充气展开自硬化支撑管的设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间充气展开技术是一项新技术,在构建大型空间结构方面具有非常独特的优势。空间充气展开结构通常由复合薄膜制成,具有超轻、折叠体积小、制作成本低和很高的展开可靠性等显著优点,是超大型空间结构的发展方向。充气展开支撑管是一维展开结构,是空间充气展开结构的基本构件和重要组成部分,对其进行研究具有很大的意义。
     本文研究的充气展开自硬化支撑管由层合碾压铝箔薄膜和弹簧卷尺制作而成,构成管壁的层合碾压铝箔薄膜材料具有充气硬化的特性,粘贴在管壁内侧轴线方向的弹簧卷尺则是承受荷载的主要构件。充气展开自硬化支撑管具有制作简单、强度高、费用少、质量轻、折叠体积小等优点,而且其硬化方法简单、可靠。
     本文首先通过查阅国内外大量相关文献,介绍了充气展开技术的优点,对充气展开结构在国内外的发展应用情况进行了总结,并预测了充气展开结构的发展前景。然后介绍了目前国内外发展起来的各类一维展开支撑结构,包括机械展开支撑结构和充气展开支撑结构;通过对比选择,阐述了本文研究的充气展开自硬化支撑管所采用的结构方案,并对材料参数、几何参数、性能指标参数进行了归纳。对充气薄膜圆柱管的极限弯矩表达式进行了推导,根据材料的不同力学模型假设,得出了两个不同的极限弯矩表达式。对充气展开自硬化支撑管的各个结构参数进行研究,确定了层合碾压铝箔薄膜的充气硬化气压,确定了弹簧卷尺截面各个参数的最优值。制作了层合碾压铝箔薄膜充气展开/硬化支撑管和充气展开自硬化支撑管模型,对其制作工艺作了研究,并进行了力学分析。
     最后总结了充气展开结构展开控制的必要性及其要求,介绍了一维展开支撑管的多种展开控制方法及其装置。研究了本文制作的充气展开自硬化支撑管的展开控制所采用的展开控制方法,即通过在充气展开自硬化支撑管的外壁粘贴尼龙搭扣进行展开控制。通过实验验证了其可行性,并提出了一种模拟充气展开自硬化支撑管展开过程的数值方法。
The space inflatable technology is a brand new technology;it has the very unique superiority in fabricating ultra-large space structures. Space inflatable structures are usually made from large thin membranes, and they are of ultra-lightweight, small package volume, low cost, and high deployable reliability. Space inflatable booms are one dimension deployable structures;they are the basic elements of space structures such as inflatable antennas, solar arrays, telescopes.The inflatable self-rigidizable boom studied in this paper is comprised of aluminum laminates and tape springs. The aluminum laminates are rigidizable materials, and the tape springs attached to the inner wall of the boom are the main load-support components. The inflatable self-rigidizable boom is simply made, strong, inexpensive, ultra-light, of low package volume, and the rigidize method is simple and reliable.The domestic and abroad state of art of the inflatable structures is introduced, and also the merits of inflatable structures. By comparing various kinds of deployable booms, a solution is brought forward, that is the inflatable self-rigidizable boom. The material parameter, geometry parameter and performance parameter of the boom is also concluded. Two models have been introduced to predict the collapse moment of a flexible inflatable boom. The rigidize pressure of aluminum laminates is predicted and the tape spring is studied to determine the most excellent section. An inflatable/rigidizable boom and an inflatable self-rigidizable boom are made, and their mechanical characters are studied.Finally, the inflatable boom deployment control methods and their deployment control mechanisms are introduced. The deployment control method used in this paper is studied, that is the so-called Velcro deployment control mechanisms. An experiment is conducted to testify its feasibility. A numerical method is also introduced to simulate the deployment of the inflatable self-rigidizable boom.
引文
[1] Michael Kohl, Thomas Digel, History of telecommunications between 1960 and 1975, http://www2.fht-esslingen.de/telehistory/1960.html.
    [2] Dr. Costa Cassapakis, Dr. Mitch Thomas, Inflatable Structures Technology Development Overview, AIAA 95-3738.
    [3] S.L.Veldman, C.A.J.R. Vemeeren, Inflatable Structures In Aerospace Engineering-An Overview, Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noorwijk, The Netherlands, 29 November-1 December 2000. (ESA SP-468, March 2001).
    [4] D. Cadogan, M. Grahne, Inflatable Space Structures: A New Paradigm For Space Structure Design, 49th International Astronautical Congress, Sept 28-Oct 2, 1998/Melbourne, Australia.
    [5] 韩智超,Kapton-A1-Kapton 充气展开支撑管的结构参数设计与工艺研究,哈尔滨工业大学硕士论文,2003.
    [6] 林国昌,铝/聚合物薄膜的层合工艺与高低温条件下的力学行为研究哈尔滨工业大学硕士论文,2003.
    [7] 李建国,可伸缩式转移居住舱结构方案探讨,北京航空航天大学硕士论文,2003.
    [8] 孙凯,紫外光固化复合材料制备充气展开器件的研究,北京航空航天大学硕士论文,2003.
    [9] 王忠涛,原子氧、紫外辐射、试样温度复合效应对空间材料影响的实验研究,北京航空航天大学硕士论文,2000.
    [10] 陈来文,LEO 环境聚合物表面材料的原子氧剥蚀理论研究,北京航空航天大学博士后论文,2002.
    [11] 关富玲,徐彦,管瑜,充气可展天线精度分析和形面调整,空间科学学报,2005年(录用).
    [12] Miura, K, Concepts of deployable space structures, International Journal of Space Structures 8, 1 & 2(1993), 3-16.
    [13] 苏斌,索杆式伸展臂的设计与分析,浙江大学硕士论文,2003.
