利用甲烷氧化混合菌生物合成聚β-羟基丁酸酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚p-羟基丁酸酯(PHB)是大多数细菌细胞内碳源和能源的储备物,具有生物可降解性,热塑性,且透氧率低,用作食品包装用膜、袋,饮料用包装内衬层和生鲜食品盘等,更利于食品的储藏运输,在食品包装领域具有广阔的应用前景,日益受到人们的关注。目前,PHB的商业化生产主要基于野生菌和基因工程菌的纯菌种发酵工艺,严格控制的无菌底物和生产环境导致了较高的生产成本,从而限制了生物塑料PHB的大规模应用,特别是在食品包装中的应用。富集高产PHB、组成稳定的混合菌在开放条件下,以甲烷甲醇等一碳化合物生产PHB成为目前实现PHB在食品包装领域中规模化应用最具前景的研究课题。
     本学位论文利用从黑龙江省大庆油田富含沼气地区的土壤中培养筛选获得的甲烷氧化混合菌,以甲烷为碳源通过好氧瞬时供料方式(充盈-饥饿交替),筛选掉其中PHB含量少的菌株,对菌群中开放条件下稳定高产PHB的甲烷氧化菌进行了富集。通过甲烷氧化混合菌的结构解析,对菌群中分离纯化的非甲烷氧化菌和甲烷氧化菌的生长和催化性能的初步探索,以及优化细胞培养环境,高密度甲烷氧化混合菌发酵培养方式的探索,建立了开放条件下以廉价碳源稳定合成PHB的方法。
     (1)根据甲烷氧化混合菌细胞生长规律,建立基于Logistic模型的细胞生长动力学模型:
     经对比验证结果表明,对于不同的培养条件,该动力学模型对细胞生长密度(用吸光度OD600表示)的计算值与实验值之间都具有较好的相关性,相关系数均达到92%以上。这表明应用" Logistic模型”建立的动力学模型对甲烷氧化混合菌具有较好的适用性,可以进行实际工作中的模拟研究,该模型中各参数和特征值随培养条件而变化,适用于发酵条件优化控制,为后续细胞高密度培养提供指导。
     (2)采用充盈-饥饿(feast-famine cycle)模式间歇供料,以甲烷为底物好氧开放式培养甲烷氧化混合菌,利用苏丹黑染色法动态检测充盈饥饿阶段胞内PHB含量变化,实现了菌群中高PHB存储能力的甲烷氧化菌的富集和稳定传代。结果显示,在充分供氧条件下,充盈培养5d,饥饿培养15d,循环培养5次,PHB含量从10.8%增加到36.6%,且富集后甲烷氧化混合菌经过开放条件下连续传代培养,细胞生长和PHB合成稳定,表明甲烷氧化混合菌具有菌群组成稳定性,适于PHB工业化生产。
     (3)通过对富集后的甲烷氧化混合菌进行菌群结构及生长生长特性分析,推测了混合菌体系中不同微生物间的协同作用机理:甲基弯菌JW和JC能以甲烷、甲醇作为碳源生长,并为伴生菌提供从甲烷、甲醇得到的代谢碳供伴生菌生长,伴生菌的存在可以及时利用代谢中间产物有效避免产物抑制,同时为甲基弯菌JW和JC提供生长因子,促进细胞生长。甲烷氧化混合菌分离出来的重要成员甲基弯菌JC能高效利用甲醇生长,能增强甲烷氧化混合菌对甲醇的耐受性,促使混合菌体系无需驯化直接利用甲醇为碳源生长,避免由于甲烷在培养基中溶解度低而导致细胞生长慢的问题,为高密度培养打下基础。基于物种间的自然选择和竞争,以碳饥饿作为选择压力,通过甲烷为碳源短期充盈(5d)长期饥饿(15d)循环交替的富集方式,形成了能长期耐受碳饥饿的高PHB存储能力的甲烷氧化菌-伴生菌共生的微生态系统,其在开放条件下也不易受到杂菌的污染,更具环境适应性而长期稳定生长并积累PHB。
     (4)在掌握了细胞的基本生长规律和胞内PHB积累能力的基础上,利用富集后的甲烷氧化混合菌以廉价碳源甲烷、甲醇生长的优势,通过调整碳源供给、培养基组成等手段优化胞外生长环境促进胞内PHB积累,以少量甲醇的加入在原有基础上大幅提高了细胞产量及胞内PHB的积累能力。对营养平衡-营养受限两阶段培养的最佳培养基组分和培养时间的实验结果表明,在相同的碳源补加方式下,优化后的营养平衡(培养6d)-营养受限(培养6d)的两段式培养方式不仅可以明显提高PHB的含量,最高可达61.5%,而且并没有完全抑制细胞生长,细胞干重达到1.35g/L,实现了细胞生长密度和单位细胞PHB积累量的提高,在一定程度上解决了细胞生长与PHB积累的矛盾。
     (5)甲烷氧化混合菌可在开放条件下利用甲醇代替甲烷做为唯一碳源生长并在细胞内合成PHB,且甲醇能够较大程度的促进菌体生长和PHB的胞内积累。通过对富集后甲烷氧化混合菌在发酵罐培养过程中细胞生长动力学的研究,以延滞期和最大比增长速度为依据,对发酵罐的碳源补加量和补加方式进行优化,建立提高PHB产量为目的甲醇流加策略,通过分批补加不同浓度碳源(甲醇),解除高浓度甲醇的抑制作用,为菌体生长和PHB的胞内合成提供适宜的碳源利用环境,从而明显缩短发酵时间,提高甲烷氧化混合菌胞内PHB的积累量。根据发酵罐培养细胞的生长规律,建立了开放条件下一段式的发酵罐发酵生产PHB的方法,简化了操作步骤,提高了生产效率。经过10d的分批发酵培养,细胞干重可达3.1g/L, PHB含量提升至78.4%。
Poly-β-hydroxybutyrate (PHB) can be produced by various species of bacteria as carbon and energy storage materials. This biopolyester has attracted increasing attentions as biodegradable plastics not only for its similar material properties to conventional plastics but also for its biodegradable properties. PHB has thermoplastic, can be used for food packaging film bag, packaging lining layer for drinks and fresh food tray, etc. Furthermore, PHB has lower oxygen and moisture permeability, which is benefit for food storage and transportation, so that it has a broad application prospect in the field of food packaging. Commercial production of PHB is currently based on pure culture processes employing either natural PHB producers or genetically modified bacteria. Pure culture processes use generally pure sterile substrates and axenic reactors, leading to high production costs and thus relatively expensive products, which have prevented the use of this material on a real industrial scale, especially in the field of food packaging. Much effort needs to be devoted to develop a process for the enrichment of a mixed bacterial culture with a high PHB storage capacity to produce PHB in an open system efficiently and stably, which is great important for the large-scale application of PHB in the field of food packaging.
