扇贝补体样成分的基因及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
补体系统作为固有免疫的组成部分和免疫效应系统,在无脊椎动物防御过程中发挥了重要作用。但目前对无脊椎动物补体样系统的研究刚刚起步,对软体动物补体样成分的研究几近空白。本研究采用RACE、RT-PCR和基因原核重组表达等分子生物学技术开展了对栉孔扇贝(Chlamys farreri)含硫酯蛋白(thioester-containing protein, CfTEP)、含C1q结构域蛋白(C1 q-domain-containing protein, CfC1qDC)、C型凝集素(C-type lectin, Cflec-3, Cflec-4和Cflec-5)和海湾扇贝(Argopecten irradians) C型凝集素(AiCTL-6)、纤维蛋白原相关蛋白(fibrinogen-related protein, AiFREP)等基因的克隆、表达和功能研究。CfTEP、CfC1qDC、Cflec-3、Cflec-4、Cflec-5、AiCTL-6和AiFREP的cDNA全长分别为4616、777、2256、2080、1412、1063和990 bp。它们的开放阅读框编码的蛋白均含有一段信号肽,并分别含有α2-巨球蛋白结构域、C1q结构域、三个或四个或一个C型凝集素结构域和纤维蛋白原样结构域。在健康扇贝中,CfTEP和Cflec-4仅在健康扇贝的肝胰腺和性腺中表达,而其它基因在各个检测组织中均有表达。鳗弧菌刺激可显著诱导这些基因的表达。CfTEP基因组DNA通过转录后选择性剪接可形成七种不同的转录本,它们在雌雄扇贝性腺中对不同细菌的刺激呈现出不同的表达模式。原核重组的CfC1qDC蛋白具有较强的脂多糖结合活性;重组的Cflec-3蛋白对施氏假单胞菌具有钙离子依赖的、甘露糖结合型的凝集作用;重组的Cflec-5蛋白对毕赤酵母具有钙离子非依赖的、甘露糖结合型的凝集作用;重组的AiCTL-6蛋白对大肠杆菌、藤黄微球菌和金黄色葡萄球菌具有钙离子依赖的凝集作用;重组的AiFREP蛋白对人、鸡血红细胞以及鳗弧菌、大肠杆菌和藤黄微球菌具有钙离子依赖的凝集活性,并且其凝血活性可被含乙酰基的糖类所抑制。
     本研究结果表明,CfTEP、CfC1qDC、Cflec-3、Cflec-4、Cflec-5、AiCTL-6和AiFREP作为扇贝固有免疫中重要的模式识别受体参与了扇贝对外源微生物刺激的响应。它们在分子结构和功能上与高等动物补体系统中的C3、C1q、甘露糖结合凝集素和ficolin等成分有一定相似性,有可能作为它们的一种原始形式存在于低等软体动物中。该研究结果为进一步描绘扇贝中存在的简单原始的补体系统及揭示补体系统的进化脉络提供了分子生物学证据,同时对深入了解扇贝免疫防御机制,丰富和发展海洋无脊椎动物免疫学内容也具有重要理论意义。
Complement system, as the important part of innate immunity and one of the major effecter arms of immune responses, plays a critical role in innate immune defense of invertebrates. The study on invertebrate complement-like system is still on the beginning and the information about complement-like molecules in mollusks remains deficient. In the present study, Chlamys farreri thioester-containing protein (CfTEP), Clq-domain-containing protein (CfC1qDC), C-type lectins (Cflec-3, Cflec-4 and Cflec-5) and Argopecten irradians C-type lectin (AiCTL-6) and fibrinogen-related protein (AiFREP) were studied by molecular biotechnologies including RACE, RT-PCR and recombinant protein expression. The full-length cDNA sequences of CfTEP, CfC1qDC, Cflec-3, Cflec-4, Cflec-5, AiCTL-6 and AiFREP were of 4616,777,2256,2080,1412,1063 and 990 bp, respectively. The open reading frame (ORF) encoded a polypeptide consisted of a signal peptide, with anα2-macroglobulin domain in CfTEP, a Clq domain in CfClqDC, three or four carbohydrate recognition domain (CRD) in Cflec-3, Cflec-4, one CRD in Cflec-5 or AiCTL-6, and a fibrinogen-related domain in AiFREP. In healthy scallops, CfTEP and Cflec-4 mRNA was only expressed in hepatopancreas and gonad, while others could be found in all the tissues detected. All of their mRNA expression levels could be remarkably up-regulated by Listonella anguillarum challenge. The genomic DNA of CfTEP consisted of 40 exons and 39 introns, and seven different transcripts were produced by alternative splicing. These transcripts displayed different expression pattern in gonads in response to different bacterial challenges. The recombinant CfClqDC protein displayed a significantly strong activity to bind LPS. The recombinant Cflec-3 agglutinated Pseudomonas stustzeri in the calcium ions-dependent D-mannose-binding manner. The recombinant Cflec-5 agglutinated Pichia pastoris GS115 in the calcium ions-independent D-mannose-binding manner. The recombinant AiCTL-6 agglutinated bacteria Escherichia coli TOPI OF', Micrococcus luteus and Staphylococcus aureus. And the recombinant AiFREP agglutinated not only bacteria L. anguillarum, E.coli JM109 and M. luteus, but also chicken and human erythrocytes. These activities were calcium ions-dependent and could be inhibited by acetyl group-containing carbohydrates.