    [14] Aguirre, M., Bureo, A., Fuentes, M., Rivacoba, J., The collapsible tube mast (CTM). ESA, Proceedings of the Second European Space Mechanisms and Tribology Symposium, SP-231, pp. 75-81, 1985.
    [15] Astro Aerospace Corp, STEM Design characteristics and parameters, AAC-B-006, 1985.
    [16] Astro Research Corp, Astromasts for space applications, ARC-B-004, 1978.
    [17] Astro Research Corp, STEM design and performance, ARC-B-008, 1978.
    [18] 石卫华,索杆式展开结构的设计与分析及骨架式膜结构研究,浙江大学硕士论文,2003.
    [19] AEC-Able Engineering Company, Inc. http://www.aec-able.com.
    [20] Gunnar Tibert, Deployable Tensegrity Structures for Space Applications, Royal Institute of Technology Department of Mechanics,2002.
    [21] D. K. Darooka, D. W. Jensen, Advanced Space Structure Concepts and Their Development, AIAA-2001-1257.
    [22] David P. Cadogan, Stephen E. Scarborough, Rigidizable Materials for use in Gossamer Space Inflatable Structures, AIAA 2001-1417, AIAA Gossamer Spacecraft Forum April 16-19, 2001/Seattle, WA.
    [23] Ronald E. Allred, Andrea E. Hoyt, UV Rigidizable Carbon-Reinforced Isogrid Inflatable Booms, AIAA-2002-1202.
    [24] David P. Cadogan, Stephen E. Scarborough, John K. Lin, Shape Memory Composite Development for Use in Gossamer Space Inflatable Structures, AIAA 2002-1372, AIAA Gossamer Spacecraft Forum April 22-25, 2002/Denver, CO.
    [25] K.A. Seffen, Z. You, S. Pellegrino, Folding and deployment of curved tape springs, International Journal of Mechanical Sciences 42 (2000)2055-2073.
    [26] K. A. Seffen, S. Pellegrino, Deployment dynamics of tape springs, Proc. R. Soc. Lond. A (1999) 455, 1003-1048.
    [27] 李作为,杨庆山,刘瑞霞,薄膜结构褶皱研究述评,中国安全科学学报,Vol.14 No.7 Jul.2004.
    [28] Stein, Hedgepeht, Analysis Of Partly Wrinkled Membranes, NASA TN D-813.
    [29] 徐芝纶,弹性力学,高等教育出版社,1990.
    [30] 宋余九,金属材料的设计·选用·预测,机械工业出版社,1998.
    [31] Billy Derbes, Case Studies In Inflatable Rigidizable Structural Concept For Space Power, AIAA-99-1089:1-1.
    [32] David P. Cadogan, Mark S. Grahne, Deployment Control Mechanisms for Inflatable Space Structures, 33rd Aerospace Mechanisms Conference-May 1999.
    [33] George H. Sapna Ⅲ, John Folke, Charles R. Sandy, David P. Cadogan, Inflatable Boom Controlled Deployment Mechanism for the Inflatable Sunshield In Space (ISIS) Flight Experiment, 34th Aerospace Mechanisms Conference, May 11-13 2000, NASA GSFC, Greenbelt, MD.
    [34] Eve M. Wooldridge, Charles E. Powers, Jacqueline A. Townsend, Wanda C. Peters, David P. Cadogan, John K. H. Lin, Effects of Manufacturing and Deployment on Thin Films for the NGST Sunshade, AIAA 2001-1349.
    [35] Charles R. Sandy, Next Generation Space Telescope Inflatable Sunshield Development, 0-7803-5846-5/00 2000 IEEE.
    [36] James Stein, Charles Sandy, Recent Developments in Inflatable Airbag Impact Attenuation Systems for Mars Exploration, AAAF-061.
    [37] Lou, M.C., Fang, H., and Hsia, L., "Development of Space Inflatable/Rigidizable STR Aluminum Laminate Booms," Presented at the AIAA 2000 Aerospace Conference, September 2000, Long Beach, CA.
    [38] Cliff E. Willey, Ron C. Schulze, Robert S. Bokulic, William E. Skullney, John K. H. Lin, Dave P. Cadogan, Carl F. Knoll, A Hybrid Inflatable Dish Antenna System for Spacecraft, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference & Exhibit AIAA Gossamer Spacecraft Forum April 16-19, 2001/Seattle, WA.
    [39] D. K. Darooka, S. E. Scarborough, D. P. Cadogan, An Evaluation of Inflatable Truss Frame for Space Applications, AIAA-2001-1614.
    [40] D. Cadogan, C. Sandy, M. Grahne, Development and Evaluation of the Mars Pathfinder Inflatable Airbag Landing System, IAF-98-I.6.02.
    [41] Edward J. Simburger, James Matsumoto, John Lin, Carl Knoll, Suraj Rawal, Alan Perry, Dave Barnett, Todd Peterson, Tom Kerslake, Henry Curtis, Development Of A Multifunctional Inflatable Structure For The PowerSphere Concept, AIAA-2002-1707.
    [42] D. Cadogan, J. Stein, M. Grahne, Inflatable Composite Habitat Structures for Lunar and Mars Exploration, IAA-98-IAA. 13.2.04.
    [43] John K. H. Lin, George H. Sapna Ⅲ, David P. Cadogan, Stephen E. Scarborough, Inflatable Rigidizable Isogrid Boom Development, AIAA 2002-1297.
    [44] C. Perrygo, D. Cadogan, M. Grahne, Inflatable Truss Support Structures for Future Large Space Telescopes, NASA.
    [45] David P. Cadogan, John K. Lin, Mark S. Grahne, Inflatable Solar Array Technology, AIAA-99-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700