     In this dissertation, Methane-utilizing mixed culture with a high PHB storage capacity was gained from the biogas soil at DA Qing oil field as enriching source after domestication with the approach of the aerobic dynamic feeding(ADF, feast-famine condition). The community structure of Methane-utilizing mixed culture and the catalytic performance of the heterotrophs and methanotrophic bacteria isolated from the mixed culture were investigated. In order to increase the yield of biomass and yield of PHB, optimized culture condition for the cell, the fermentation way to product PHB were developed. New and efficient methods for biosynthesis of PHB with Methane-utilizing mixed culture, which can utilize low-cost Cl carbon sources to accumulate PHB intracellular, were established in an open system.
     (1)The growth kinetic model was constructed according to the growth regularity of Methane-utilizing mixed culture and Logistic model and showed as follows:
     The result of contrasting experimental values to the simulation data with the above formula of cell density (indicated with Absorbance OD600) under different culture condition indicated that the simulation data in the kinetic model had good relevance with the experimental values. All the relevant coefficients were higher than0.92. Such results demonstrated that the kinetic model constructed based on the "Logistic model" was valuably applied to the Methane-utilizing mixed culture. Because the characteristic values of the parameters in the model changed with the culture conditions, which is suitable for optimization control of fermentation condition, the simulation formula could be realized in the practical and could offer some guidance for high cell density cultivation.
     (2)The approach of the aerobic dynamic feeding(ADF, feast-famine condition) was used to enrich Methane-utilizing mixed culture with a high PHB storage capacity and Sudan black was used to detect the content of PHB. The results show the content of PHB in biomass increased from10.8%to36.6%after five feast-famine cycles of5d feast and15d famine cultivation under aerobic condition. The enriched Methane-utilizing mixed culture can grow and produce PHB stably for a long time in an open system, which is suitable for PHB industrialized production.
     (3)Through analyzing the community structure of Methane-utilizing mixed culture and the catalytic performance of methanotrophic bacteria and heterotrophs isolated from the mixed culture, it is speculated that Methylosinus trichosporium JW, JC can utilize methane or methanol as carbon source for growth and provide carbon metabolized from methane or methanol for accompanying bacteria in mixed culture. The presence of accompanying bacteria in mixed culture improve the physiological growth conditions for Methylosinus trichosporium JW, JC and maintain the stability of community structure and function through both the removal of toxic metabolites excreted by Methylosinus trichosporium JW, JC and the provision of essential growth supplements. Methylosinus trichosporium JC were identified as potentially important members of the community, which utilize methanol as carbon source with high efficiency. It was found the presence of Methylosinus trichosporium JC make Methane-utilizing mixed culture utilize methanol as carbon source to grow without any domestication, which lay the foundation for high density culture, avoiding the low cell growth due to low methane solubility in the medium. The repeatedly alternating presence (feast phase) and absence of the methane (famine phase), as is typically established in a repeated batch cultivation mode engineer a methanotrophic-heterotrophic community based on natural selection and competition, which do not seem to be susceptible to invasions by contaminating strains although the cultivation is carried out in an open system.
     (4) Taking advantage of the ability of enriched Methane-utilizing mixed culture utilizing low-cost Cl carbon source for growth and accumulation of PHB, an optimized condition for the strains to increase biomass and PHB accumulation in cell was developed. By optimizing the supply of carbon sources and the composition of the culture medium, high cell density and yield of PHB can be obtained with small amount of methanol addition. The medium and culturing time under nutrients sufficient-nutrients deficiency condition were optimized. Under optimized two-step culturing condition, biomass and PHB content increased to1.35g dry wt/L,61.5%(w/w) respectively, which solved the contradictions of cell growth and PHB accumulation to a certain extent.
     (5)Methane-utilizing mixed culture could use methanol as sole carbon source for cell gowth and PHB accumulation in an open system. And the concentrations of cells and PHB were both increased by using methanol as carbon source. Based on the important characteristic parameter (lag phase and maximum specific growth rate) in cell growth kinetic model, the optimal methanol feeding strategy was established, which would be beneficial to shorten fermentation time and increase the yield of PHB. With the results of the study in the fermentation of Methane-utilizing mixed culture, a new fermentation strategy, one-step fed-batch fermentation was developed for the production of PHB with high content and good productivity in a simplified way.The biomass of3.1g dry wt/L and PHB content of78.4(w/w) were obtained in the10d's fed-batch fermentation.
引文
[1]M. Hyde, M. Ecological considerations on the use and production of biosynthetic and synthetic biodegradable polymers.Polym. Degrad. Stab,1998,59:3-6
    [2]Moura R. A. The effect of physical aging, starch particle size, and starch oxidation on thermal-mechanical properties of poly(lactic acid)/starch composites. Doctoral Dissertation. Department of Grain Science and Industry, College of Agriculture Kansas State University, Manhattan, Kansas,2006: 1-3
    [3]Lenz, R. W. and Merchessault, R. H. Bacterial polyesters:biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules,2005,6:1-8
    [4]Anon. A sustainable alternative to petrochemical plastics. Chemical Engineering Progress.2002, 98(10):15
