双馈感应调速风力发电机组控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对能源危机及环境污染的日益重视,风力发电在世界范围内得到了迅速发展,如何有效地提高机组容量与运行效率、最大限度地利用风能已成为风力发电技术研究的重要内容。
     本文首先对不同类型风力发电机组的性能、控制系统及特点进行了优劣比较,从而得出结论:直接驱动式永磁风力发电机组和双馈感应发电机组具有较明显的优势,因此成为当今的主流机型。本文按不同的侧重点分别对永磁同步电机和双馈感应电机进行相关的研究。
     永磁同步机的研究主要侧重于同步电机的震荡现象,利用Matlab/Simulink模型对同步机的震荡问题进行详细分析和研究,找出同步电机产生震荡现象的内在原因。基于同步机的震荡和并网困难等问题选择双馈感应调速风力发电系统作为课题主要研究对象,对双馈风力发电系统进行系统分析和研究。
     在不具备风场环境的实验条件下研究风力发电技术,只能做到理论分析和计算机仿真,而较为重要的实验环节无法实现。为了解决这个问题,本文提出了由风轮模拟控制器、变频器、鼠笼电动机构成风轮仿真器,模拟实际风轮运行特性的方案。为研究大型风电机组的全工况动态性能建模、测试及评估技术,开发相应的集成仿真实验平台,满足对风电机组进行全工况试验和验证评估的需求提供了条件。
     本文完成了风轮仿真器研究中的重要部分——风轮仿真。风轮仿真从风轮空气动力特性入手,按照风能利用系数推导、转矩系数推导、变桨距调速风力发电机组控制方案等几个方面进行。在数学模型的基础上建立风速模型、风能利用系数仿真模型、风轮仿真模型。风轮Matlab仿真分析分别按照空载和负载情况进行,得出并分析不同风速下的风轮功率、转矩、转速曲线,进而分析了风速突变情况下的风轮输出特性,真实地反应出风轮的实际工作情况。为研究开发大型风电机组的集成仿真实验平台奠定了基础。
     对双馈电机的研究从等效电路入手,给出双馈调速的异步电机的运行状态和功率流动关系。利用定子磁链定向的矢量控制方法,将同步坐标系下的双馈电机数学模型简化后得到矢量控制系统模型,采用矢量控制模型与双馈电机模型共同构成转速和电流双闭环控制系统。搭建Matlab/Simulink仿真模型进行仿真分析,分别实现超同步和亚同步状态下的发电运行。
     本文经过大量理论研究与仿真分析,分别完成同步震荡、风轮仿真、双馈感应电机矢量控制系统仿真等研究任务,为双馈感应风力发电系统的地面研究和推广创造了有利条件。
With attachment importance to energy source scarcity and environment pollution, the wind electric power generation has developed dramatically around the world. How to enhance unit capacity and operation effectively becomes important matter of the wind electric power generation.
     Variable-speed constant-frequency (VSCF) operation is a new highly efficient technology for power generation, which has a good future in the field of wind power generating. In this paper, several schemes of VSCF are compared firstly, of which gets doubly-fed generating mode. Doubly-fed VSCF wind power generating system uses a doubly-fed induction generator, which rotating speed can be changed according to wind speed, and it ensures a constant-frequency output by controlling the frequency of current input to rotor windings. Among the various wind generation systems, variable speed constant frequency doubly-fed induction generator (DFIG) becomes mainstreamed for its advantages.
     By making use of simulation experiment, this paper has also carried out detailed analysis and research of the vibration problem of permanent magnet synchronous generator. The immanent cause of producing vibration for synchronous generator is found out.
     According to systematic analysis of the principle of wind turbine, simulating models of wind speed and wind turbine are given. After running of the models, the power, torque and turbine speed curves of wind turbine on variable wind speed are given out and analyzed.
