-TR-2973.
    [88] Wang J T, Protard A R. Deployment Simulation of Ultra-Lightweight Inflatable Structures.43rdAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Denver Colorado USA,2002, AIAA-2002-1261.
    [89] Fang H, Liu M, Hah J. Deployment Study of a Self-Rigidizable Inflatable Boom.44thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Norfolk England,2003, AIAA-2003-1975.
    [90]沈世剑.膜结构-发展迅速的新型空间结构.哈尔滨建筑大学学报,1999,32(2):11~15.
    [91] Lou M C. Development and Application of Space Inflatable Structures.22ndIntemationalSymposium on Space Techylology and Science, Morioka Japan,2000, ISTS2000-C-21.
    [92] Christiansen E L, Kerr J H. Flexible and Deployable Meteoroid/Debris Shielding for Spacecraft.International Journal of Impact Engineering,1999,23(1):125~136.
    [93] Guidanean K, Williams G T. An Inflatable Rigidizable Truss Structure with Complex Joints.Proceedings of the AIAA/ASME/SAE39thStructures, Structural Dynamics and MaterialsConference, Long Beach CA USA,1998, AIAA-1998-2105.
    [94] Freeland R E, Billyeu G D, Veal G R. Inflatable Deployable Space Structures TechnologySummary.49thInternational Astronautical Congress, Melbourne Australia,1998, IAF-98-I.5.01.
    [95] Smith S M, Elliott M D, Main J A, et al. Post Flight Testing and Analysis of Zero-gravityDeployment of an Inflatable Tube. The42ndAIAA ASME/ASCE/AHS Structures, StructuralDynamics, and Materials Conference. Seattle Washington USA,2001, AIAA-2001-1265.
    [96] Schuler P, Haghighat R. Space Durable Polymeric Films: Advanced Materials for InflatableStructures and Thermal Control Applications. SAMPE Journal,1999,35(5):37~44.
    [97] Mcelory P M, Cadogan D P. Analytical Evaluation of Thermal Control Coatings for anInflatable Composite Tube.41stAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference and Exhibit, Atlanta GA USA,2000, AIAA-2000-1640.
    [98] Greschik G, Mikulas M. A Preliminary Study of Some Dynamic Characteristics of Deploymentof L’Garde In-STEP Inflatable Antenna Flight Experiment. IAF Report,1995.
    [99] Slade K, Tinker M L. Analytical and Experimental Investigation of the Dynamics of PolyimideInflatable Cylinder. Proceedings of40thAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference and Exhibit, AIAA/ASME/AHS Adaptive StructuresForum and AIAA Forum on Non-Deterministic Approaches,1999, AIAA-99-1518.
    [100] Khalil T B. Integrated Vehicle-Dummy-Airbag Model for Frontal Crash Simulation by FEAnalysis. Crashworthiness and Occupant Protectection in Transpotation Systems, ASME,1995,355~382.
    [101] Fay P, Steel C R. Forces for Rolling and Asymmetric Pinching of Pressured Cylindrical Tubes.Journal of Spacecraft and Rockets,1999,36(4):531~537.
    [102] Comer R L, Levy S. Deflection of an Inflated Circular Cylindrical Cantilever Beam. AIAAJournal,1963,1(7):1652~1655.
    [103]卫剑征.薄膜圆柱管充气展开动力学特性模拟[硕士学位论文].黑龙江:哈尔滨工业大学,2004.
    [104] Salama M, Fang H, Lou M. Resistive Deployment of Inflatable Structures.42ndAIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Seattle,2001, AIAA-2001-1339.
    [105]王晓华.空间充气展开结构折叠及展开过程仿真分析[硕士学位论文].黑龙江:哈尔滨工业大学,2005.
    [106] Steele C R, Fay J P. Inflation of Rolled Tubes. Proceedings of Symposium on DeployableStructures: Theory and Application Proceedings of the IUTAM Symposium, Cambridge U.K.,1998,393~403.
    [107]李苇.充气结构在大型星载天线中的应用[硕士学位论文].陕西:西安电子科技大学,2007.
    [108] Clemsky L, Smith S M. Deployment Dynamics of an Inflatable Array.40thAIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, St Louis,1999, AIAA-1999-1520.
    [109] Salama M, Kuo C P, Lou M. Simulation of Deployment Dynamics of Inflatable Structures.AIAA Journal,2000,38(12):2277~2283.
    [110] Freeland R E, BilYeu G. In-Step Inflatable Antenna Experiment. IAF Proceedings of the43rdCongress of the International Astronautical Federation, Washington D C, IAF Report,1992.
    [111] Pappa R S, Giersch L R, Quagliaroli J M. Photogrammetry of a5m Inflatable Space Antennawith Consumer Digital Cameras. Experimental techniques,2000,25(4):21~29.
    [112] Naboulsi S. Investigation of Geometric Imperfection in Inflatable Aerospace Structures. Journalof Aerospace Engineering,2004,17(3):98~105.
    [113] Tang T N. Edge Effects in Pressurized Membranes. Journal of Engineering Mechanics,2002,128(10):1100~1104.
    [114] Richard C, Eric S. Design and Flight Qualification of the Rigidizable InflatableGet-Away-Special Experiment. Journal of Spacecraft and Rockets,2010,4(47):659~669.
    [115] Raymond L, David T. Computational Investigation of Flow over Inflatable Airfoils at MultipleReynolds Numbers.49thAIAA Aerospace Sciences Meeting including the New Horizons Forumand Aerospace Exposition, Orlando, Florida,2011, AIAA-2011-2510.
    [116]徐彦,关富玲,管瑜.充气可展开结构精度分析和形面调整.空间科学学报,2006,26(4):292~297.
    [117] Wang C G, Du X W. Numerical Simulation of Wrinkles in Space Inflatable MembraneStructures. Journal of Spacecraft and Rockets,2006,43(5):1147~1149.
    [118]王长国,杜星文,郝晓东.空间充气薄膜结构的褶皱分析.力学学报,2008,40(3):331~338.
    [119] Shuai Y, Xia X L, Tan H P. Radiation Performance of Dish Solar Concentrator/Cavity ReceiverSystems. Solar Energy,2008,82(1):13~21.
    [120]二代龙震工作室.Pro/Mechanism/MECHANICA Wildfire2.0机构/运动/结构/热力分析.北京:电子工业出版社,2006.
    [121]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T1800.2-2009,产品几何技术规范(GPS)极限与配合——第2部分:标准公差等级和孔、轴极限偏差表.2009,3,16.
    [122]李铁,张璟,唐大伟.太阳能斯特林机用新型吸热器的设计与模拟.工程热物理学报,2010,31(3):451~453.
    [123]陆洪彬,陈建华,冯春霞,等.新型太阳热反射隔热涂料的研制.太阳能学报,2008,29(12):1522~1528.
    [124]金东寒.斯特林发动机技术.哈尔滨:哈尔滨工程大学出版社,2009,9.
    [125] National Institute of Standards and Technology. NIST Chemistry WebBook [EB/OL].http://webbook.nist.gov/cgi/fluid.cgi?ID=C7440597&TUnit=K&PUnit=MPa&DUnit=mol%2Fl&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&Type=IsoTherm&RefState=DEF&Action=Page,2011-05-13/2011-06-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700