    [5]Averous, L. Biodegradable multiphase systems based on plasticized starch, polymer reviews, J. Macromol. Sci. Polymer. Rev.,2004, C44:231-274
    [6]Sudesh, K. and Iwata, T. Sustainability of biobased and biodegradable plastics, Clean-Soil Air Water,2008,36:433-442
    [7]Poirier Y, Nawrath C., Somerville C. Production of polyhydroxyalkanoates, a family of Biodegradable plastics and elastomers, in bacterial and plant. Biotechnol.1995,13:142-150
    [8]Cain RB. Microbial degradation of synthetic polymers. In:Frey et al. (eds) Microbial Control of Pollution.48th Symposium of the Society for general microbiology at University of Cardiff, 1992:293-338
    [9]Lee SY. Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng.1996,49:1-14
    [10]Lee B, Pometto Ⅲ AL, Fratzke A, Bailey TB. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol.1991,57:678-685
    [11]Steinbuchel A, Fuchtenbusch B. Bacteria and other biological systems for polyester production. TIBTECH,1998,16:419-427
    [12]G. Q. Chen. Industrial production of PHA, Plastics fromBacteria, Natural Functions and Applications, Microbiology Monographs, Springer-Verlag Berlin Heideberg, Germany,2010,14: 183-207
    [13]Brandl H, Bachofen R, Mayer J, Wintermantel E. Degradation and applications of polyhydroxyalcanoates. Can J Microbiol.1995,41:143-153
    [14]L. Savenkova, Z. Gercberga, V. Nikolaeva, A. Dzene, I. Bibers, M. Kalnin. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry.2000, (35):573-579
    [15]Ojumu T.V., Yu J., Solomon B.O. Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr. J. Biotechnol.,2004,3:18-24
    [16]Lee SY. Plastic bacteria? Progress and Prospects for Polyhydroxyalkanoate Production in bacteria. TIBTECH,1996,14:431-438
    [17]York G M, Junker B H, Stubbe J A, Sinskey A J. Accumulation of the PhaP Phasin of Ralstonia eutropha is dependent on production of Polydroxybutyrate in cells. J Bacteriol,2001,183(14):4217-4226
    [18]Sudesh K,Abe H,Doi Y. Synthesis,structure and Propertise of Polyhydroxyl -alkanoates: biological Polyesters.Prog.Polym.Sci.,2000,25:1503-1555
    [19]Rhee, Y. H., Jang, J.-H., Rogers, P. L. Production of copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate by fed-batch culture of Alcaligenes sp. SH-69. Biotechnol. Lett.,1993,15: 377-382
    [20]Byrom D. Polyhydroxyalkanoates, In:Mobley DP (ed) Plastic from microbes:microbial synthesis of polymers and polymer precursors. Hanser Munich,1994:5-33
    [21]Doi Y, Abe C. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 1990,23:3705-3707
    [22]Lemoigne M. The identification of poly (3-hydroxybutyric acid). Ann. Inst. Pasteur.,1925,39: 144
    [23]Anderson A. J., Dawes E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev.,1990,54:450-472
    [24]Braunegg G., Lefebvre G., Genser K. F. Polyhydroxyalkanoates, biopolyesters from renewable resources:Physiological and engineering aspects. J. Biotechnol.,1998,65:127-161
    [25]Reddy C. S. K., Ghai R., Rashmi, Kalia V. C. Polyhydroxyalkanoates:an overview. Bioresource Technol.,2003,87:137-146
    [26]郭秀君,于昕.一种新型生物塑料(PHB)的研究进展和开发前景.生物工程进展,1997,17:61-65
    [27]Slater S. C., Voige W. H., Dennis D. E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol.,1988, 170:4431-4436
    [28]Peoples, O. P., Sinskey. A. J. Poly-(β)-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem.,1989,264: 15298-15303
    [29]Schubert P., Steinbiichel A., Schlegel H. G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol.,1988,170:5837-5847
    [30]Madison L.L., Huisman G.W. Metabolic engineering of poly (3-hydroxyalkanoates):from DNA to plastic. Microbiol. Mol. Biol. Rev.,1999,63:21-53
    [31]刘春,张小凡.PHB在生产可降解塑料方面的应用及其微生物累积的研究进展.塑料工业,2005,8:1-3
    [32]Snell, K. D., Peoples, O. P. Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab. Eng..2002,4:29-40
    [33]Lenz R. W., Marchessault R. H. Bacterial polyesters:biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules,2005,6:1-8
    [34]Lindsay K. "Truly degradable'resins are now truly commercial. Modern Plastics 1992,2:62-64.
    [35]Holmes PA. Biologically produced PHA polymers and copolymers. In:Developments in crystalline polymers, Bassett DC(ed), Elsevier, London 2:1988:61-65
    [36]Doi Y. Microbial polyesters. New York:VCH Publishers,1990
    [37]Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv. Microb. Physiol.,1973,10,135-266
    [38]Doi Y., Kawaguchi Y., Koyama N., Nakamura S., Hiramitsu M., Yoshida Y., Kimura U. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol. Rev.,1992, 103:103-108
    [39]Poirier Y., Nawrath C., Somerville C. Production of polyhydroxyalkanoates, a family of Biodegradable plastics and elastomers, in bacterial and plant. Biotechnol.,1995,13:142-150
    [40]Holmes, P. A. Applications of PHB-a microbially produced biodegradable thermoplastic. Phys. Technol.,1985,16:32-36
    [41]Brandl H., Gross R. A., Lenz R. W., Fuller R. C. Plastics from bacteria and for bacteria:poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv. Biochem. Eng. Biotechnol.,1990,41:77-93
    [42]许天开,赵树杰.PHB在生物医学中的应用研究进展.应用与环境生物学报,1995,1:85-91
    [43]蔡志江,王玲,侯信,成国祥.聚羟基丁酸酯及其在生物医学领域中的应用.生物医学工程学杂志,2002,19:306-309
    [44]Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials,2005,26:6565-6578
    [45]Kadouri D., Jurkevitch E., Okon Y., Castro-Sowinski S. Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates. Crit. Rev. Microbiol.,2005,31:55-67
    [46]Orts W. J., Nobes G. A. R., Kawada J., Nguyen S., Yu G., Ravenelle F. Poly(hydroxyalkanoates): Biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can. J. Chem.,2008,86:628-640
    [47]Tokiwa Y., Calabia B. P. Biological production of functional chemicals from renewable resources. Can. J. Chem.,2008,86:548-555
    [48]Ackermann J.-U., Babelb W. Approaches to increase the economy of the PHB production. Polym. Degrad. Stabil.,1998,59:183-186
    [49]Steinbuchel A., Schegel H. G. Physiology and molecular genetic of poly(β-hydroxyalkanoic acids) synthesis in Alcaligenes eutrophus. Mol. Microbiol.,1991,5:535-542
    [50]Trainer M. A., Charles T. C. The role of PHB metabolism in the symbiosis of rhizobia with legumes Appl. Microbiol. Biotechnol.,2006,71:377-386
    [51]Dawes E. A., Senior P. J. The role of energy reserve polymers in micro-organisms. Adv. Microb. Physiol.,1973,10:136-266
