Fe-1.5C-1.5Cr-xAl超高碳钢组织转变行为与超细化热处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Fe-1.5C-1.5Cr-xAl超高碳钢为研究对象,采用理论分析与实验相结合的方法,系统研究了铝元素与热处理工艺对超高碳钢组织转变及力学性能的影响,提出了铝元素抑制先共析碳化物析出的机理,确定了Fe-1.5C-1.5Cr-xAl超高碳钢铝元素的合理添加量,并提出了Fe-1.5C-1.5Cr-2.0Al超高碳钢不经形变获得组织超细化、综合性能良好的热处理工艺。主要结论如下:
     (1)采用Thermo-Calc热力学计算软件系统,对Fe-1.5C-1.5Cr-xAl超高碳钢通过热力学相图计算发现:铝的添加使该超高碳钢单相奥氏体区域变窄并左移,进入液、固两相区的温度降低,同时共析转变温度提高。Fe-1.5C-1.5Cr-2.0Al超高碳钢共析转变温度区间约为40℃,共析转变开始温度约为790℃。
     (2)铝元素对超高碳钢组织中的先共析碳化物(网状碳化物和魏氏组织碳化物)具有显著的抑制作用。当含铝量增加到1.0%以上时,魏氏组织碳化物被抑制;接近2.0%时,网状碳化物开始断网。
     (3)铝元素抑制先共析碳化物析出机理为:奥氏体化后未溶碳化物增多降低了奥氏体碳含量,冷却过程中先共析碳化物减少;同时未溶碳化物阻碍奥氏体晶粒长大,奥氏体晶粒细化使晶界上分布的碳化物减少;并且铝在晶界附近的偏聚对晶界碳化物的形核及长大有抑制作用。
     (4)随含铝量增加,珠光体片层间距减小,相变组织完全球化温度下降;含铝2.0%时,经850℃×1h等温球化后可获得完全的球化组织;含铝大于2.54%时,出现石墨化;Fe-1.5C-1.5Cr-xAl超高碳钢铝的合理添加量应取2.0%。
     (5)铝元素提高了超高碳钢的回火稳定性,推迟了ε-碳化物向渗碳体的转变。400℃回火组织无塑性;450℃回火组织具有超高强度、高硬度、低塑性;650℃回火组织具有高强度、高塑性、低硬度。单纯采用淬火-回火工艺难以实现Fe-1.5C-1.5Cr-2.0Al超高碳钢综合性能的提高。
     (6)测定了Fe-1.5C-1.5Cr-2.0Al超高碳钢等温转变开始点和马氏体转变开始点Ms,测定的300℃孕育期最短为30分钟,Ms为150℃。
     (7)提出了Fe-1.5C-1.5Cr-2.0Al超高碳钢不经形变获得组织超细化、综合性能良好的等温淬火热处理工艺。300℃×10h等温淬火处理,获得了含条宽约100nm下贝氏体铁素体+宽度小于100nm残余奥氏体+直径约250nm球状渗碳体的超细复相组织,其屈服强度1568MPa,抗拉强度1744MPa,总延伸率6.9%,硬度HV532。
In this paper, a system research on the effects of Al element addition and heattreatment on the phase transformation and mechanical properties of Fe-1.5C-1.5Cr-xAlUltra High Carbon Steel (UHCS) was done based on theory analysis combined withexperimental tests. The control mechanism of Al element on the separation of theproeutectoid carbide was also discussed. Based on optimizing proper Al element addition,a comprehensive heat treatment technics without deformation to gain excellent combinedproperties with ultrafine grained microstructure in Fe-1.5C-1.5Cr-2.0Al UHCS wasproposed. The main research conclusions were presented as follows:
     (1) Thermodynamics phase graphs of Fe-1.5C-1.5Cr-xAl UHCS were calculated under"Thermo-Calc" thermodynamics calculating system. The addition of Al element wasfound to make the austenitic mono-phase region of UHCS become narrower andshift towards left. The temperature to reach liquid and solid binal phases decreases.With increasing the Al content, the onset temperature as well as phase transformationinterval for the eutectoid transformation increases. The eutectoid transformationtemperature interval of Fe-1.5C-1.5Cr-2.0Al UHCS is in about 40℃, and the starttemperature of eutectoid transformation is about 790℃.
