微型热泵排热系统的研制与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间热泵排热系统由于能够利用循环工质的潜热,提高辐射器的工作温度,提升废热的品质,性能系数高,因而被广泛认为是下一代航天器热控制技术。压缩机作为热泵系统的关键技术,直接关系系统使用性能。本文搭建了微型热泵性能试验系统,进行了试验研究,设计了空间辐射冷凝器,研制了微型热泵排热系统样机,并对样机性能进行了测试。
     首先,搭建了微型热泵性能试验台,对其进行了试验分析,得到了充注量、冷却水温度、冷冻水温度以及压缩机控制电压对制冷量、散热量、压缩机耗功以及制冷COP的影响关系。试验结果表明,冷冻水温度为18℃,冷却水温度35℃情况下,制冷剂的最佳充注量为220g,系统最大制冷量279W,对应制冷COP为2.31;冷却水温度由21℃增加到47℃时,制冷量由505W降低至426W,制冷COP由5.64降低至2.78;冷冻水温度由18℃增加至52℃时,系统制冷量由236W增加至673W,制冷COP由2.01增加至5.40;压缩机控制电压越高,系统制冷量越大,压缩机耗功增加,制冷COP降低。此外,还对压缩机进行了48小时的稳定性实验,压缩机具有良好的稳定特性,可以在长时间的供应400W以上制冷量。
     设计了热负荷为450W的空间管道-肋片辐射器,建立了热分析模型,计算得到了辐射器肋片宽度、导管直径对单位面积传热量、重量及肋片效的影响曲线,最终以单位面积传热量最大为依据确定了最佳肋片宽度,得到管道-肋片辐射器各参数,得到肋片宽度方向温度分布曲线。分析了在地面环境温度下,管道-肋片辐射器包括自然对流、辐射散热在内的复合散热情况,得到了不同温度下,辐射冷凝器的复合散热量曲线。
     研制了微型热泵系统样机,测试了样机的工作特性。在环境温度22℃,冷冻水19℃时,样机的最佳充注量为180g,最大制冷量达到344W;冷冻水温度29℃,样机在12h的连续工作中制冷量保持在500W以上,运转平稳,噪音低。最后分析了研制的微型热泵排热系统样机存在的问题,提出了初步的改进方案。
Heat pump system is widely considered as the next generation thermal control technology of spacecraft because of being able to take advantage of the refrigerant latent heat, raising radiator temperature, improving the quality of waste heat and having a higher COP. As the key technology of heat pump system, compressor is directly related to the performance of it. In this paper, a micro-heat pump performance test system was set up, experimental studies were carried out, a space radiation condenser was designed, a miniature heat pump system prototype was designed and developed, and oprating characteristics were conducted.
     Firstly,an experimental system is designed and set up for investigating the operation characteristics of miniature heat pump system, refrigerating output, power input and COP were obtained under different work conditions. The measured results indicate that the optimal charging quantity is 220g, the maximum refrigerant output is 279W and COP is 2.31 in conditions of 18℃chilled water and 35℃cooling water. When the cooling water temperature raised from 21℃to 47℃, the cooling capacity decreased from 505W to 426W and the COP reduced from 5.64 to 2.78. When the chilled water temperature raised from 18℃to 52℃, the cooling capacity increased from 236W to 637W and the COP increased from 2.01 to 5.40. Cooling capacity and power consumption increase rapidly as the control voltage changed from 1V to 5V, but COP decrease. Moreover, a 48 hours’stability test was conducted, the compressor can run well with a 400W refrigerant capacity.
     A 450W heat rejection fin-tube radiator was designed; a thermal analysis model was established; curves were obtained which described variations of heat rejection capacity of radiators per unit area, radiator weight and fin efficiency against fin width and tube diameter. Optimal fin width was determined based on the maximum heat rejection capacity of radiators per unit area, after that the other parameters were all calculated, the curves against temperature along fin width were obtained. Composite heat rejections include nature convection and thermal radiation in different environment temperature on the ground which the fin-tube radiator rejected was analysis and the heat rejection curves were got.