    [52]Oeding V, Schlegel H. G. β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-P-hydroxybutyrate metabolism. Biochem. J.,1973,134:239-248
    [53]Luzier WD. Materials derived from biomass/biodegradable materials. Proc. Natl. Acad. Sci. USA.1992,89:839-842
    [54]Mergaert J, Anderson C, Wouters A, Swings J. Microbial degradation of poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in compost. J. Environ. Polymer Degrad.1994, 2:177-183
    [55]Mergaert J, Webb A, Anderson C, Wouters A, Swings J.Microbial degradation of poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soil. Appl. Environ. Microbiol.1993,59:3233-3238
    [56]Kim B. S., Lee S. C., Lee S. Y., Chang H. N., Chang Y. K., Woo S. I. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng.,1994,43:892-898
    [57]Kim B. S., Lee S. C., Lee S. Y, Chang H. N., Chang Y K., Woo S. I. Production of poly-(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate feeding using on-line glucose analyzer. Enzyme Microb. Tech.,1994,16:556-561
    [58]Brandl H., Gross R. A., Lenz R. W., Fuller R. C. Pseudomonas oleovorans as a source of poly(p-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol., 1988,54:1977-1982
    [59]De Smet M. J., Eggink G., Witholt B., Kingma J., Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol.,1983:154, 870-878
    [60]Suzuki T., Yamane T., Shimizu S. Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol.,1986,24:370-374
    [61]Page W. J., Cornish A. Growth of Azotohacter vinelandii UWD in fish peptone medium and simplified extraction of poly-P-hydroxybutyrate. Appl. Environ. Microbiol.,1993,59:4236-4244
    [62]Byrom, D. Production of poly-β-hydroxybutyrate:poly-β-hydroxyvalerate copolymers. FEMS Microbiol. Rev.,1992,103:247-250
    [63]Kim B. S., Chang H. N. Production of poly(3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol. Lett.,1998,20:109-112
    [64]Yamane T., Fukunaga M., Lee Y W. Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol. Bioeng.,1996,50: 197-202
    [65]Kim S. W., Kim P., Lee H. S., Kim J. H. High production of poly-p-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett.,1996,18:25-30
    [66]Wang F., Lee S. Y. Poly(3-Hydroxybutyrate) Production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol., 1997,63:3703-3706
    [67]Senior P. J., Beech G. A., Ritchie G. A. F., Dawes E. A. The role of oxygen limitation in the formation of poly-3-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem. J.,1972,128:1193-1201
    [68]Jossek R., Reichelt R., Steinbuchel A. In vitro biosynthesis of poly(3-hydroxybutyric acid) by using puried poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl. Microbiol. Biotechnol.,1998,49:258-266
    [69]Breuer U, Terentiev Y, Kunze G, Babel W:Yeast as producer of polyhydroxyalkanoates:genetic engineering of Saccharomyces cerevisiae. Macromol. Biosci.,2002,2:380-386
    [70]Peoples O. P., Sinskey A. J. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem.,1989, 264:15298-15303
    [71]Peoples O. P., Sinskey A. J. Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutropha H16. Characterization of the genes encoding (3-ketothiolase and acetoacetyl-CoA reductase. J. Biol. Chem., 1989,264':15293-15297
    [72]Peoples O. P., Masamune S., Walsh C. T., Sinskey A. J. Biosynthetic thiolase from Zoogloea ramigera. Ⅲ. Isolation and characterization of the structural gene. J. Biol. Chem.,1987,262,97-102.
    [73]Fidler S., Dennis D. Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol. Rev.,1992,103:231-236
    [74]Lee S. Y. E. coli moves into the plastic age. Nat. Biotechnol.,1997,15:17-18
    [75]Miyano, K., Ye, K.M. and Shimizu, K. Improvement of vitamin B-12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochem Eng 2000, J6:207-214
    [76]Katoh, T., Yuguchi, D., Yoshii, H., Shi, H.D. and Shimizu, K.Dynamics and modeling on fermentative production of poly (beta-hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J Biotechnol.1999,67:113-134
    [77]Tohyama, M. and Shimizu, K. Control of a mixed culture of Lactobacillus delbrueckii and Ralstonia eutropha for the production of PHB from glucose via lactate. Biochem Eng J 4,1999:45-53
    [78]Salehizadeh,H.and van Loosdrecht, M.C.M.Production of polyhydroxyalkanoates by mixed culture:recent trends and biotechnological importance. Biotechnol Adv.2004,22:261-279
    [79]Wilkinson, T., Topiwala, H.H. and Hamer, G. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng.1974,16:41-59
    [80]Lamb, S.C. and Garver, J.C. Batch-culture and continuous culture studies of a methane-utilizing mixed culture.Biotechnol Bioeng.1980,22:2097-2118
    [81]Lee, H.J., Bae, J.H. and Cho, K.M. Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotechnol Lett.2001,23:935-941
    [82]Cech J S, Hartman P. Glucose induced breakdown of enhanced biological phosphate removal. Environmental Technology.1990,11:651-56
    [83]Chech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Research.1993.27:1219-1225
    [84]Mamoru Oshiki, You Yang, Motoharu Onuki, et al. Occurrence of Polyhydroxyalkanoate as Temporal Carbon Storage Material in Activated Sludge during the Removal of Organic Pollutants. Journal of Water and Environment Technology.2008,6(2):77-83
    [85]Simon Bengtsson. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates [J]. Biotechnology and Bioengineering.2009,104(4):698-708
    [86]Maite Pijuan, Carles Casas, Juan Antonio Baeza. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochemistry.2009,44(1):97-105
    [87]D.Dionisi, M.Majone, V.Papa,et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng.2004,85(6):569-579
    [88]林东恩,张逸伟,沈家瑞.活性污泥合成生物可降解塑料的研究进展环境科学与技术.2004,27(2):101-109
    [89]Serafim L S, Lemos P C, Oliveira R F, et al. Optimisation of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology Bioengineering,2004,87:145-160
    [90]Van Loosdrecht MCM, Pot M A, Heijnen J J.Importance of bacterial storage polymers in bioprocess. Water Science Technology.1997,35:41-47
    [91]Reis M A M, seraphim L S, Lemons P C, et al. Production of Polyhydroxyalkanoates by mined microbial cultures. Bioprocess Biosystem Engineering.2003, (25):377-385