     (2) Remarkable restrain effect of Al element on proeutectoid carbide (netlike carbide andcarbide in wildmanstatten tissue) was found in UHCS. When the Al content reaches1.0%, wildmanstatten tissue is suppressed. As Al content increases further close to2.0%, netlike carbide begins to be broken.
     (3) The mechanism for the Al element suppressing the formation of proeutectoid carbideis proposed: The increase of undissolved carbide after austenite treatment decreasesthe carbon content in austenite which results in a decrease in the amount ofproeutectoid carbide during cooling. The unresolved carbide suppresses the growthof austenite grains. Refinement in austenite grains reduces the number of carbidedistributed in grain boundary. Aggregation of Al in grain boundary greatlysuppresses the nucleation and growth of carbide in the boundary.
     (4) Space between pearlite flakes decreases and the temperature for pearlite tospheroidization totally decreases with increasing Al content. When Al contentreaches 2.0%, a totally glomeration tissue can be gained after 850℃×1h isothermalspheroidization treatment. However, when Al content exceeds 2.54%, graphitizationis found. The proper addition quantity for Al in Fe-1.5C-1.5Cr-xAl UHCS is 2.0%。
     (5) Al element can increase thermal stability of UHCS against tempering and retardscementite formation fromε-carbide, which attribute to the low plastic after mediumtemperature tempering. Based on this research, we bring forward that it is verydifficult to increase the combined properties of Fe-1.5C-1.5Cr-2.0Al UHCS underquenching-tempering treatment.
     (6) Isothermal transformation points and Ms temperature of Fe-1.5C-1.5Cr-2.0Al UHCSwere measured. The shortest gestation time is about 30minutes at 300℃, while itsMs is 150℃.
     (7) A comprehensive isothermal quenching heat treatment technology withoutdeformation to gain excellent combined properties was proposed forFe-1.5C-1.5Cr-2.0Al UHCS. After isothermal quenching of 300℃×10h, a kind ofultrafine complex phase structure composed of low-bainite ferrite with item width of100nm、residual austenitic less than 100 nm in width and spherical cemenite withdiameter of about 250nm was gained. The yield strength reaches 1568MPa, fracturestrength 1744 MPa, the total elongation 6.9%, and microhardness HV532.
引文
1 Howe H M. The Metallurgy of Steel [M]. 2nd ed. New York: Scientific Publishing Company, 1891
    2 Sherby O D. Ultrahigh Carbon Steels,damascus steels and ancient blacksmiths[J]. ISIJ International, 1999, 39(7): 637~648
    3 Tsuzaki K, Sato E, Furimoto S, et al. Formation of an (α+θ) microdu—plex structure without thermomechanical processing in superplastic ultrahigh carbon steels[J]. Scripta Materialia, 1999, 40(6): 675~681