     After analyzing the mathematical model of wind turbine and doubly-fed induction generator, schemes of the power flow between wind turbine and generator are given. A static equivalent circuit is also shown. Through the reference frame transformation, the electromagnetic equation, dynamic equivalent circuit, and vector graph of doubly-fed generator can be gotten in the d-q reference frame. Furthermore, under the vector control strategy of stator field-orient, a vector control model is derived from the generator,and a close loop control system is built accordingly. By using vector control strategy, the control of stator active power and the reactive power can be essentially decoupled.
引文
[1]世界能源理事会.新的可再生能源[C].北京:海洋出版社,1998.4:210-231
    [2] R.D. Fernanez, R.J. Mantz and P.E. Battatotto. Sliding Mode Control for Efficiency Optimization of Wind Electrical Pumping Systems[J]. Wind Energy.2003(6):161-178
    [3] John Olav Giver Tande. Grid Integration of Wind Farms[J]. Wind Energy.2003(6):281-295
    [4]何良.双馈风力发电系统仿真和控制策略研究[D].上海交通大学硕士学位论文.2007.1
    [5] A. Tapia, G. Tapia, J.X. Ostolaza and J.R. Saenz. Modeling and Control of a Wind Turbine Driven Doubly Fed Induction Generator[J]. IEEE Trans on Energy Conversion, 2003,18(2):194-204
    [6] J.L. Rodriguez-Amenedo, S. Arnalte, and J.C. Burgos. Automatic Generation Control of a Wind Farm with Variable Speed Wind Turbines[J]. IEEE Trans on Energy Conversion, 2002,17(2):279-284
    [7] R. datta and V.T. Ranganathan. Variable-Speed Wind Power Generation Using Doubly Fid Wound Rotor Induction Machine——A Comparison With Alternative Schemes[J]. IEEE Trans on Energy Conversion,2002,17(3):414-421
    [8]谢震.变速恒频双馈风力发电模拟平台的研究[D].合肥工业大学博士学位论文.2005.11
    [9]汤蕴缪.电机学.机电能量转化[M].北京:机械工业出版社,1983
    [10] T.G.Habetler, F.Profumoedt. Direct torque control of induction machine using space vector modulation[J]. IEEE Trans on Ind Applic,1992,128(5):223-230
    [11]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,2005:383-397
    [12] G. Saccomando, J. Svensson, and Ambra Sannino. Improving Voltage Disturbance Rejection for Variable-Speed Wind Turbines[J]. IEEE Trans on Energy Conversion, 2002,17(2):422-428
    [13] F.D. Kanellos, and N.D. Hatziargyriou. The Effect of Variable-Speed Wind Turbines on the Operation of Weak Distribution Networks[J]. IEEE Trans on Energy Conversion, 2002,17(4):543-548
    [14]楚铮.变频调速异步电机模拟风轮输出特性的设计与研究.沈阳工业大学硕士学位论文[D].2003.1
    [15]刘万琨,张志英,李银凤,赵萍.风能与风力发电技术[M].北京:化学工业出版社,2007:72-86
    [16] T. Thiringer, and J. Dahlberg. Periodic Pulsations from a Three-Bladed Wind Turbine[J]. IEEE Trans on Energy Conversion,2001,16(2):128-13
    [17] Z. Chen, and E. Spooner. Grid Power Quality with Variable Speed Wind Turbines[J]. IEEE Trans on Energy Conversion,2001,16(2):148-153