    [92]Marianna Villano, Mario Beccari, Davide Dionisi, et al. Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochemistry.2010,45(5):714-723
    [93]L.S.Serafim, P.C Lemos, R Oliveira, et al. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions.Biotechnology and Bioengineering. 2004,87(2):145-160
    [94]Katjia Johnson, Yang Jiang, Robbert Kleerebezem, Gerard Muyzer.. Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules.2009,10(4): 670-676
    [95]Nawrath C, Poirier Y, Somerville CPlastid targeting of the enzyme required for the production of polyhydroxybutyrate in plants, In:Doi Y and Fukuda K (eds), Biodegradable plastics and polymers. Elsevier, Amsterdam.1994:136-149
    [96]王加宁,马沛生,杨合同.化学法合成生物完全降解塑料PHB及单体p-羟基丁酸的研究进展.山东科学,2001,14:43-49
    [97]Dalal R. C., Allen D. E., Livesley S. J., Richards G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes:a review. Plant Soil. DOI 10.1007/s11104-007-9446-7
    [98]Kussmaul M, Wilimzig M, Bock E. Methanotrophs and methanogens in Masonry. Appl Enviro Microbiol,1998,64:4530-4532
    [99]Yu. A. Trotsenko, N. V. Doronina, Khmelenina V. N. Biotechnological potential of Aerobic methylotrophic bacteria:A Review of Current State and Future Prospects Appl Biochem Microbiol. 2005,41:433-441
    [100]Hanson R S, Hanson T E. Methanotrophic Bacteria. Microbiol Rev,1996,60:439-471
    [101]Conrad R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian J. Microbiol.,1999,39:193-203
    [102]Kussmaul M, Wilimzig M, Bock E. Methanotrophs and Methanogens in Masonry. Appl Enviro Microbiol,1998,64:4530-4532
    [103]Whittenbury R, Phillips K C, Wilkinson J F. Enrichment, isolation and some properties of methane—utilizing bacteria. J Gen Microbiol,1970,61:205-218
    [104]Fuse H, Ohta M, Takimura O, et al. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem.1998,62:1925-1931
    [105]Murrell J C, Gilbert B, McDonald I R. Molecular biology and regulation of methane Monooxygenase. Arch Microbiol,2000,173:325-332
    [106]Bodrossy L, Murrell J C, Dalton H, et al. Heat —tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol,1995,61:3549-3555
    [107]Dedysh S N, Panikov N S, Liesack W, et al. Isolation of acidophilic methane —oxidizing bacteria from northern peat wetlands. Science,1998,282:281-284
    [108]Bowman J P, McCammon S A, Skerratt J H Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotrophs from Antarctic marine — salinity, meromictic lakes. Microbiology,1997,143:1451-1459
    [109]Deysh S N, Anikov N P, Tiedje J A. Acidophilic methanotrophic Communities from Sphagnum Peat Bogs. Appl Environ Microbiol,1998,72:922-929
    [110]Henckel T., Roslev P. Effect of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol.,2000,2:666-679
    [111]Hoehler T. M., Alperin M. J. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cy., 1994,8:451-463
    [112]Chu K.-H., Alvarez-Cohen L. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria. Appl. Environ. Microbiol.,1998,64:3451-3457
    [113]Xin J.-Y., Cui J.-R., Zhu L.-M., Chen J.-B., Xia C.-G., Li S.-B. Epoxypropane biosynthesis by Methylomonas sp. GYJ3:batch and continuous studies. World J. Microb. Biot.,2002, 18:609-614
    [114]Hou C. T., Patel P., Laskin A., Barnabe N. Microbial oxidation of gaseous hydrocarbons: exudation of C2 to C4 n-alkenes by methylotrophic bacteria. Appl. Environ, Microbiol.,1979,38: 127-134
    [115]Fogel M. M., Taddeo A. R., Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol.,1986,51:720-724
    [116]Little C. K., Palumbo A. V., Herbes S. E., Lidstrom M. E., Tyndall R. L., Gilmer P. J. Trichloroethylene biodegradation by a methaneoxidizing bacterium. Appl. Environ. Microbiol.,1988, 45:951-956
    [117]Oldenhuis R., Vink R. L. J. M., Janssen D. B., Witholt B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol.,1989,55:2819-2826
    [118]Tsien H.-C., Brusseau G. A., Wackett L. P., Hanson R. S. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol.,1989:55,3155-3161
    [119]Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b:purification and properties of a three-component system with high specific activity from a type Ⅱ methanotroph. J. Biol. Chem.,1989,266:540-550
    [120]Lipscomb J. D. Biochemistry of the soluble methane monoxygenase. Annu. Rev. Microbiol., 1994,48:371-399
    [121]Patel R. N., Hou C. T., Laskin A. I., Felix A., Derelanko P. Microbial oxidation of gaseous hydrocarbons:hydroxylation of n-alkanes and epoxidation of n-alkenes by cell-free particulate fractions of methane utilizing bacteria. J. Bacteriol.,1979,139:675-679
    [122]Xin J.-Y., Cui J.-R., Hu X.-X., Li S.-B., Xia C.-G., Zhu L.-M., Wang Y.-Q. Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme. Biochem. Bioph. Res. Co.,2002,295:182-186
    [123]Takeguchi M., Miyakawa K., Okura Ⅰ. The Role of Copper in Particulate Methane Monooxygenase from Methylosinus Trichosporium OB3b. J. Mol. Catal. A:Chem.,1999,137: 161-168
    [124]Takeguchi M., Miyakawa K., Okura Ⅰ. Role of iron in particulate methane monooxygenase from Methylosinus trichosporium OB3b. BioMetals,1999,12:123-129
    [125]Lipscomb J D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol,48: 371-399
    [126]Fox B G, Lipscomb J D. Purification of a high specific activity methane monooxygenase hydroxylase component from a type Ⅱ methanotroph. Biochem. Biophys. Res Commun,1988,154: 165-170
    [127]Nakajima T, Uchiyama H, Yagi O, et al. Purification and properties of a soluble methane monooxygenases from Methylocystis sp. M. Biosci Biotechnol Biochem,1992,56:736-740
    [128]Woodland M P, Dalton H. Purification and Characterization of Component A of the Methane Monooxygenase from Methylococcus cupsulutus (Bath). J Biol Chem,1984,259:53-59
    [129]Grosse S, Laramee L, Wendlandt K D, et al. Purification and characterization of the soluble methane monooxygenase of the type Π methanotrophic bacterium Methylocystis sp. strain W114. Appl Environ Microbiol,1999,65:3929-3935
    [130]Murrell J C, Gilbert B, McDonald I R. Molecular biology and regulation of methane monooxygenase. Arch Microbiol,2000,173:325-332
    [131]Csaki R, Bodrossy L, Klem J, et al. Genes involved in the copper—dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath):cloning, sequencing and mutational analysis. Microbiology,2003,149:1785-1795