    4 Clarke B D, Mclvor I D. Structure and properties of plain and alloyed ultrahigh carbon steel wire rod[J]. Ironmaking and Steelmaking, 1991, 18(5): 331~337
    5 Sherby O D. 钢[J].铁钢, 1980, 2:282~292
    6 Young C M, Walser B, Sherby O D, et al. Ultrahigh carbon steels[P]. United States Patent: 3 951 697, 1976-04-20
    7 Sherby O D, Oyama T, Wadsworth J. Divorced Eutectoid Transformation Process and Product of Ultrahigh Carbon Steels [P]. United States Patent: 4 448 613, 1984-05-15
    8 Oyama T, Sherby O D. Ultrahigh Carbon Steels Alloy and processing Thereof [P]. United States Patent: 4 533 390, 1985-08-06
    9 Sherby O D, Kum D W, Oyama T, et al. Ultrahigh Carbon Steels Containing Aluminum [P]. United States Patent: 4 769 214, 1988-09-06
    10 Strum M J, Goldberg A, Sherby O D, et al. Transformation Process for Production of Ultrahigh Carbon Steels and New Alloy [P]. United States Patent: 5 445 685, 1995-08-29
    11 Sato E, Furimoto S, Furuhara T, et al. Microstructure control for super- plasticity of an Ultra-high carbon steel[J]. Materials Science Forum, 1999, 304-306:133~138
    12 冈出元宏,时实正治,Sherby O D.实用轴受钢超微细结晶粒化超塑性[J].铁钢,1981,16:140~144
    13 田头聡,仓田征児,古原忠,et al.(a+θ)微细二相组织有高炭素钢引张性质θ粒径影响[J].CAMP-ISIJ,1997,10:553
    14 田头聡,堺健次,古原忠,et al.冷间压延钢变性组织机械的性质[J].CAMP-ISIJ,1996,9:1485~1487
    15 古原忠,牧正志.钢冷间压延.烧钝组织机械的性质[J].CAMP-ISIJ,1999,12:413~416
    16 Seto K, Kato T, Abe H. Application of a continuous annealing process to the production of superplastic high-carbon steels[J]. Materials Research Society Symp.Proc., 1990, 196:99~104
    17 古原忠,牧正志.超微细组织机械的性质[J].Materia Japan, 2000, 39(3): 220~224
    18 Furuhara T, Sato E, Mizoguchi T, et al. Grain boundary character and superplasticity of fine-gamed Ultra-high carbon steel[J]. Materials Transations, 2002, 43 (10): 2455~2462
    19 Ruano O A, Carsi M, Ibanez J, et al. Ultra-high carbon steel and ductile iron research in spain [A]. Lesuer D R, Syn C K, Sherby O D. Thermomechnical Processing, and Mechanical Properties of Hypereutectoid Steels and Cast Irons[C]. Indiana polis: TMS, 1997: 253~261
    20 章靖国,史海生,林一坚,等.一种具有非调质超塑性的超高碳钢基材获得方法及其应用[P].中国专利:CN1367272A,2002-09-04
    21 林一坚,史海生,章靖国,等.一种非调质超高碳钢及其生产工艺[P].中国专利:CN1472358A,2004-02-04
    22 王军,徐政,史海生,等.喷射成形工艺研究[J].材料科学与工程学报,2003,21(5):660~663
    23 王军,徐政,史海生,等.喷射成形1.8C-1.6AL超高碳钢快速凝固组织研究[J].材料热处理学报,2003,24(3):58~60转65
    24 李小军,吴建生,史海生,等.喷射成形超高碳钢的超塑性等温锻造性能研究[J].材料热处理学报,2003,25(3):50~53
    25 许雁,柳永宁.超高碳钢组织与性能的研究[J].机械工程材料,2004,28(1):41~43
    26 许雁,朱杰武,柳永宁.超高碳钢的马氏体相变及超细晶粒对亚结构的影响[J].西安交通大学学报,2004,38(7):725~728
    27 许雁,柳永宁,朱杰武.超高碳钢的制备及热处理工艺的研究[J].热加工工艺,2004,5:3~4
    28 朱杰武,许雁,葛利玲,等.1.4%C超高碳钢显微组织与疲劳性能的研究[J].材料热处理学报,2004.25(3):30~33
    29 王宝奇,彭会芬,宋晓艳,等.锻造超高碳钢的球化工艺与力学性能[J].材料热处理学报,2004,25(1):27~31
    30 Lesuer D R, Syn C K, Goldberg A, et al. The case for Ultrahigh-carbon steels as structured materials[J]. JOM, 1993(8): 40~46