     A miniature heat pump system prototype was designed and developed, and operating characteristics were conducted. In conditions of 22℃environment temperature and 19℃chilled water inlet temperature, the best refrigerating charge was 180g with a maximum refrigerating output which was 344W. When the chilled water inlet temperature was 29℃, the refrigerating output could reach more than 500W of the prototype which operated smoothly with low noise persistently. Finally the problems of the miniature heat pump prototype were analyzed and improvement scheme were put forward.
引文
1李明海.光伏热泵强化空间辐射器排热的理论分析.太阳能学报. 2001, 22(1): 91~95
    2 M.K Ewert. Active Thermal Control Systems for Lunar and Martian Exploration. SAE Papers, 901243: 613~623
    3 M.K. Ewert. Investigation of Lunar Base Thermal Control System Options. SAE Papers. 932112:829~840
    4 M.K. Ewert, J.R. Keller, Brent Hughes. Conceptual Design of A Solar Powered Heat Pump for Lunar Base Thermal Control System. SAE Papers, 961535: 833~844
    5 Darius Nikanpour, Lina De-parolis. Space-Based Heat Pumps for A Lunar Lander/Rover Thermal Control. SAE Paper, 961536: 845~855
    6闵桂荣,郭舜.航天器热控制. 2.科学出版社, 1998:115~135
    7王晓路.航天器变频回热热泵系统研究,南京理工大学硕士论文. 2010:1~4
    8侯增祺,胡金刚.航天器热控制技术,中国科学技术出版社, 2008:316~318
    9 F.Berner. Initial Development of A Vapor Compression for A Heat Pump to Be Used in Spacecraft. ESA.CR (P), 1977: 1029~1031
    10 J.P. Bouchez, L. Bussolino. Study and Design of A Heat Rejection System for Advanced Spacecraft and Payload Thermal Control. SAE Papers, 820845: 601~611
    11 H.G. Jeffrey, L. Thomas, M.K Ewert, et al. High Temperature Lift Heat Pump Refrigerant and Thermodynamic Cycle Selection. SAE Papers, 941272: 813~823
    12 R.P. Scaringe. Heat Pump Augmented Spacecraft Heat Rejection Systems. Journal of Spacecraft and Rockets.1990, 27(3): 318~323
    13 D.K. Edwards, R.F Richards. Optimum Heat Rejection Temperature for Spacecraft Heat Pumps, Journal of Spacecraft and Rockets.1989.26 (5):303~307
    14 P.F. Dexter, W.L. Haskin. Analysis of Heat Pump Augmented System for Spacecraft Control. AIAA paper, 1984, 4(3):112~117
    15 M.A.Merrigan, R.S. Reid. Heat Pump Augmented Radiators for Spacecraft Thermal Management. Transactions of the Fifth Symposium on Space Nuclear Power Systems, in New Mexico University, 1988. SEE N88-24374: 221~226
    16王晶,袁卫星,袁修干,余后满.航天领域蒸汽压缩热泵技术研究进展.航空学报. 2005,26(5): 529~534
    17 R.P. Scaringe. Investigation of Advanced Heat Pump Augmented Spacecraft Heat Rejection System. AIAA Paper, 89-0072