    [132]Lipscomb J D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol,48: 371-399
    [133]Bodrossy L, Stralis —Pavese N, Murrell J C, et al. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol,2003,5:566-582
    [134]Brandstetter H, Whittington DA, Lippard SJ, et al. Mutational and structural analyses of the regulatory protein B of solublemethanemonooxygenase from Methylococcus capsulatus (Bath). Chem Biol,1999,6:441-449
    [135]Lloyd J S, Finch R, Dalton H, et al. Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b.Microbiology,1999,145:461-470
    [136]Lloyd J S, Marco P, Dalton H, et al. Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch Microbiol,1999,171:364-370
    [137]赵树杰,张玉英,郑坚等.甲烷氧化细菌的一个新种.微生物学报.1989,29(2):84-92
    [138]Hua S F, Li S B, Xin J Y, Niu J Z, Xia C G, Tang W. Purification, identification and biochemical characterization of sMMO from Methylosinus trichosporium IMV 3011. Biosci Biotechnol Biochem.2007,71(1):122-129
    [139]华绍烽,李树本,谭海东,牛建中,夏春谷,唐威,胡小雪.一个Ⅱ型甲烷氧化菌中甲烷单加氧酶羟基化酶的分离纯化和理化性质.生物工程学报.2006,22:1007-1012
    [140]Shen R N, Yu C L, Li S B, et al. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria:purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Arch Biochem Biophys.1997,345:223-229
    [141]华绍烽,李树本.一株Ⅱ型甲烷氧化菌中甲烷单加氧酶基因和16S rDNA的分析.微生物学报.2009,49(3):294-301
    [142]华绍烽,李树本,谭海东,赵家政.甲烷氧化菌Methylomonas sp.GYJ3中甲烷单加氧酶基因与16S rRNA序列分析.微生物学报.2007,47(1):150-155
    [143]Koizumi Y, Kelly J J, Nakagawa T, et al. Parallel characterization of anaerobic toluene and ethylbenzene — degrading microbial consortia by PCR — denaturing gradient gel electrophoresis, RNA — DNA membrane hybridization and DNA microarray technology. Appl Environ Microbiol,2002,68: 3215-3225
    [144]Park S., Hanna M. L., Taylor R. T.et al.Batch Cultivation of Methylosinus trichosporiurn OB3b.I: Production of Soluble Methane Monooxygenase. Biotechnology and Bioengineering,1991,38: 423-433
    [144]Shah N. N., Hanna M. L., Jackson K. J.et al.Batch Cultivation of Methylosinus-trichosporium Ob3b.4.Production of Hydrogen-Driven Soluble or Particulate Methane Monooxygenase. Activity. Biotechnology and Bioengineering.1995,45(3):229-238
    [146]Shah N. N., Hanna M. L., Taylor R. T.Batch cultivation of Methylosinus trichosporiumOB3b.5. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions. Biotechnology and Bioengineering,1996,49(2):161-171
    [147]Zook J., Behling L., Hartsel S.et al.Mobilization of insoluble copper salts and minerals by methanobactin. FASEB Journal,2007,21(6):A998-A998
    [148]Choi D. W., Kunz R. C., Boyd E. S.et al. TheMembrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath[J]. Journal of Bacteriology,2003,185 (9):5755-5764
    [149]Xing X. H., Wu H.Effects of organic chemicals on growth of Methylosinus trichosporium OB3b[J].Biochemical Engineering Journal,2006,31 (2):113-117
    [150]K.-D. Wendlandt, M. Jechorek, J. Helm, U. Stottmeister. Production of PHB with a high molecular mass from methane, Polym. Degrad. Stabil.1998,59,191-194
    [151]K.-D. Wendlandt, M. Jechorek, J. Helm, U. Stottmeister. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol.2001,8:127-133
    [152]Hou C. T, Laskin A I., Patel R. N. Growth and polysaccharide production by Methylocystis parvus OBBP on methanol. Appl. Environ. Microbiol.,1978,37:800-804
    [153]Best D. J., Higgins I. J. Methane-oxidising activity and membrane morphology in a methanol-grown obligate methanotroph, Methylosinus trichosporium OB3b. J. Gen. Microbiol.,1981,125: 73-84
    [154]Adegbola O. High cell density methanol cultivation of Methylosinus trichosporium OB3b. Doctoral Dissertation, Queen's Universit Kingston, Ontario, Canada,2008:17-54
    [155]J. M. L. Dias, P. C. Lemos, L. S. Serafim, C. Oliveira et al.,Recent advances in polyhydroxyalkanoate production bymixed aerobic cultures:from the substrate to the final product, Macromol. Biosci.2006,6:885-906
    [156]S. C. Lamb, J. C. Garver, Batch culture and continuous culture studies of a methane utilizing mixed culture,Biotechnol. Bioeng.1980,22:2097-2118
    [157]H. Bothe, K. M. Jensen, A. Mergel, J. Larsen, C. Jorgensen,L. Jorgensen, Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process, Appl. Microbiol. Biotechnol.2002,59:33-39
    [158]M. Hesselsoe, S. Boysen, N. Iversen, L. Jorgensen et al., Degradation of organic pollutants by methane grown microbial consortia, Biodegradation 2005,16:435-448
    [159]D. Hrsak, D. Grbic-Galic, Biodegradation of linear alkylbenzenesulphonates (LAS) by mixed methanotrophic heterotrophic cultures, J. Appl.Bacteriol.1995,78:487-494
    [160]J. Helm, K.-D. Wendlandt, M. Jechorek, U. Stottmeister, Potassium deficiency results in accumulation of ultra-high molecular weight poly-b-hydroxybutyrate in a methane utilizing mixed culture, J. Appl. Microbiol.2008,105:1054-1061
    [161]P. R. Patnaik, Perspectives in the modeling and optimization of PHB production by pure and mixed cultures, Crit. Rev. Biotechnol.2005,25:153-171
    [162]J. Helm, K. D. Wendlandt, G. Rogge, U. Kappelmeyer, Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system, J. Appl. Microbiol. 2006,101:387-395
    [163]Dedysh SN. Enrichment, isolation and some properties of methane utilizing bacteria. Soil Biol Biochem,1996,98:101-108
    [164]Bourque D, Ouellette B, Andr G. Production of poly-3-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens. Appl Microbiol Biotechnol 2001,37:7-12
    [165]J.A.Asenjo,J.S.Suk,Microbialconversionofmethane into poly-3-hydroxybutyrate (PHB):growth and intracellular product accumulation in type Ⅱ methanotrophs, J.Ferment. Technol.1986,64: 271-278
    [166]陈子英,曹家鳌,尹光琳等.甲烷氧化菌混合菌株的研究.Ⅰ混合菌株中非甲烷氧化菌的种类与特征.微生物学通报.1981,(1):7-9
    [167]De MP, Pacheco CC, Figueiredo AR, et al. Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiology Letters,2004,234(1):75-80
    [168]Asenjo J. A., Suk J. S. Microbial conversion of methane into poly-β-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type Ⅱ methanotroph. J. Ferment. Technol.,1986, 64:271-278
    [169]Trotsenko Y. A., Doronina N.V., Sokolov A. P., Ostafin M. PHB synthesis by methane-and methanol-utilizing bacteria. In:Abstracts of International Symposium on Bacterial Polyhydroxyalkanoates. Gottingen,1992:108