    31 石淑琴,张振忠,陈光.超细晶超高碳钢的化学成分设计[J].兵器材料科学与工程,2002,25(6):57~60
    32 Kim W J, Taleff E M, Sherby O D. Superplasticity of fine-grained Fe-C alloys prepared by ingot and powder processing routes[J]. Journal of Materials Science, 1998, 33: 4977~4985
    33 胡庚祥,钱苗根.金属学[M].第一版.上海:上海科学技术出版社,1980
    34 Syn C K, Lesuer D R, Sherby O D. Influence of microstyucture on. tensile properties on spheroidized ultrahigh-carbon (1.8 pct c) steel[J]. Metallurgical and Matericals Transactions A, 1994, 25A(6): 1481~1493
    35 Sherby O D, Oyama T, Kum D W, et al. Ultrahigh Carbon Steels[J]. Journal of Metals, 1985(6): 50~56
    36 Syn C K, Sherby O D, Kum D W, et al. High strain rate-High strain response of an ultrahigh carbon steel containing 1.3%C and 3% Si[J]. Materials Science Forum, 2003, 426-432(2): 841~846
    37 Luo Guangmin, Wu Jiansheng, Fan Junfei, et al. Deformation behavior of an ultrahigh carbon steel(UHCS 3.0Si) at elevated temperature[J]. Materials Science and Engineering A, 2004, 379(15): 302~307
    38 罗光敏,吴建生,樊俊飞,等.超高碳钢石墨化的热力学分析[J].材料热处理学报,2004,25(3):42~45
    39 Lesuer D R, Syn C K, Whittenberger J D, et al. Microstructure-property relations in as-extruded ultrahigh carbon steels[J]. Metallurgical and Materials Transactions A, 1999, 30A (6): 1559~1568
    40 Oyama T, Syn C K, Lesuer D R, et al. Superplasticity and strength of ultrahigh Carbon Steels extruded at intermediate temperatures[A]. In Deformation, Processing and Properties of Structural Materials[C]. U S A: The Minerals, Metals and Materials Society, 2000:35~44
    41 Wadsworth J, Sherby O D. Influence of chromium on superplasticity in ultrahigh carbon steels[J]. Journal of Materials Science, 1978, 13:2645~2649
    42 罗光敏,吴建生,史海生,等.国外超高碳钢的研究进展[J].材料热处理学报,2003,24(1):14~18
    43 石淑琴,陈光.超细晶超高碳钢的制备工艺研究[J].国外金属热处理,2005,26(4):33~35
    44 Acosta P, Jimenez J A, Frommeyer G, et al. Microstructural characteri -zation of an ultrahigh carbon and boron tool steel processed by different rotes[J]. Materials Science and Engineering A, 1996, 206(13): 194~200
    45 魏成富,王学前.过冷奥氏体的异常分解与碳化物球化[JJ.热加工工艺,1999,2:21~24
    46 贺毅,王学前.高碳钢快速球化退火工艺的研究[J].热加工工艺,2002,1:32~34
    47 贺毅,王学前.高碳钢球化机制与A_(CIf)透烧球化退火工艺[J].金属热处理,2002,27(5):39~43
    48 魏成富,王学前.奥氏体碳浓度不均匀在球化退火中作用机理的研究[J].材料科学与工程,1999,17(1):48~52
    49 王学前,王彦平.高碳钢中残余奥氏体形态控制与利用[J].金属热处理学报,1996,17(2):17~21
    50 胡明,韩季平.残留碳化物在等温球化处理中的作用[J].佳木斯工学院学报,1994,12(3):140~146
    51 章为夷.球化处理中残留碳化物的作用[J].热加工工艺,1992,4:15~18
    52 王学芝,章为夷.碳化物的球化过程和机理探讨[J].大连铁道学院学报,1997,18(3):51~56
    53 章为夷.等温球化处理过程中球化物的Ostwald长大现象[J].材料科学与工艺,1993,1(4):44~48
    54 Sunada H, Wadsworth J, Lin J, et al. Mechanicalprperties and microstruture of heat-treated ultrahigh carbon steels[J]. Materials Science Engineering, 1979, 38:35~40
