精密喷射成形HM1钢组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密喷射成形是一种典型的短流程制备高致密度材料的方法,可实现工、模具的快速成形,属于快速凝固技术的一种。本论文在自行研制的20kg级精密喷射成形快速制模设备上,对制备高致密度HM1热作模具钢进行研究。采用金相、X射线衍射、扫描电镜及能谱分析等方法对铸态和喷射态HM1热作模具钢及其热处理后的微观组织、物相、元素分布等进行了分析,并对其力学性能和摩擦学性能进行了研究。主要研究内容和结果如下:
     首先,对喷射态HM1钢组织和性能进行了研究,并与铸态进行了对比。结果表明,铸态HM1钢组织为粗大的枝状晶,晶粒尺寸150~200μm,晶界处为粗大连续的网状碳化物组织;而喷射态HM1钢为细小的等轴晶组织,晶粒尺寸20~50μm,晶界处弥散分布少量细小的先共析碳化物相;这表明采用喷射成形,可有效消除元素偏析和网状碳化物组织。X射线衍射定量分析表明,喷射态和铸态材料的物相均以马氏体和残余奥氏体为主,残余奥氏体相对体积分数分别为14%和8%。铸态材料硬度为HRC46~48,而喷射沉积坯材料硬度稍低为HRC44~47,主要是因为铸态材料中存在粗大的高硬度碳化物所致。压缩实验表明,喷射态和铸态HM1钢的断裂压缩率均在30%~40%,而断裂强度分别为2770MPa和2546MPa。
     喷射沉积过喷粉末的分析研究表明,过喷粉末粒径质量分布呈高斯状,当雾化压力在0.6MPa左右时,粒径在200微米以下过喷粉占总量的累积质量的60%以上;过喷粉的微观结构为细小的等轴晶组织,通过测量不同粒径粉末的平均二次枝晶间距,并经回归计算得到不同粒径过喷粉末的凝固速率,结果表明雾化过程中大多数的雾化液滴凝固速率在103K/s以上。
     然后,对铸态和喷射态材料,经回火处理后的组织和性能进行了研究。经2小时,分别在440℃.480℃.520℃.560℃.600℃及640℃下进行回火处理,结果表明,材料硬度随着回火温度的提高而升高,至520℃时,达到峰值,其中喷射态硬度达HRC52~54,而铸态为HRC50~51;随后,随着回火温度的继续上升,硬度逐渐下降。但在600℃时喷射态材料仍能保持较高硬度,材料的回火稳定性提高。主要是由于喷射成形过程,较快的冷却速率,使得合金元素在沉积坯中均匀分布;后续的高温回火时合金元素与碳的扩散产生二次硬化效应,在沉积坯中形成比铸态组织更细小、弥散的合金碳化物相,使其硬度高于传统铸态。证明喷射态HM1钢回火后具有比铸态材料更优良的热处理性能,材料的高温耐热性提高。
     最后,对铸态和喷射态HM1钢滑动干摩擦性能进行了研究。表明,以GCrl5钢球为对磨材料时,喷射态和铸态HM1钢在轻载时磨损方式均为粘着磨损,随着载荷的增大材料开始部分地呈现磨粒磨损形貌特征。铸态和喷射沉积态材料摩擦系数均随外加载荷的增大而增大,进入稳态磨损后铸态材料的摩擦因数比喷射态的摩擦因数稍高。同样实验条件下,喷射态材料磨损量低于铸态材料而喷射态材料经回火后磨损量可大幅度降低,100N重载时,喷射态磨损量较之于铸态减少了34%,而经过回火后的沉积态HM1钢磨损量更比未回火时降低了21%。回火提高耐磨性的机理是依靠高温阶段析出的碳化物,尤其是高硬度的MC型碳化物,其在基体中均匀弥散分布形成硬质点阻碍材料被磨损。
Precision Spray Forming is a typical single-step process for producing low porous material, and it is a rapid solidification process. This thesis researched the high relative dense HM1hot work tool steel, which was synthesized on a self-developed20kg precision spray forming equipment for rapid tooling process. Use optical metallographic, X-ray diffraction, scanning electron microscopy and energy spectrum methods analysis micro structure, phase evolution and element segregation of both as cast and as spray-formed HM1hot work tool steel. And have discussed the mechanical properties and the friction and wear properties of this material. The main research contents were as follows.