    [170]Riis V., Mai W. Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J. Chrom.,1988,445:285-289
    [171]K.-D. Wendlandt, W. Geyer, G. Mirschel, F. A.-H. Hemidi. Possibilities for controlling a PHB accumulation process using various analytical methods, J. Biotechnol.2005,117:119-129
    [172]Yingguang Chen, Jian Chen, Cairong Yu,Guocheng Du, Shiyi Lun. Recovery of poly-3-hydroxybutyrate from Alcaligenes eutrophus by surfactant-chelate aqueous system. Process biochemistry.1999,34:153-157
    [173]Park S., Hanna M. L., Taylor R. T., Droege M. W. Batch Cultivation of Methylosinus trichosporiurn OB3b:I. Production of Soluble Methane Monooxygenase. Biotechnol. Bioeng.,1991, 38:423-433
    [174]沈润南,尉迟力,李树本.外源电子给体对甲烷单加氧酶催化丙烯环氧化反应活性的影响.生物工程学报,1996,12:322-326
    [175]史仲平,潘丰编著.发酵过程解析、控制与检测技术.北京:化学工业出版社,2005:178-191
    [176]汤琳,曾光明,孙伟,魏万之Logistic方程在微生物分批培养动力学中的应用.湖南大学学报(自然科学版).2004,31(3):23-27
    [177]I.A.M. Swinnen, K. Bernaerts, E.J.J. Dens, A.H. Geeraerd, J.F. Van Impe. Predictive modelling of the microbial lag phase:a review. International Journal of Food Microbiology.2004,94:137-159
    [178]Lelieveld J., Crutzem P. J., Bruhl C. Climate effects of atmospheric methane. Chemosphere, 1993,26:739-768
    [179]D.J.Best,J.J.Higgins. Methane-oxidizing activity and membrane morphology in a methanol grown obligate methanotroph, Methylosinus Trichosporium OB3b.Journal of General Microbiology, 1981,125:73-81
    [180]J. Benstead, G. M. King, H.GWilliams. Methanol promote atmospheric methane oxidation by methanotrophic cultures and soils. Applied and Environment Microbiology.1998,64:1091-1098
    [181]Yingxin Zhang, Jiaying Xin, Linlin Chen, Hao Song, Chungu Xia. Biosynthesis of poly-3-hydroxybutyrate with a high molecularmass by methanotroph. Journal of Natural Gas Chemistry.2008, 17:103-109
    [182]Jensen S., Prieme A., Bakken L. Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms. Appl. Environ. Microbiol.,1998,64:1143-1146
    [183]Costa C., Vecherkaya M., Dijkma C., Stams A. J. M. The effect of oxygen on methanol oxidation by an obligate methanotrophic bacteria studied by in vivo 13C nuclear magnetic resource spectroscopy. J. Industrial Microbol. Biotechnol.,2001,26:9-14
    [184]Fox BG, Borneman JG, Wackett LP, et al. Haloalkene Oxidation by the Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b:Mechanistic and environmental implications. Biochemistry,1990,29:6419-6427
    [185]Hesselsoe M, Boysen S, Iversen N, et al. Degradation of Organic Pollutants by Methane Grown Microbial Consortia. Biodegradation,2005,16 (5):435-448
    [186]Masayuki Takeguchi, Kiyoko Miyakawa, Ichiro Okura.The role of copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b. Journal of Molecular Catalysis A:Chemical, 1999,137:161-168
    [187]Kim, H. J., Graham, D. W., DiSpirito, A. A., Alterman, M. A., Galeva, N., Larive, C. K. Asunskis, D.& Sherwood, P. M. A.. Methanobactin, a copper-acquisition compound from methane oxidizing bacteria. Science 305,2004:1612-1615
    [188]Shah N. N., Hanna M. L., Taylor R. T. Batch Cultivation of Methylosinus trichosporium OB3b:V. Characterization of Poly-^-Hydroxybutyrate Production Under Methane-Dependent Growth Conditions. Biotechnol. Bioeng.,1996,49:161-171
    [189]Malashenko Y., Sokolov I., Romanovskaya V. Role of monooxygenase reaction during assimilation of non-growth substrates by methanotrophs. J. Mol. Catal. B:Enzym.,2000,10:305-312
    [190]Fitch M. W., Speitel Jr. G. E., Georgiou G. Degradation of Trichloroethylene by Methanol-Grown Cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol.,1996,62: 1124-1128
    [191]Stanley S. H., Prior S. D., Leak D. J., Dalton, H. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms:Studies in batch and continuous cultures. Biotechnol. Lett.,1983,5:487-492
    [192]Yingxin Zhang, Jiaying Xin, Linlin Chen, Hao Song, Chungu Xia. Biosynthesis of poly-3-hydroxybutyrate with a high molecularmass by methanotroph. Journal of Natural Gas Chemistry.2008, 17:103-109
    [193]Asenjo J. A., Suk J. S. Microbial conversion of methane into poly-(3-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type Ⅱ methanotroph. J. Ferment. Technol.,1986, 64:271-278
    [194]Doronina N. V., Ezhov V. A., Trotsenko Yu. A. Growth of Methylosinus trichosporium OB3b on Methane and Poly-β-Hydroxybutyrate Biosynthesis. Appl. Biochem. Microbiol.,2008,44: 182-185
    [195]罗明芳,吴昊,王磊等.含有甲烷氧化菌的混合菌群特性研究.微生物学报,2007,47(1):108-114
    [196]M Majone, P Masanisso, A Carucci,et al.Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Science and Technology,1996,34(5-6):223-232
    [197]Serafim L S. Lemos P C, OliveiraR F, et al. Optimization of polyhydroxyl-butyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering 2004.87(2):145-160
    [198]DionisiD, Majone M, Papa V. et al. Biodegradable polymers from organic acids by using sludge activated enriched by aerobic periodic feeding. Biotechnology and Bioengineering.2004,85:569-579
    [199]洪葵.细菌聚羟基脂肪酸酯检测方法研究进展.微生物学通报.2002,29(1):80-81
    [200]James, B.W., W. S. Mauchline, P. J. Dennis, C. W. Keevil, and R. Wait. Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl. Environ. Microbiol.1999,65:822-827
    [201]Ratcliff,W.C., S. V. Kadam, and R. F. Denison. Poly-3 hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol. Ecol.2008,65:391-399
    [202]Roslev, P., and G.M. King. Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl. Environ. Microbiol.1994,60:2602-2608
    [203]Beun, J.J., K. Dircks, M.C. Van Loosdrecht, and J.J. Heijnen. Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res.2002,36:1167-1180
    [204]Dionisi, D., et al. Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. J. Chem. Technol. Biotechnol.2005,80: 1306-1318
    [205]Higgins, I.J., D. J.Best, R.C. Hammond, and D. Scott. Methane oxidizing microorganisms. Microbiol. Rev.1981,45:556-590
    [206]Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F. and Stams, A.J.M. Denitrificationwith methane as electron donor in oxygen-limited bioreactors. Appl Microbiol Biotechnol.2000,53:754-762
    [207]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science.2007,315(5813): 804-807
    [208]Goldemberg J. Ethanol for a sustainable energy future. Science 2007,315(5813):808-810