    [18] Suresh H. Jangamshetti, and V. Guruprasada Rau. Normalized Power Curves as a Tool for Identification of Optimum Wind Turbine Generator Parameters[J]. IEEE Trans on Energy Conversion, 2001,16(3):283-288
    [19] W. Lu, and B.T. Roy. LVDC System for Optimal Acquisition of Power in Wind-Farm Using Induction Generators[J]. IEEE Trans on Power Electronics,2002,17(4):558-563
    [20] William R. Thomas, Direct Torque Control for Brushless Doubly-Fed Machines[J]. IEEE Trans IA,1996,32(5):1098-1104
    [21] Rajib Datta and V.T. Ranganarthan. A Method of Tracking the Peak Power Points for a Variable Speed Wind Energy Conversion System[J]. IEEE Trans on Energy Conversion.2003,18(1):163-168
    [22]陈学顺.新型变速恒频风力发电系统运行方式研究[D].中国科学院研究生院硕士学位论文.2003.5
    [23]肖功任.兆瓦级大型风力发电机组的研制与进展[J].风力发电,2000(2):17-20
    [24]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.5:129—149
    [25]王承煦,张源.风力发电[M].北京:中国电力出版社,2003:71-78
    [26]朱瑞兆,薛珩.中国风能区划[J].太阳能学报,1983,4(2):123-132
    [27]李发海,赵异波,何湘宁,周永忠.新能源发电技术的最新进展[J].电工技术杂志,2002(2):1-4
    [28]李华德,白晶,李志民,李擎.交流调速系统[M].北京:电子工业出版社,2003:93-116
    [29]马小亮.大功率交.交变频调速及矢量控制技术[M].北京:机械工业出版社,1996:65-88
    [30]任兴权.电力拖动基础[M].北京:冶金工业出版社,1989:15-17
    [31]马小亮.变频器选型中的几个问题[J].电工技术杂志,2002(9):4-7
    [32]杨文焕.双馈电机转子交流励磁矢量控制电压波形分析[J].电机与控制学报,2003,7(1):18-21
    [33]卓放,王兆安.有源电力滤波器技术的发展与电能质量的提高[J].电工技术杂志,2002(6):1-3
    [34]鞠儒生,陈宝贤,陈燕.一种新型PWM整流器[J].电工技术学报?2002,17(6):48-52
    [35]魏毅立,李华德,吴振奎.双馈感应发电机调速风力机[J].北京科技大学学报,2003,25(6):50-52
    [36]陈伯时.电力拖动自动控制技术[M].北京:机械工业出版社,1992
    [37]刘丛伟,李崇坚,苏朋生,李发海.双馈电机无速度传感器矢量控制调速系统的研究[J].清华大学学报,1999,39(5):55-57
    [38]崔力,徐甫荣.无刷双馈变频调速电动机的原理及在发电厂辅机拖动中的应用前景[J].电工技术杂志,2002(1):7-10
    [39]马小亮,刘志强.基于电流辨识速度的双馈矢量调速系统的研究[J].电工技术学报,2003,18(4):89-91
    [40]刘志刚,汪至中,范瑜,郑琼林.新型可再生能源发电馈网系统研究[J].电工技术学报,2003,18(4):108-113
    [41]刘学功,张俊洪,赵镜红.一种基于d、q变换的改善电能质量的新方案[J].电工技术杂志,2003(7):70-72
    [42]李圣清,罗飞,张昌凡.基于ip及iq运算方式的改进型谐波电流检测方法[J].电气传动.2003(2):48-50
    [43]解仑,王志良,董平.级联式无刷双馈感应电机稳定性及其控制系统的研究[J].电工技术学报,2003,18(4):17-20
    [44]魏毅立.鼠笼感应电动机磁场定向1~3变换控制[J].电气传动,1991(6):1-5
    [45]魏毅立.双馈感应电动机磁场定向1~3变换速度控制[J].包头钢铁学院学报,1990,9(2):16-21
    [46] S. Ahn and D. Hyun. New Control Scheme of Three-Phase PWM AC/DC Converter Without Phase Angle Detection Under the Unbalanced Input Voltage Conditions[J].IEEE Trans on Power Electronics,2002,17(5):616-622
    [47] Dong-Choon Lee, and Dae-Sik Lim. AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers[J]. IEEE Trans on Power Electronics,2002,17(6): 883-890
    [48] Tzann-Shin Lee. Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[J]. IEEE Trans on Power Electronics,2003,18(1):11-22
    [49] S.Kim, and P.N. Enjeti. A New Hybrid Active Power Filter (APF) Topology[J]. IEEE Trans on Power Electronics,2002,17(1):48-54
    [50]周渊深.交直流调速系统与MATLAB仿真[M].北京:中国电力出版社,2005:22-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700