    55 Lesuer D R, Syn C K, Whittenberger J D, et al. Creep behavior of Fe-C alloys at high temperatures and high strain rates. Materials Science and Engineering A[J]. 2001, 317(1-2): 101~107
    56 Luo Guangmin, Wu Jiansheng, Fan Jurtfei, et al. Microtructure and mechanical properties of spray-deposited ultrahigh carbon steel after hot rolling[J]. Materials Characterization, 2004, 52: 263~268
    57 Apelian D, Gilen G, Leathan A. Near manufacturing via theosprey processing of structural metals by rapid solidification[M]. ASM International, 1987
    58 徐寒冰,吴建生,章靖国.喷射成性技术进展及其工业应用[J].机械工程材料,1999,23(6):1~5
    59 李小军,吴建生,章靖国,等.超高碳钢超塑性的研究进展[J].机械工程材料,2004,28(2):4~6
    60 Jing Guo Zhang, Yi Jian Lin, Mats Hillert, et al. Microtructure and mechanical properties of spray formedultrahigh carbon steel [J]. Materials Science and Engineering A, 2004, 383 (1): 45~49
    61 石淑琴,张振忠,陈光.超细晶超高碳钢的微观组织与室温性能特性[J].材料工程,2002,(增刊):116~118
    62 Oyama T, Sherby O D, Wadsworth J, et al. Application of the divorced eutectoid transformation to the development of fine grained, spheroidized spructures in ultrahigh carbon steels[J]. Scripta Metallurgica, 1984, 18(8): 799~803
    63 Taleff E M, Syn C K, Lesuer D R, et al. Pearlite in ultrhigh carbon steels: heat treatments and mechanical properties [J]. Metallurgical and Matericals Transactions A, 1996, 27A(2): 111~118
    64 Ohashi Y, Wolfenstine J, Koch R, et al. Fracture behavior of a laminated steel-brass composite in bend tests.[J]. Materials Science Engineering A, 1992, A151: 37~44
    65 石淑琴,陈光,谷南驹.超细晶超高碳钢的超塑性研究[J].新技术新工艺,2003,12:45~48
    66 林兆荣.金属超塑性成形原理及应用[M].第一版.北京:航空工业出版社,1990
    67 Hernandez D, Jimenez J A, Frommeyer G. Superplasfic behavior of Fe-8.0 mass%Al-2.0mass%Cr-1.3mass%C alloy [J]. Materials Transactions, JIM, 1996, 37(12): 1758~1762
    68 Walser B, Sherby O D. Mechanical behavior of superplastic ultrahigh carbon steel[J]. Metallurgical Transactions A, 1979, 10A(10): 1461~1471
    69 Kim W J, Wolfenstine J, Frommeyer G, et al. Superplasfic behavior of iron carbide[J]. Scripta Metallurgical, 1989, 23: 1515~1520
    70 Fukuyo H, Tsai H C, Oyama T, et al. Superplasticity and Newtonian-viscous flow in fine-grained class Ⅰ solid solution alloys [J]. ISIJ Interna-tional.1991, 31(1): 76~85
    71 Teo C K, Ruano O A, Wadsworth J, et al. Superplastic behavior of a ceramic-based kappa/alpha Fe-10Al-1.9C Material[J]. Journal of Materials Science, 1994, 29: 6581~6586
    72 Taleff E M, Nagao M, Higashi K, et al. High-strain-rate superplaticity in uitrahigh-crbon steel containing 10wt%AI(UHCS-10Al) [J]. Scripta Materials, 1996, 34: 1919~1923
    73 Carsi M, Penalba F, Ruano O A, et al. High strain-rate torsional behvior of an ultrahigh carbon steel(1.8%C-1.6%Al)at elevated temperature[J]. Metallurgical and Matericals Transactions A, 1997, 28A(2): 1913~1920
