微型制冷系统性能实验研究及高效换热器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,人们在能源和动力、医疗卫生、军事、航空、航天等领域中,对环境温度提出了更高的要求,同时也对制冷装置提出了小型化、轻量化的要求,微型制冷系统适用于特殊环境下的个人冷却和小空间特殊冷却,有着广阔的开发前景。与其他制冷方式相比,蒸汽压缩式微型制冷系统具有高效紧凑的特点。
     本文采用利用东元电机研发的微型压缩机组装了微型制冷系统,并搭建了微型制冷系统实验台,进行了微型制冷系统的性能试验,获得了制冷剂充注量、环境温度、冷冻水温度、冷冻水流量等参数对制冷系统性能的影响曲线。实验结果表明,该制冷系统的最佳充注量为40g;随环境温度升高,系统耗功增加,制冷量减小,COP减小;随冷冻水温度升高,系统耗功减小,制冷量增加,COP迅速增大。随冷冻水质量流量增大,制冷系统压比略有增大,耗功增加,制冷量增加,COP增大。
     本文针对450W热负荷无机热管冷凝器建立了传热模型,通过模拟计算得到了冷凝管管径、热管间距、翅片宽度对传热性能及重量的影响曲线,最终选取了最佳参数组合及结构优化方案。计算结果表明将无机热管应用于微型冷凝器可降低冷凝器制冷剂侧的阻力,提高制冷系统的效
     本文建立两种螺旋管式蒸发器的传热模型,对两种模型进行了分析,认为管内走水管外走制冷剂的数学模型可大大提高总传热系数,减小所需螺旋管长度,降低制冷剂侧阻力,尽管水侧阻力增大,但通过选择合适的管径,增大幅度并不大,因此更符合制冷系统的微型化要求。同时本文还进行了一种满足300W冷负荷的微型螺旋管式蒸发器的设计,并给出具体设计过程和蒸发器的结构图,为实际加工提供了方便。
With the development of science and technology, people set a higher request to the ambient temperature in the fields such as energy and power, military, aviation, astronautics and so on. With some advantages including compactness, lightness, high performance and cost effectiveness, the miniature refrigeration system can be widely used for personal cooling and high power electronic components cooling. Compared with other cooling methods, vapor compression refrigeration has advantages of high efficiency and compactness.
     In this paper, a miniature refrigeration system was integrated using miniature compressor developed by TECO Energy, Inc. A testing system was set up and performance experiments of miniature refrigeration system with different operating parameters were conducted. The curves against the refrigerant charging quantity, ambient temperature, chilled water temperature and flux were obtained. Experimental results show that the optimal charging quantity of this cooling system is 40g; with ambient temperature raising, system power consumption increases, cooling capacity decreases, and COP also decreases; with the chilled water temperature raising, system power consumption decreases, cooling capacity increases and COP increases rapidly. With the mass flow of chilled water increasing, cooling system pressure ratio increased slightly, system power consumption decreases, cooling capacity increases and COP increases.
     In this paper, a heat transfer model of 450W heat load heat pipe condenser was established. The heat transfer performance and mass curves against condensation tube diameter, heat pipe diameter, fin width were obtained by simulation. Ultimately, the best parameter combination and structural optimization design plan were selected. The simulation results show that the heat pipe condenser can reduce the refrigerant side pressure and then improve the efficiency of refrigeration system.
     In this paper, two types of spiral-tube evaporators heat transfer model were established and analyzed. From the analysis, the mode of that water flowing inside the pipe and refrigerant flowing outside the pipe can greatly increase the overall heat transfer coefficient. Decreasing the length of spiral tube and the pressure of refrigerant side can meet the requirement of designing micro refrigeration system. Meanwhile, one micro spiral-tube evaporator with 300W cooling load was designed and established. To facilitate the practical processing, the detailed designing process and the structure diagram of evaporator were presented.
