基于热力学计算的铝合金化超高碳钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用真空熔炼技术,制备了UHCS-OAl,UHCS-1.OAl,UHCS-1.5Al,UHCS-2.0Al,UHCS-2.3Al,UHCS-3.5Al六种铝含量递增的超高碳钢和UHCS-0.9Si,UHCS-0.6Al-0.6Si,UHCS-1.6Al-0.6Si三炉铝硅复合添加的超高碳钢,并锻造成棒材作为试验用料。利用FactSage软件对不同成分的铝合金化超高碳钢进行了热力学计算;结合淬火-硬度试验,确定了各种钢的相变特征温度。利用金相显微镜、扫描电镜、透射电镜对锻态组织及各种工艺处理后的组织进行了观察,对各种热处理后组织的力学性能进行了测定。
     热力学计算与试验均表明:超高碳钢中添加铝使先共析碳化物数量降低是锻造空冷后网状碳化物形成受到有效抑制的根本原因。同时,共析转变温度及转变温度的范围随着铝含量的增加而提高,变宽;先共析碳化物析出的温度范围减小,超高碳钢易于形成细化的伪共析珠光体组织。在碳含量低于1.7wt%时,添加1.5~2.3wt%的铝,锻造空冷后网状碳化物的析出受到有效的抑制。
     组织演变的分析表明,对于铝合金化的超高碳钢,利用加热控制,在成分不均匀奥氏体的冷却过程中,先共析碳化物将以弥散的形式在基体上以粒状析出,没有显示晶界优先形核的现象,无网状碳化物的形成。
     通过向超高碳钢添加铝,可以采用较为简便的热处理工艺使碳化物得到球化。铝含量高于1.5wt%时,采用离异共析退火工艺或淬火+高温回火工艺处理后,均可获得细小的碳化物分布于铁素体基体的均匀球化组织。
     超高碳钢中高的铝含量将降低球化处理过程中碳化物的长大倾向,减小基体晶粒的长大趋势。但过高的铝含量(>3wt%),使超高碳钢的室温塑性降低。含碳量为1.5wt%—1.8wt%时,铝含量控制在1.5—2.5wt%的范围内,并加入1.5wt%左右的Cr,可取得良好的室温综合力学性能。
     铝合金化超高碳钢淬火后的显微组织为超细马氏体基体及分布于其上的细小碳化物的复相组织,马氏体的亚结构是板条马氏体和孪晶马氏体并存的隐晶马氏体,回火过程中碳化物主要沿板条界和板条内析出,回火稳定性提高,回火各阶段微观组织变化均推到更高的温度。
Using the vacuum induction melting furnace, 6 kinds of UHCS with increasing content of A1(UHCS-OA1, UHCS-1.0A1, UHCS-1.5A1, UHCS-2.0A1, UHCS-2.3A1, UHCS-3.5A1) and 3 kinds of UHCS with different content of Al and Si (UHCS-0.9Si, UHCS-0.6Al-0.6Si, UHCS-1.6Al-0.6Si) were prepared. The ingots were hot-forged and worked into experimental samples. The FactSage software has been applied to calculate the thermodynamics data of UHCS with different addition of Al. With the help of quenching-hardness test, the phase transformation temperatures were determined. The microstructures processed by different techniques were analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM), and the mechanical properties were tested.Both the thermodynamic calculation and experiments showed that the main reason for inhibition of network carbide of forged UHCS was that the quantity of proeutectoid carbide decreased with the addition of Al. Meantime, the phase transformation temperatures were improved. The areas of eutectoid transformations were widened and that of proeutectoid carbide precipitation were shrunk with the increasing of Al content so that it was easy to form fine pseudo-eutectoid structure. With the C content under 1.7wt%, the addition of 1.5-2.3wt%Al restrained the carbide precipitation of forged UHCS effectively.The analyses of microstructure evolution showed that by heating the austenite with inhomogeneous carbon concentration, the proeutectoid carbide particles of UHCS with addition of Al precipitated dispersedly in the matrix during cooling, no tendency to nuclear at the grain boundary and no formation of network carbide.Compared with the UHCS without Al, the spheroidization techniques of UHCS with
    addition of Al were simplified. UHCS with the addition of Al above 1.5wt% can be processed by the divorced eutectoid annealing technique or quenching-and-high-tempering technique, which both can obtain the desired microstructure with the fine spheroidal carbides dispersed on the ferrite matrix.With high content of Al, the carbide growth tendency of UHCS was decreased during spheroidization, which avail to restrain the growth of matrix. But too much Al (>3wt%) may decrease the ductility of UHCS. The optimal composition with 1.5-1.8wt% C content was the addition of 1.5-2.3wt%Al and 1.5wt%Cr, which exhibited good ambient mechanical properties after spheroidization.The UHCS with addition of Al after quenching can obtain the microstructure with the fine spheroidal carbides dispersed on the martensite matrix. The sub-structure of martensite was the mixture of lath and twin-crystal martensite. The carbides mainly precipitated along and in the lath boundary during tempering. With addition of Al, the tempering stability of UHCS was improved and the changes of microstructure at each stage were deferred to higher temperatures.