     Firstly of all, the microstructure and properties of the as spray-formed and as cast HM1steel were discussed. The results show that, the as cast HM1steel has a thick dendrites with large continues carbide network; the grain size is between150and200microns. While the as spray-formed material has a refined equiaxed grains with small amount of dispersed proeutectoid carbides at the grain boundaries, the grain size is of20to50microns. And this indicates that spray forming can effectively eliminate elements segregation and reduce the carbide network. The X-ray diffraction quantitative analysis of the material shows that the as spray-formed and the as cast HM1steel have a similar phase of martensite and residual austenite, the volume fraction of residual austenite of them is14%and8%respectively. The Rockwell C hardness of as cast material is46~48, while the as spray-formed is44~47, the main reason is because the thick carbide network has a high hardness. The compact experiment shows that, both as spray-formed and as cast HM1steel have a fracture deformation volume of30%, and the breaking strength is2848MPa and2661MPa respectively.
     Researches on over-spray powders indicate that, the over-spray powder particle size distribution is Gaussian-like distribution, when the deposition process was carried out at a atomization pressure of0.6MPa, particles size below200microns account for60%of the total cumulative mass. The microstructure of over-spray powders is ultra-fined equiaxed grains. By measuring the second dendrite arm space (SDAS) of over-spray powders in different sizes, and by regression calculating the relate functions between SDAS and solidification rate, we can find that during the spray deposition process, most of the atomized metal liquid particles has a solidification rate of no less than103K/s.
     And the thesis studied the effects of tempering on microstructure and mechanical properties of both as cast and as spray-formed materials. Tempering experiment was carried out in440℃,480℃,520℃,560℃,600℃and640℃for2hours, respectively. The results show that, the Rockwell C hardness increased as the tempering temperature increases, and it reached the peak point at520℃, the as spray-formed hardness of HRC52~54, the as cast is50~51. Subsequently, with the increase of temperature, the hardness decreases. It is surely that after tempering at600℃, the as spray-formed material has a high hardness values, therefore, the tempering resistance was improved. The main reason is because the spray forming process has a large solidification rate, make the alloy elements equally distributed in the deposition, and the subsequent high temperature tempering make it possible for the alloy elements and carbon to diffusion with each other, and consequently they have a secondary hardening effect, and precipitate a refined and dispersed alloy carbides in the deposition, therefore the hardness is higher than it is in the conventional cast material. And these indicate that the as spray-formed HM1steel has a better heat treatment property than the cast alloys, the heat resistance increased in the process.
     Finally, the thesis studied the friction and wear properties of both ass-cast and as spray-formed material. The results show that, during light loads, both as cast and as spray-formed HM1steel were adhesive wear when whey were worked with GCr15sphere ball. The wear mechanism changed to abrasive wear partly when the load increases. The friction coefficient of both as cast and as spray-formed material increased when the load is increasing, and the friction coefficient of as cast material is larger than it is in the as spray-formed when the wear comes to a stable stage. The wear loss of as spray-formed HM1steel is lower compared with as cast, and it is lowest when it is with the tempered deposited material. Under a heavy load of100N, the wear loss of the as spray-formed decreases34%as that of the as cast material, and the tempered deposited material reduced21%more as that of the not been tempered. The wear loss of the as spray-formed steel decreases after tempering. The main reason for this is the carbides precipitate during high temperature tempering, especially for the MC type carbides. These carbides distributed uniformly in the matrix and formed hard spots stop further abrasion.