    18 G.Grossman. Heat Pump for Enhancement of Heat Rejection from Spacecraft. Propulsion and Power, 1990, 6:635~644
    19 R.P. Scaringe, W.Haskin. Spacecraft Heat Pump Thermal Bus Development Status & Technical Issues.Proceedings of the 25th Intersociety Energy Conversion Conference, 1990, 2:130~135
    20 K.R. Sridhar, M. Gottmann. Thermal Control System for Lunar Base Cooling. Journel of. Themphysics and Heat Transfer, 1996, 10(3):490~496
    21 Aidoun Zine, D. Nikanpour. Vapor Compression Heat Pump for A Lunar Lander/Rover Thermal Control. SAE Papers, 961537: 830~839
    22 M.K.Ewert. Advanced Active Thermal Control Systems Architecture Study. Technical Memorandum, 1996, 10:12~24
    23 K.R.Sridhar, M.Gottmann. Evaluation of A Reverse Brayton Cycle Heat Pump for Lunar Base Cooling. SAE Papers, 941271: 805~813
    24 T.D. Swanson, R. Radermacher. Low-temperature Thermal Control for A Lunar Base. SAE Papers, 901242:603~613
    25 T.D. Swanson, K.R. Sridhar, M. Gottmann. Moderate Temperature Control Technology for A Lunar Base. SEA Papers, 932114: 852~863
    26 G. Grossman. Absorption Heat Pump for Enhancement of Heat Rejection from Spacecraft. IECEC, 1989, 51~56
    27 Hae-Jin Choi, A.F. Mills. Metal Hydride Heat Pump for Upgrading Spacecraft Waste Heat. Journel of Thermal Physics and Heat Transfer. 1991, 26(5):135~141
    28李劲东,何知朱.强化排热的空间热泵系统分析.航天器工程, 1999,8(3): 15~20
    29李明海等.热泵——废热回收在空间站热管理中的应用.太阳能学报, 2002,23(2):181~186
    30李明海,过增元.航天器热控系统中的热泵——蓄冷组合热控方案.宇航学报, 2002, 23(2):1~5
    31郁永章,孙嗣莹,陈洪俊.容积式压缩机技术手册.机械工业出版社.北京, 2000:775~778
    32吴业正.小型制冷装置设计指导.机械工业出版社, 2004:1~8
    33韩宝琦,李树林.制冷空调原理与应用. 3.机械工业出版社, 2003: 14~20
    34吴业正.制冷与低温技术原理.北京:高等教育出版社, 2004: 74~83
    35徐德胜.制冷空调原理与设备.上海交通大学出版社, 1996: 230~232
    36钱文波,冯永斌,晏刚.家用空调系统制冷剂充注量的研究.制冷与空调, 2010,10(2): 75~79
    37金晓春,付海芬,杨俊莉. HCs冷柜系统最佳充注量的实验研究与理论分析.制冷与空调, 2005, 5(2): 66~70
    38张良俊,吴静怡,王如竹.充注量对小型热泵热水器性能影响的实验及分析.上海交通大学学报, 2006, 40(8): 1307~1311
    39刘金平,曹乐,许雄文.基于分布参数的制冷装置制冷剂充灌量的研究.制冷技术, 2010, 38(12): 24~30
    40王文斌.小型风冷热泵制冷剂充注量实验研究.制冷与空调, 2008, 22(3): 114~117
    41孔祥强,张东,李瑛等.制冷剂充注量对太阳能热泵热水器性能的影响.上海交通大学学报, 2010, 44(10): 1372~1377
    42黄士群.浅析冷却水温度对制冷量的影响.冷冻与速冻食品工业, 1997, 4: 12
    43吴占臣.蒸发温度和冷凝温度变化对制冷机性能的影响.化工装备技术, 2002, 23(2): 48~50
    44韩润虎.美国谷轮公司压缩机应用技术讲座第16讲压缩机故障分析(4)—过热.制冷技术, 2005,2: 38~41
    45沙定国,误差分析与测量不确定度评定,中国计量出版社, 2003:125~145
    46闵桂荣.卫星热控制技术,宇航出版社, 1991: 277~279
    47阙雄才,陈江平,姚国琦等.汽车空调实用技术.北京:机械工业出版社, 2004: 176~182
    48刘志辉.微型制冷系统优化设计研究.北京工业大学工学硕士学位论文. 2009: 27~64
    49余小章.空间辐射器热分析.宇航学报. 1994, 15(12): 1433~1437
    50杨世铭,陶文铨.传热学. 3.高等教育出版社. 2006:20~300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700