引文
[1] O. D. Sherby, B. Walser, C. M. Young and E. M. Cady. Superplastic ultra-high carbon steels[J], Scripta Metall. 1975, 9(5): 569—574
    [2] O. D. Sherby, Ancient blacksmiths, the Iron Age, Damascus steels, and modern metallurgy, Journal of Materials Processing Technology, 2001, 117(3):347-353
    [3] Howe H M, The Metallurgy of Steel [M]. vol. 1, 2nd ed. New York: Scientific Publishing Company, 1981, 16.
    [4] Sherby O D. Ultrahigh Carbon Steels, damascus steels and ancient blacksmiths[J]. ISIJ International, 1999, 39(7): 637
    [5] K. Tsuzaki, E. Sato, S. Furimoto, T. Furuhara, et al. Formation of an (α+θ) microduplex structure without thermomechanical processing in superplastic ultrahigh carbon steels[J], Scripta Materialia, 1999, 40(6):675-681
    [6] Clarke B D, Mclvor I D. Structure and properties of plain and alloyed ultrahigh carbon steel wire and rod[J]. Ironmaking and Steelmaking, 1991, 18(5): 331
    [7] Sherby O D, Oyama T, Kum D W, et al. Ultrahigh Carbon Steels [J]. Journal of Metals, 1985(6): 50~56
    [8] H. Sunada, J. Wadsworth, J. Lin and O. D. Sherby. Mechanical properties and microstructure of heat-treated ultrahigh carbon steels. Mater. Sci. Eng. 1979, 38:35-40
    [9] Sherby O D, Young C M, Walser B, et al. Superplastic Ultra high carbon steel [P]. U S A: 3, 951, 697, Apr. 20, 1976
    [10] Sherby O D, Oyama T, Wadsworth J. Divorced eutectoid transformation process and product of Ultrahigh Carbon Steels[P]. U S A: 4, 448, 613, May 15, 1984
    [11] Sherby O D, Oyama T. Ultrahigh Carbon Steel alloy and processing thereof[P]. U S A: 4, 533, 390, Aug. 6, 1985
    [12] Sherby O D, Kum D W, Oyama T, et al. Ultrahigh Carbon Steels containing aluminum[P]. U S A: 4, 796, 214, Sept. 6, 1988
    [13] Strum M J. Transformation process for Production of Ultrahigh Carbon Steels and New Alloys [P]. U S Patent: 5445685, Aug. 29, 1995
    [14] Sato E. Microstructure control for superplasticity of an ultra-high carbon steel[J]. Materials Science Forum, 1999, 304-306:133.
    [15] 卢光熙,侯增寿,金属学教程,上海科学技术出版社,1985.10,307-308
    [16] Kim W J, Taleff E M, Sherby O D. Superplasticity of fine-grained Fe-C alloys prepared by ingot and powder processing routes[J]. Journal of Materials Science, 1998, 33:4977~4985
    [17] Walsr B, Sherby O D, Mechanical behavior of superplastic ultrahigh carbon steel at elevated temperature [J], Metallurgical Transaction A, 1979, 10A: 1461-1471
    [18] Carsi M, Penalba F, aruano O A, et al. High strain rate torsional behavior of an ultrahigh carbon steel (1.8 pct C-1.6 pct Al) at elevated temperature [J]. Metallurgical and Materials Transactions A, 1997, 28A: 1913-1920.