引文
[1]李周,张国庆等.高温合金特种铸造技术——喷射铸造的研究和发展[J].金属学报,2002,38(11):1186-1190
    [2]陈振华.多层喷射沉积技术及应用[M].长沙:湖南大学出版社,2003.10
    [3]崔成松,章靖国.喷射成形快速凝固技术制备高性能钢铁材料的研究进展(一)—喷射成形技术的原理特点及发展现状[J].上海金属,2012.03,Vol34,No.2:42-46
    [4]Ojha S.N. Spray forming:Science and Technology. Bulletin of Material Science[J], 1992,15(6):527-542
    [5]Mathur P, Annavarapu S, Apclian D, etc. Process control modeling and application of spraycasting[J], JOM,1989,41(10):23-24
    [6]Carter W.T. Benz M.G. Recent progress in clear metal spray forming[J], Proceeding of the Forth International Conference On Spray Forming, Baltimore, USA.1999:27-34
    [7]李先聚,喷射成形7055铝合金组织和性能的研究[D].硕士学位论文,上海交通大学,2008
    [8]Alan Leatham. Spray Forming:Alloys, Products, and Markets[EB], Sandvik Materials Technology,2007
    [9]Alwin Schulz,etc. Opportunities and challenges of spray forming high-alloyed steels[J], Materials Science and Engineering A,477,2008:69-79
    [10]A. Schulz. Nitrogen pick-up during spray forming of high-alloyed steels and its influence on micro structure and properties of the final products[J], Materials Science and Engineering A 383,2004:58-68
    [11]YOShio IKAWA, etc. Spray Deposition Method and Its Application to the Production of Mill Rolls[J], ISIT International, Vol.30 (1990), No.9, P.756-763
    [12]张济山,熊柏青等.喷射成形快速凝固技术:原理与应用[M].北京:科学出版社,2008
    [13]杨林等.喷射成形硅钢板坯的工艺研究[J].粉末冶金技术, Vol19,2001:06
    [14]熊柏青,张永安,石力开.喷射成型技术制备高性能铝合金材料[J].材料导报,2000,14(12):50-55
    [15]张国庆等.氩气雾化喷射成形镍基高温合金的研究[J].1998年全国喷射成形技术学术研讨会论文集,哈尔滨,1998:117
    [16]李庆春等.超音雾化喷射沉积技术制备高性能铝合金材料[J].1998年全国喷射成形技术学术研讨会论文集,哈尔滨,1998:1
    [17]相滨等.雾化喷射沉积成形金属基复合材料制备新技术-熔铸-原位反应喷射沉积成形[J].李庆春,沈军编著,1998年全国喷射成形技术学术研讨会论文集
    [18]孙德生等.用喷射成形技术制造高铬钢-碳钢复合轧辊[J].李庆春,沈军,1998年全国喷射成形技术学术研讨会论文集
    [19]张永昌.金属喷射成形的进展[J].粉末冶金工业,2001.12 Vol11.6
    [20]唐青云.金属喷射沉积装置的设计及实验研究[D].硕士学位论文,中南大学
    [21]古元军,曲迎东。喷射成形新型自由式雾化器的设计研究[J].铸造,2009.06,Vol58, No.6
    [22]许加星.喷射成形设备控制系统研究与应用[D].硕士学位论文,西安电子科技大学,2009
    [23]谢建新.材料先进制备与成形加工技术[M].北京,科学出版社,2007:89-111
    [24]http://users.ox.ac.uk/-pgrant/sfintro.html[OL]
    [25]徐寒冰.喷射成形模拟及其材料研究[D].博士学位论文,上海交通大学,2001
    [26]Fei Yana, Zhou Xu. Micro structure of the spray formed Vanadis 4 steel and its ultra-fine structure[J], MATERIALS CHARACTERIZATION 59(2008)592-597
    [27]颜飞.喷射成形高合金Vanadis4冷作模具钢的组织与性能研究[D].博士学位论文,上海交通大学,2007
    [28]王永斌,张胤.喷射成形GCr15钢的实验研究[J].包头钢铁学院学报,2006.03Vol.25, No.1
    [29]李玉涛.喷射成形GCr15钢过喷粉末尺寸分布及组织特征的实验研究[D].硕士学位论文,内蒙古科技大学
    [30]黄进峰,蔡玉丽等.喷射沉积H13钢的组织和硬度[J].北京科技大学学报,Vol.33 No.1 2011
    [31]K. M. McHugh. Spray forming system for producing molds, dies and related tooling [P], US Patent 6074194, June 13,2000.