    74 Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon(UHC) steels[J]. Journal Mechanical Physics Solids, 1983, 31: 173~186
    75 Lee S, Wadsworth J, Sherby O D. Impact properties of a laminated composites based on ultrahigh carbon steel and hadfield manganese steel [J]. Research Mechanical, 1990, 30:233~248
    76 Lee S, Wadsworth J, Sherby O D. Impact properties of a laminated composites based on ultrahigh carbon steel and Ni-Si steel [J]. Journal Engineering Materials.Technology, 1992,114: 278~281
    77 Lee S, Oyama T, Wadsworth J, et al. Impact properties of a laminated composites based on ultrahigh carbon steel and brass [J]. Materials Science Engineering A, 1992; 114A: 133~137
    78 Daehn G S, Kum D W, Sherby O D. Superplasticity of a stainless steel clad ultrahigh carbon steel[J]. Metallurgical Transactions A, 1986, 17A: 2295~2298
    79 康沫狂,杨思品,管敦惠.钢中贝氏体[M].第一版.上海:上海科学技术出版社,1990
    80 梅本实,田村今男.结晶粒经测定[J].熟处理,1984,24:334~336
    81 Sundman B, Jansson B, Andersson J O. The Thermo-Calc Databank System[J]. Calphad, 1985, 9: 150~158
    82 冯端,师昌绪,刘志国.材料科学导论[M].第一版.北京:化学工业出版社,2002
    83 李文超.冶金与材料物理化学[M].第一版.北京:冶金工业出版社,2001
    84 沙雄.Thermo-Calc热力学计算软件系统及其在马氏体时效钢时效析出研究中的应用[J].金属材料研究,1990,16(4):15~19
    85 徐祖耀,李麟.材料热力学[M].第一版.北京:科学出版社,2000
    86 石霖.合金热力学[M].第一版.北京:机械工业出版社,1992
    87 Hillert M. Phase Equilibria,Phase Diagram and Phase Transfor-mafion[M]. Britain Lundui: Cambridge University Press, 1998
    88 Verhoeven J D, Pendray A H. Experiments to Reproduce the Pattern of Damascus Steel Blades[J]. Marerials Characterization, 1992, 29:195~212
    89 菊池实,牧正志,佐久闲健人,等.铁钢材料[M].第一版.日本东京:日本金属学会:1985
    90 刘永铨.钢的热处理[M].第一版.北京:冶金工业出版社,1979
    91 Kum D W. Effect of Al-addition on the microstyuctural refinement of ultra-high carbon steels[A]. Lesuer D R, Syn C K, Sherby O D. Thermomechnical Processing and Mechanical Properties of Hypereutectoid Steels and Cast Irons[C]. Indiana polis: TMS, 1997:41~54
    92 石淑琴,谷南驹,古原忠,等.铝元素抑制超高碳钢中网状碳化物析出机理[J].材料热处理学报,2005,26(4):79~82
    93 提修平,及川胜成,大沼郁雄,等.Fe-Al-C系合金组织机械的特性[J].CAMP-ISIJ,2000,13:1245~1246
    94 长村光造,牧正志,杉本孝一,等.材料组织学[M].第一版.日本东京:朝仓书店,1999
    95 杉山昌章,丸山直纪,樽井敏三,等.界面合金元素偏析举动[J].Materia Japan,2000,39(12):953
    96 姜延飞,王宝奇,宋晓燕,等.铝合金化对超高碳钢先共析碳化物析出行为的影响[J].热加工工艺,2005,(2):1~3
    97 戚正风.固体金属中的扩散与相变[M].第一版.北京:机械工业出版社,1998
    98 大藤善弘.球状组织变化关热力学[A].铁钢析出制御最前線2[C].第一版.日本东京:日本铁钢协会,2003
    99 木村勇次,津崎兼彰.未固溶利用钢组织制御[J].CAMP-ISIJ,2003,16:510~513
    100 高炭素钢炭化物析出举动[D].京都大学修士学位论文,2004
    101 方鸿生,王建军,杨志刚,等.贝氏体转变[M].第一版.北京:科学出版社,1999
    102 刘云旭.金属热处理原理[M].第一版.北京:机械工业出版社,1981
    103 范雄.X射线金属学[M].第一版.北京:机械工业出版社,1985
    104 陆金生,王彪,姚影澄.钢和合金中常见相X-射线鉴定手册[M].第一版.北京:北京钢铁研究总院,1990
    105 石淑琴,王宝奇,古原忠,等.超高碳钢的回火组织及力学性能[J].钢铁研究学报,2006,18(3):38~41