    [19] Speis H J, Frommeyer G. Superplasticity behavior of rapidly solidified ultrahigh carbon steel X380CrVMo2593 [J]. Materials Science and Technology, 1991, 7:718-722.
    [20] 齐靖远、徐品良,制耐火砖模具的超高碳钢材料工艺[P].中国专利,CN1048064A,1990-12-26
    [21] Syn C K, Sherby O D, Kim D K. Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod, Proceedings of the TMS Fall Meeting, Thermomechanicai Processing and Mechanical Properties of Hypereutectoid Steels and Cast Irons, 1997, p175-188、
    [22] Syn C K, Sherby O D, Ultrahigh carbon steel for automotive applications, New Steel Products and Processing for Automotive Applications, 1996, p159
    [23] R. Lesuer, The case for ultrahigh-carbon steels as structural materials[J], JOM, 1993(8):40-46
    [24] 罗光敏,吴建生,史海生,林一坚,章靖国;国外超高碳钢的研究进展;材料热处理学报;2003(3);14~18
    [25] C. K. Syn, D. R. Lesuer and O. D. Sherby. Influence of microstructure on tensile properties spheroidized ultrahigh-carbon (1.8 pct C) steel [J], Metal. Trans. 1994, 25A: 1481-1493
    [26] Lesuer D R, Syn C K, Whittenberger J D, et al. Microstructure-Property Relations in As-Extruded Ultrahigh-carbon Steels, Metallurgical and Materials Transactions A[J], 1999, 30A (June): 1559
    [27] Shi B.; Ajayi, O. O.; Tribological performance of some alternative bearing materials for artificial joints, Wear, 2003, vol. 255(7-12): 1015-1021
    [28] Lesuer D R, Syn C K, Whittenberger J D, Flow stresses in metal laminates and pure metals during high temperature extrusion, International Journal of Plasticity, Feb. 2002, vol. 18(2): 155-184
    [29] Carreno, F.; Chao, J.; Pozuelo, M.; Ruano, O. A; Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated eomposite, Scripta Materialia, Volume: 48, Issue: 8, April 14, 2003, pp. 1135-1140
    [30] Acosta, P; Jimenez, J. A; Frommeyer, G.; Ruano, O. A. Microstructural characterization of an ultrahigh carbon and boron tool steel processed by different routes, Materials Science and Engineering: A, Volume: 206, Issue: 2, February 28, 1996, pp. 194-200
    [31] Taleff, Eric M; Bramfitt, Bruce L., et al; Processing, structure, and properties of a rolled, ultrahigh-carbon steel plate exhibiting a damask pattern, Materials Characterization Volume: 46, Issue: 1, January, 2001, pp. 11-18
    [32] Godfrey, Evelyne; van Nie, Matthijs, A Germanic ultrahigh carbon steel punch of the Late Roman-Iron Age, Journal of Archaeological Science, Volume: 31, Issue: 8, August, 2004, pp. 1117-1125
    [33] Verhoeven, J. D.; Pendray, A. H., On the origin of the Damask pattern of Damascus steels Materials Characterization, Volume: 47, Issue: 1, July, 2001, pp. 79
    [34] Verhoeven, J. D.; Pendray, A. H., Origin of the Damask pattern in Damascus steel blades Materials Characterization, Volume: 47, Issue: 5, December, 2001, pp. 423-424
    [35] 邢渊等.超塑性挤压在金属塑性成行中的应用[J].机械工程师,1997(2):11
    [36] 阳永春等.轴承钢GCr15的恒温相变超塑性[J].热加工工艺,1994(2):23
    [37] 王敏.高速钢的组织超细化与超塑性变形力学行为[J].钢铁,1998,33(9):49
    [38] 章靖国,史海生,林一坚等,一种具有超塑性的超高碳钢基材获得方法及其应用[P].中国专利,CN1367272A, 2002-09-04
    [39] 林一坚,史海生,章靖国等,一种非调质超高碳钢及其生产工艺[P].中国专利,CN1472358A,2004-02-04
    [40] Syn, Chol; Sherby, Oleg; Kum, D. W., High strain rate-High strain response of an ultrahigh carbon steel containing 1.3% C and 3% Si, Materials Science Forum, v 426-432, n 2, 2003, p841-846
    [41] Luo, Guangmin; Wu, Jiansheng; Fan, Junfei; et al, Deformation behavior of an ultrahigh carbon steel (UHCS-3.0Si) at elevated temperature, Materials Science and Engineering A, Volume: 379, Issue: 1-2, August 15, 2004, pp. 302-307