引文
1王晶,袁卫星,袁修干,余后满.航天领域蒸汽压缩热泵技术研究进展.航空学报. 2005,(5):529~534
    2李劲东,何知朱,热泵强化大型航天器排热的概念研究及其理论分析.航天器工程.1997,(3):45~51
    3钟晓晖,马重芳,吴玉庭等.用于个人冷却的微型制冷系统研究现状.暖通空调,2006,1(37):38~47
    4杨海明,张丽丽,周皖生.一种微型空调器的优化设计.低温与超导. 2004,32(1):29~31
    5钟晓晖.微型制冷系统仿真与实验研究.工学博士学位论文. 2007,4:1~100
    6郁永章,孙嗣莹,陈洪俊.容积式压缩机技术手册.机械工业出版社.北京, 2000:775~778
    7 Friedrich C R, Coane P J, Vasile M J. Micromilling Development and Application for Microfabrication. Micro Electronic Engineering. 1997, 35:367~372
    8 Friedrich C R. Near Cryogenic Machining of Polymethyl Methacrylate for Micromilling Tool Development. Materials and Manufacturing Processes. 2000, 15(5): 667~678
    9 Kang S W, Chen J S, Hung J Y. Surface Roughness of (110) Orientation Silicon Based Micro Heat Exchanger Channel. Int J Mach Tools Manufacture. 1998, 38: 663~668
    10 Vasile M J, Friedrich C R, Kikkeri Betal. Micrometer Scale Machining Tool Fabrication and initial Results. Precision Engineering. 1996, 19:180~186
    11高红,陈旭,朱企新.微型换热器研究进展.化工机械. 2004:244~248
    12 Liao X S, Liu Y, Ning Y Q. The Optimal Design of Structure Parameter for Micro-Channel heat sink. Proceedings of SPIE-The international Society for Optical Engineering. 2002, 4914:181~186
    13沈国民,谢军龙,韩军.多元平行流冷凝器的换热计算方法.建筑热能通风工程. 2002:30~34
    14包涛,董玉军,周翔,胡跃明,袁秀玲.平流式冷凝器传热流动性能理论研究.制冷与空调. 2004,10(5):28-31
    15吴吕梁,石东琰等.高效的紧凑型换热器特点及其发展.东北林业大学学报. 1995,2(23):108~113
    16刘志辉.微型制冷系统优化设计研究.工学硕士学位论文. 2007, 4:1~100
    17崔廷.微型空冷式冷凝器的实验研究.北京工业大学硕士学位论文. 2006, 5:1~51
    18王艳红.微型气液换热器的研制和实验研究.北京工业大学硕士论文. 2005:1~61
    19 Whitman W C, Johnson W M, Tomczyk J A.制冷与空气调节技术.电子工业出版社, 2008,8:113~173
    20揭基华.冰箱用丝管式冷凝器的设计计算.制冷. 1994,(1):47~50
    21郑钢,宋吉,吴晓伟.微肋管结构对管内冷凝换热影响的研究.制冷与空调. 2007,7(2):80~82
    22王维城,张立宁,王苏清,刘建华.制冷剂在微细肋管内凝结核沸腾换热性能及其阻力性能的准则关联式.制冷学报. 1992,(3):19~25
    23 Shinahara Y, Oizumi K., Itoh Y, et a1. Heat transfer tubes with grooved inner surface[P]. US Patent 4658892. 1987, 08,21
    24 Carey V P. Liquid-vapor Phase-change Phenomena. Bristol.USA, Taylor& Francis, 1992
    25 Schlager L M, Pate M B, Bergles A E. Evaporation and condensation heat transfer and pressure drop in horizontal, 12.7-mm micro-fin tubes with refrigerant 22. Journal of Heat Transfer 1990,112(4):1041~1047
    26李晓伟,孟继安,陈泽敬,李志信.微肋管及强化微肋管换热和阻力实验研究.工程热物理学报. 2007,28(5):817~819
    27吴晓敏,王晓亮,王维城.水平新型微肋管内流动冷凝换热及流阻特性.上海理工大学学报. 2003, 25(4):326~329
    28 Chamra L M, Webb R L. Advanced micro-fin tube for condensation. Int J Heat Mass Transfer. 1996, 39(9):1839~1846
    29 Tang L, Ohadi M M, Johnson A T. Flow condensation in smooth and a micro-fin tubes with HCFC-22, HFC-134a and HFC-410a Refrigerants. Enhanced Heat Transfer. 2000, 7(5):
    289~310
    30 Kedzierski M A, Webb R L. Practical Fin Shapes for Surface-Tension-Drained Condensation. Journal of Heat Transfer. 1990, 112:479~485
    31罗昔联,王沣浩,孟祥兆,吴志勇. R22和R407C在水平微肋管内冷凝传热与压降的性能分析.制冷与空调. 2006, 6(6):13~16
    32章熙民,任泽霈,梅飞鸣.传热学第四版.中国建筑工业出版社, 2001
    33姜正良.条缝肋管风冷换热器传热系数计算及最佳设计.航空动力学报.1995,10(1):50~52
    34李惠珍,屈治国,程永攀,陶文铨.开缝翅片流动和传热性能的实验研究及数值模拟.西安交通大学学报. 2005, 39(3):229~232
    35 Wang C C, Lee W S, Sheu W J. A comparative study of compace enhanced fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer. 2001,44(18):3565-3573.
    36 Yun J Y, Lee K S. Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. International Journal of Heat and Mass transfer. 2000, 43(14):2529-2539
    37周启瑾,赵艳云.条形翅片管换热器的性能研究.上海机械学院学报.1987
    38吴业正.小型制冷装置设计指导.机械工业出版社, 2004.1:87~100
    39雅柯勃松.小型制冷机.机械工业出版社,1982
    40 Kadambi V, Giansante J E. The Effect of Lances on Finned-Tube Heat Exchanger Performance. A SHRAE Transactions. 1983, 89(2741):85~89
    41崔文智.三维微肋螺旋管内流动沸腾传热与流型.重庆大学博士学位论文. 2003,10:1~85
    42林宗虎.强化传热及其工程应用.机械工业出版社,北京,1987:1~70
    43彦启森,石文星,田长青编著.空气调节用制冷技术(第三版).中国建筑工业出版社出版, 2004:76~111
    44张祉祐主编.制冷原理与设备.机械工业出版社出版, 1987:100~199
    45郭孝礼.冷库制冷设计手册.农业出版社,北京,1991:479~515
    46张平,丁国良.制冷剂蒸汽最小回油速度模型及在垂直吸气管设计中的应用.机械工程学报. 2008,44(4):179~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700