    [32]K.M. McHugh. Influence of cooling rate on phase formation in spray-formed H13 tool steel[J], Materials Science and Engineering A 477 (2008) 50-57
    [33]章靖国.2006喷射成形国际会议简介(1)——喷射成形快速原型技术[J].理化检验-物理分册,2007,Vo143.3
    [34]Yunfeng Yang, Simo-Pekka Hannula. Sprayformed Hot Work Steels for Rapid Tooling[J], Journal of Material. Science,Vol.19 Suppl.1,2003
    [35]Yunfeng Yang, Simo-Pekka Hannula. Development of precision spray forming for rapid tooling[J], Materials Science and Engineering A 477 (2008) 63-68
    [36]崔崑.国内外模具用钢发展概况[J].金属热处理,2007年第32卷第1期
    [37]朱宗元.我国热作模具钢性能数据集(续Ⅷ)[J].机械工程材料,Vol.25 No.9 2001;
    [38]陈再枝,蓝德年.模具钢手册[M].冶金工业出版社,2006.06
    [39]章守华.合金钢[M].冶金工业出版社,1981.12
    [40]GB8362-2008钢中参与奥氏体含量的测量XRD法[S],中国标准出版社,2008.1
    [41]张帆周伟敏.材料性能学[M].上海交通大学出版社,上海,2009.1
    [42]CFT-I型多功能材料表面综合性能测试仪使用说明书[G],2011
    [43]Alwin Schulz, etc. Opportunities and challenges of spray forming high-alloyed steels[J], A 477(2008)69-79;
    [44]K.M. McHugh, Y. Lin. Influence of cooling rate on phase formation in spray-formed H13 tool steel[J], Material Science and Engineering A 477(2008)50-57
    [45]董亭义,杨滨,何建平.喷射成形大尺寸镧基块体非晶过冷液相区内的塑性变形行为[J].金属学报,2009,45(2):232-236
    [46]董亭义,杨滨等.喷射成形La62A115.7(Cu,Ni)22.3块体非晶合金的晶化行为[J].稀有金属材料与工程,2011.Vol40,No.8:1417-1421
    [47]Lavernia, E. J.; Ayers, J. D.; Srivatsan, T. S. Rapid solidification processing with specific application to aluminum alloys[J], International Materials Reviews, Volume 37,1992, pp.1-44(44)
    [48]孙剑飞,沈军.高温合金喷射成形过喷粉末的凝固组织特征[J].中国有色金属学报,1999,9(A01):148-152
    [49]Joly P A, Mehrabian R. J. Suryanarayana C. Journal of Material Science[J], 1974,6:1111-1135
    [50]崔约贤,王长利.金属断口分析.哈尔滨工业大学出版社[M],1998.4
    [51]张勇,张国庆等.喷射成形高速钢内部组织研究[J],航空材料学报,2010.Vol.30,No.5:19-24
    [52]马超.喷射成形M42高速钢热加工工艺研究[D].硕士学位论文,上海交通大学,2012.02
    [53]Y. Lin, K.M. McHugh, Microstructure and harness of spray-formed chromium-containing steel tooling[J], Scripta Materialia 55(2006)581-584;
    [54]钟士红.钢的回火工艺和回火方程[M].北京,机械工业出版社,1993.8
    [55]Y. LIN, K.M. McHUGH. Evolution of Carbides during Aging of a Spray-Formed Chromium-Containing Tool Steel[J], Metallurgical and Materials Transaction A Vol.39A Feb. (2008):473-476
    [56]邵荷生,张清.金属的磨料磨损与耐磨材料[M].机械工业出版社,北京:1988.2
    [57]温诗铸黄平.摩擦学原理(第2版)[M].清华大学出版社,北京:2002.11
    [58]Bharat Bhushan著,葛世荣译.摩擦学导论[M].机械工业出版社,北京,2007.1
    [59]石钟良陈德生等.气门热精锻模具的正常与异常失效[J].锻压技术,2001.第5期
    [60]C. Rodenburg, W.M. Rainforth. A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact[J], Acta Materialia,55(2007) 2443-2454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700