    [42] 罗光敏,吴建生,史海生,林一坚,章靖国.1.25C-3.0Si超高碳钢的变形与组织分析,上海交通大学学报,2003,37(12):1835-1839
    [43] 石淑琴,张振忠,陈光,超细晶超高碳钢的化学成分设计,兵器材料科学与工程,2002,25(6):57-60
    [44] Kum, Dong-Wa, Effect of Al-addition on the microstructural refinement of ultra-high carbon steels, Proceedings of the TMS Fall Meeting, Thermomechanicai Processing and Mechanical Properties of Hypereutectoid Steels and Cast Irons, 1997, p 41-54
    [45] Hernandez, David, Jimenez, Jose A.; Superplastieity in the Fe-6.7%Al-1.5%Cr-1.4%C alloy, ISIJ Intemationai, 1997, 37(1):p93-95
    [46] Taleff, Eric M.; Kim W. J, Sherby O D. Predicting high-strain-rate superplastieity in UHCS-10Al, TMS Annuai Meeting, Modeling the Mechanical Response of Structural Materiais, 1998, p209-218
    [47] 罗光敏,吴建生,樊俊飞,等超高碳钢石墨化的热力学分析,材料热处理学报,2004,25(3):42-45
    [48] Taieff E M, Syn C K, Lesuer D R, et al. Pearlite in ultrhigh carbon steels: heat treatments and mechanical properties [J]. Metallurgicai and Matericais Transactions A, 1996, 27A(2): 111
    [49] Orhan, B. Kurt, The effect of small amounts of Al and Si on the superplastic behavior of a hypoeutectoid high carbon steel, Journal of Materiais Processing Technology, 2003, 136:174-178.
    [50] V. Shankar Rao, R. G. Baligidad, V. S. Raja, Effect of Al content on oxidation behaviour of ternary Fe-Al-C alloys, Intermetallics, 2002, 10:73-84.
    [51] E. Sato, S. Furimoto, T. Furuhara, et al. Microstructure control for super plasticity of an ultra-high carbon steel[J], Materiais Sci. Forum., 1999, 304-306:133-138
    [52] Oyama T, Syn C K, Lesuer D R, et al. Superplasticity and strength of ultrahigh Carbon Steels extruded at intermediate temperatures. In Deformation, Processing and Properties of Structural Materials[C]. U S A: The Minerals, Metals and Materials Society, 2000:35~44
    [53] J. Wadsworth and O. D. Sherby. Influence of chromium on superplasticity in ultra-high carbon steels [J], J. Mater. Sci., 1978, 13:2645-2649
    [54] 魏成富,王学前.奥氏体碳浓度不均匀在球化退火中作用机理的研究[J],材料科学与工程,1999,17(1):48~52,
    [55] 贺毅,王学前,高碳钢球化机制与Aclf透烧球化退火工艺,金属热处理,2002,27(5),39-43;
    [56] 贺毅,王学前,高碳钢快速球化退火工艺的研究,热加工工艺,2002(1),32-34:
    [57] 魏成富,王学前,过冷奥氏体的异常分解与碳化物粒化,热加工工艺,1999(2)21-25;
    [58] 王运炎,朱莉,塑性变形钢中碳化物球化过程的机理探讨,成都大学学报(自然科学版),1994,13(1):17-20
    [59] 胡明,韩季平,残留碳化物在等温球化处理中的作用,佳木斯工学院学报,1994,12(3),140-146
    [60] 王学前,霍金善,加热过程控制及透烧检测,四川工业学院学报,1997,16(1),:1~8
    [61] 章为夷,球化处理中残留碳化物的作用,热加工工艺,1992,4,15~18
    [62] 王学芝,章为夷,碳化物的球化过程和机理探讨,大连铁道学院学报,1997,18(3):51~56
    [63] 章为夷,等温球化处理过程中球化物的Ostwald长大现象,材料科学与工艺,1993,1(4):44~48
    [64] T. Oyama, O. D. Sherby, J. Wadsworth et al. Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels[J], Scripta Metall. 1984, 18(8): 799-804
    [65] R. A. Grange, The rapid heat treatment of steel[J], Metall. Trans. 1971, 2:65~78
    [66] Sato, S. Furimoto, T. Furuhara, K. Tsuzaki and T. Maki. Microstructure control for superplaticity of an ultra-high carbon steel[J], Materials Sci. Forum., 1999, 304-306:133-138
    [67] Kayali E S, Sunada H, Oyama T, etal. Journal of Materials Science [J]. 1979, 149(11): 2688
    [68] 古原忠,牧正志.Materia Japan[J]. 2000, 39(3): 220
    [69] Acosta P, Jimenez J. A, Frommeyer G, Ruano O. A, Microstructural characterization of an ultrahigh carbon and boron tool steel processed by different routes, Materials Science and Engineering(A), 1996, 206(13): pp. 194-200
    [70] Acosta P, Jimenez J A, Frommeyer G, et al. Superplasticity behavior of powder metallurgy 1.3%C-1.6%Cr-0.8%B steel[J]. Materials Science and Technology, 1997, 13(11):923-925.