    106 Garcia-Mateo C, Caballero F G, Bhadesshia H K D H. Development of hard bainite[J]. ISIJ International, 2003, 43(8): 1238~1243
    107 Caballero F G, Bhadesshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18 (3): 279~284
    108 Garcia-Mateo C, Caballero F G, Bhadesshia H K D H. Acceleration of low-temperature bainite[J]. ISIJ International, 2003, 43 (11): 1821~1825
    109 Bhadesshia H K D H. Thermodynamic analysis of isothermal transformation diagrama[J]. Metal Science, 1982, 18(3): 159~165
    110 Chang L C, Bhadesshia H K D H. Austenite films in bainitic microstruc- tures[J]. Materials Science and Technology, 1995, 11(9): 874~881
    111 Bhadesshia H K D H, David S A, Vitek J M, et al. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel[J]. Materials Science and Technology, 1991, 7(8): 686~697
    112 Lee J-L, Bhadesshia H K D H. A methodology for the prediction of time-temperature-transformation diagrams[J]. Materials Science and Engineering A, 1993, A171: 223~230
    113 Bhadesshia H K D H, Waugh A R. Bainite an atom-probe study of the incomplete reaction phenomenon[J]. Acta Metallurgical,1982, 30:775~784
    114 Putatunda S K. Fracture toughness of a high carbon and high silicon steel[J]. Materials Science and Engineering A, 2001, A297: 31~43
    115 Hong Sheng Fang, Jia Jun Wang, Yah Kang Zheng. Formation Mechanism of Bainitic Ferrite and Carbide[J]. Metallurgical and Materials Transactions A, 1994, 25A(9): 2001~2007
    116 Hong Sheng Fang, Xiang Zheng Bo, Jia Jun Wang. A Model for Surface Reliefs Formation in Bainite Transformation Mechanism[J]. Materials Transac-tions, JIM, 1998, 39(12): 1264~1271
    117 武小雷,张喜燕,康沫狂,等.Fe-C合金贝氏体在奥氏体贫碳区切变相变机制的热力学分析[J].金属学报,1995,31(3):A115~A119
    118 武小雷,张喜燕,杨延清,等.Fe-C合金贝氏体相变机制[J].西北工业大学学报,1995,13(2):205~208
    119 张喜燕,武小雷,康沫狂.含硅钢下贝氏体生长方式[J].西南交通大学学报,1999,34(1):65~70
    120 刘宗昌.贝氏体相变的过渡性[J].材料热处理学报,2003,24(2):36~40
    121 方鸿生,王家军.贝氏体相变的激发-台阶机制[J].金属学报,1994,30(11):A491~A501
    122 Hong Sheng Fang, Jia Jun Wang, Zhi Gang Yang, et al. Formation of Bainite in Ferrous and Nonferrous Alloys through Sympathetic Nucleation and Ledge wise Growth Mechanism[J]. Metallurgical and Materials Transactions A, 1996, 27A(7): 1533~1545
    123 方鸿生,王家军,杨志刚,等.下贝氏体组织的扫描隧道显微镜研究[J].自然科学进展-国家重点实验室通讯,1995,3(6):525~530
    124 李凤照,敖青,姜江,等.贝氏体钢中贝氏体铁素体纳米结构[J].金属热处理,1999,12:7~10
    125 王家军,方鸿生,郑燕康,等.贝氏体铁素体片条的超微亚结构观察[J].兵器材料科学与工 程,1993,16(4):3-5
    126 方鸿生,王家军,郑燕康,等.材料科学中的扫描隧道显微镜分析[M].第一版.北京:科学出版社,1993
    127 严隽钰,方鸿生,王家军,等.用扫描隧道显微镜观察钢中贝氏体组织[J].科学通报,1994,39(2):114~116
    128 郑燕康,王家军,杜金辉,等.硅对Mn-B系贝氏体钢CCT曲线的影响[A].93相变学术会论文集[C].北京:材料研究学会等,264~267.
    129 刘晓,张明星,陈大明,等.Si-Mn-Mo系贝氏体钢的CCT曲线[J].金属学报,1993,29(3):A97~A101
    130 刘文言,曲敬信,邵荷生.新型奥氏体-贝氏体钢的力学性能[J].金属热处理,1996,12:11~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700