    [209]Lopez-Vazquez CM, Song YI, Hooijmans CM, Brdjanovic D, Moussa MS, Gijzen HJ, van Loosdrecht MCM. Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Biotechnology and Bioengineering.2007,97(3):483-495
    [210]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science 2006,311(5760):484-489
    [211]Sun A K, Wood T K. Trichloroethylene Degradation and Mineralization by Pseudomonads and Methylosinus trichosporiumOB3b. Appl. Microbiol. Biotechnol.1996,45:248-256
    [212]Kamm B, Kamm M. Biorefineries-multi product processes. Advances in Biochemical Engineering/Biotechnology.2007,105:175-204
    [213]Park S, Hanna L, Taylor RT, et al. Batch Cultivation of Methylosinus trichosporium OB3b. I Production of Soluble Methane Monooxygenase. Biotechnol Bioeng,1991,38:423-433
    [214]王福来,郑坚,王钫等.一株催化丙烯环氧化菌株的分离及特性.微生物学报,1993,33(2):129-134
    [215]Hrsak,D. and Begonja, A. Growth characteristics and metabolic activities of the methanotrophic-heterotrophic groundwater community. J Appl Microbiol.1998,85:448-456
    [216]Bothe, H., Jensen, K.M., Mergel, A., Larsen, J., Jorgensen, C.and Jorgensen, L. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biotechnol.2002,59:33-39
    [217]Linton, J.D. and Buckee, J.C. Interactions in a methane-utilizing mixed bacterial culture in a chemostat. J Gen Microbiol.1977,101:219-225
    [218]Hrsak, D. and Begonja, A. Possible interactions within a methanotrophic-heterotrophic ground-water community able to transform linear alkylbenzene-sulfonates. Appl Environ Microbiol.2000,66: 4433-4439
    [219]Du G., Chen J., Yu J., Lun S. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutrophus in a two-stage culture system. J. Biotechnol.,2001b,88:59-65
    [220]Yamane T. Cultivation engineering of microbial bioplastics production. FEMS Microbiol. Rev., 1992,103:257-264
    [221][6] Du G., Yu J. Metabolic analysis on fatty acid utilization by Pseudomonas oleovorans:mcl-poly-3-hydroxyalkanoates) synthesis versus oxidation. Process Biochem.,2002a,38:325-332
    [222]Du G., Yu J. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ. Sci. Technol.,2002b,36:5511-5516
    [223]张颖鑫.甲基弯菌IMW3011生物合成聚3-羟基丁酸酯的研究.博士学位论文,兰州化学物理研究所,2009:48-50
    [224]闵航,陈中云,陈美慈.水稻田土壤甲烷氧化活性及其环境影响因子的研究.土壤学报.2002,39(5):687-692
    [225]陈中云,闵航,吴伟祥.不同离子对水稻田土壤甲烷氧化活性影响的研究.植物营养与肥料学报.2002,8(2):219-223
    [226]Mttrrel J.C, Gilbert B. Molecular biology and regulation of methane monooxygenase. Arch. Microbial.2000,173:325-332
    [227]Hubley, J.H., Thomson, A.W., and Wilkinson, J.F. Specific inhibitors of methane oxidation in Methylosinus trichosporium. Arch. Microbiol.1975,102 (3):199-202
    [228]King, G.M., and Schnell, S.. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl. Environ. Microbiol.1994,60 (10):3508-3513
    [229]Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifers. Microbiol.Rev.1989,53:68-84
    [230]Park, S., Hanna, L.M., Taylor, R.T.and Droege, M.W.. Batch cultivation of Methylosinus trichosporium OB3b. I:Production of soluble methane monooxygenase. Biotechnol. Bioeng.1991,38 (4):423-433
    [231]余海霞.利用微生物技术治理煤矿瓦斯的研究.博士学位论文.浙江大学.2007:11-16
    [232]Wendlandt K.-D., Jechorek M., Helm, J., Stottmeister U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol.,2001,86:127-133
    [233]Tsubota J., Hasumi F., Takeguchi M., Horie S., Isobe D. Producing polyhydroxybutyrate (PHB) by culturing methane-using bacteria in culture medium with alternating levels of additive concentration with respect to PHB accumulation 2005, JP2005304484-A
    [234]Shah N. N., Hanna M. L., Taylor R. T. Batch Cultivation of Methylosinus trichosporium OB3b:V. Characterization of Poly-(3-Hydroxybutyrate Production Under Methane-Dependent Growth Conditions. Biotechnol. Bioeng.,1996,49:161-171
    [235]Fitch M. W., Speitel Jr. G. E., Georgiou G. Degradation of Tnchloroethylene by Methanol- Grown Cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol.,1996,62: 1124-1128
    [236]Lee S.Y. Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng.1996,49:1-14
    [237]Du G.-C, Chen J., Yu J., Lun S. Kinetic studies on poly-3-hydroxybutyrate formation by Ralstoniaeutropha in a two-stage continuous culture system. Process Biochemistry 2001,31:219-227
    [238]Peoples, O. P., A.J. Sinskey. Poly-(P)-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16:Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem.,1989, 264:15298-15303
    [239]Slater S. C., Voige W. H., Dennis D. E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol.,1988,170: 4431-4436
    [240]Lee S. Y. E. coli moves into the plastic age. Nat. Biotechnol.,1997,15:17-18
    [241]Yamane T. Yield of poly-D(-)-3-hydroxybutyrate from various carbon sources:a theoretical study. Biotechnol. Bioeng.,1993,41:165-170
    [242]Byrom D. Production of Poly-β-hydroxybutyrate:Poly-β-hydroxyvalerate copolymers. FEMS Microbiol. Rev.,1992,103:247-250
    [243]Kim B. S., Lee S. Y., Chang H. N. Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett.,1992,14:811-816
    [244]Annuar, M. S. M, Tan, I. K. P, Ibrahim, S., Ramachandran, K. B. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates) from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations. Malaysian J. Microbiol.,2006,2:1-91
    [245]Baptist J. N. Process for preparing Poly-β-hydroxybutyric acid.1962, U.S.3044942
    [246]Lafferty R. M., Korsatko B., Korsatko W. Microbial production of poly-p-hydroxybutyric acid. In:Rehm H. J., Reed G. (eds.) Biotechnology, VCH, Weinheim.1988,6b:135-176
    [247]Ramsay J. A., Berger E., Voyer R., Chavarie C., Ramsay B.A. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol. Tech.,1994,8:589-594
    [248]Wendlandt K.-D., Jechorek M., Helm, J., Stottmeister U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol.,2001,86:127-133
    [249]Helm J., Wendlandt K.-D., Rogge G, Kappelmeyer U. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J. Appl. Microbiol.,2006,101:387-395
    [250]Listewnik H.-F., Wendlandt K.-D., Jechorek M., Mirschel G. Process design for the microbial synthesis of poly-β-hydroxybutyrate (PHB) from natural gas. Eng. Life Sci.,2007,7:278-282
    [251]华绍烽.甲烷单加氧酶的理化性质与分子生物学研究.博士学位论文,兰州化学物理研究所,2006:58-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700