    [71] 李小军,吴建生,章靖国,史海生,林一坚,喷射成型超高碳钢的超塑性等温锻造性能研究,材料热处理学报,2004,25(3):50-53
    [72] G. M. Luoa, J. S. Wu, J. F. Fan, Microstructure and mechanical properties of spray-deposited ultra-high carbon steel after hot rolling, Materials Characterization 52 (2004) 263-268
    [73] 王军,徐政,史海生,林一坚,章靖国,喷射成形超高碳钢的微观组织与工艺研究,材料科学与工程学报,2003,21(5),660~663
    [74] Apelian D, Gillen G, Leathan A, Near netshape manufacturing via theosprey processing of Structural Metals by Rapid Solidification[M], ASM International, 1987, 107-125
    [75] 徐寒冰,吴建生,章靖国.喷射成形技术进展及其工业应用[J].机械工程材料,1999,23(6),1~5.
    [76] 李小军,吴建生,章靖国,史海生,林一坚,超高碳钢超塑性的研究进展,机械工程材料,2004,28(2):4-6
    [77] Jing Guo Zhang, Yi Jian Lin, Mats Hillert, et al, Microstructure and mechanical properties of spray formed ultrahigh-carbon steels, Materials Science and Engineering A 383 (2004) 45-49
    [78] A. Fernandez-Vicente, M. Carsi, et. al. Toughness dependence on the microstructural parameters for an ultrahigh carbon steel, Mater. Sci. and Eng. A, 2002, 335:175-185
    [79] Oyama T. Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structure in ultrahigh carbon steels [J]. Scripta Metallurgica, 1984, 18:799.
    [80] 王宝奇,宋晓艳,李红娟等.含铝超高碳钢等温球化工艺的研究[J],材料科学与工艺,2004,12(4):337-340.
    [81] 李红娟,王宝奇,宋晓艳,郭素珍,谷南驹.铝合金化超高碳钢的一种新型球化工艺研究[J],金属热处理,2004(9):46-51.
    [82] 张占平,齐育红,DELAGNS D,BERNHART G,钢的回火时间-温度-硬度动力学关系,材料热处理学报,2004(2),25(1):41-45
    [83] 郭从盛,淬火钢回火过程的数学模型[J],金属学报,1999,35(8):865-868
    [84] 徐祖耀,李麟.材料热力学[M].北京:科学出版社,2000,134-137,151-153
    [85] 许雁,柳永宁,超高碳钢组织与性能的研究,机械工程材料,2004,28(1):41-43
    [86] 宋维锡,金属学,冶金工业出版社,1989.5,p184-210.
    [87] Zhu Jiewu, Xu Yan, Yongning Liu, Lath martensite in 1.4%C ultra-high carbon steel and its grain size effect, Materials Science and Engineering A 385 (2004) 440-444
    [88] A. V. Suyazov, M. P. Usikov, Structure transformations of high-carbon aluminium steels during termpering, Met. Metall, 1982, 54(1): 109-117.
    [89] 李文超主编,冶金材料物理与化学,冶金工业出版社,2001.1
    [90] 赵玉谦,姜启川,赵宇光,等,铝复合变质处理对M2铸造高速钢的影响,吉林大学学报,1997(2):28-32。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700