     These results collectively suggested that these molecules were involved in the immune response against microbe infections and functioned as pattern recognition receptors in the innate immune system of scallops. They shared structural and functional similarity with the mammalian complement components, including C3, Clq, MBL and ficolin, and they might be the ancestor forms of these molecules contributing to nonself-recognition in invertebrates. It would provide clues for elucidating the evolution origin of the complement components and contribute to further study on the primary and simple complement-like system in scallops. Meanwhile, it would be helpful for understanding the scallops'immune defense mechanisms and provide new information for the enrichment and development of marine invertebrate immunology.
引文
1. Burnet, M., Auto-immune disease. I. Modern immunological concepts. Br Med J, 1959.2(5153):645-650.
    2. Fearon, D.T. and Locksley, R.M., The instructive role of innate immunity in the acquired immune response. Science,1996.272(5258):50-53.
    3. Alan, R., Ezekowitz, B., and Hoffmann, J., Innate immunity:The blossoming of innate immunity. Curr Opini Immunol,1998.10(1):9-11.
    4. Turner, M.W.,90 years on:a therapy to 'stimulate the phagocytes'? Scand J Immunol,1998.48(2):124-126.
    5. Medzhitov, R. and Janeway, C.A., Jr., Innate immune recognition and control of adaptive immune responses. Semin Immunol,1998.10(5):351-353.
    6. Beutler, B., Innate immunity:an overview. Mol Immunol,2004.40(12):845-859.
    7. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., and Ezekowitz, R.A.B., Phylogenetic perspectives in innate immunity. Science 1999.284(5418): 1313-1318.
    8. Lemaitre, B. and Hoffmann, J., The host defense of Drosophila melanogaster. Annu Rev Immunol,2007.25:697-743.
    9. Medzhitov, R. and Janeway, C.A., Jr., Innate immunity:the virtues of a nonclonal system of recognition. Cell,1997.91(3):295-298.
    10. Medzhitov, R. and Janeway, C.A., Jr., Innate immunity:impact on the adaptive immune response. Curr Opin Immunol,1997.9(1):4-9.
    11. Janeway, C.A., Jr., The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today,1992.13(1):11-16.
    12. Stahl, P.D. and Ezekowitz, R.A., The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol,1998.10(1):50-55.
    13. Fraser, I.P., Koziel, H., and Ezekowitz, R.A., The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol,1998.10(5):363-372.
    14. Girardin, S.E. and Philpott, D.J., Mini-review:the role of peptidoglycan recognition in innate immunity. Eur J Immunol,2004.34(7):1777-1782.
    15. Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo J,1998.17(21):6230-6240.
    16.Christophides, GK., Zdobnov, E., Barillas-Mury, C., Birney, E., Blandin, S., Blass, C., et al., Immunity-related genes and gene families in Anopheles gambiae. Science,2002.298(5591):159-165.
    17.王金星,赵小凡,无脊椎动物先天免疫模式识别受体研究进展.生物化学与生物物理进展,2004.31(2):112-116.
    18. Drickamer, K. and Taylor, M., Biology of animal lectins. Ann. Rev. Cell Biol., 1993.9:237-264.
    19. Drickamer, K., Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem,1988.263(20):9557-9560.
    20. Zelensky, A.N. and Gready, J.E., The C-type lectin-like domain superfamily. Febs J,2005.272(24):6179-6217.
    21. Levashina, E.A., Moita, L.F., Blandin, S., Vriend, G, Lagueux, M., and Kafatos, F.C., Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell,2001. 104(5):709-718.
    22. Lagueux, M., Perrodou, E., Levashina, E.A., Capovilla, M., and Hoffmann, J.A., Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A,2000.97(21): 11427-11432.
    23. Blandin, S. and Levashina, E.A., Thioester-containing proteins and insect immunity. Mol Immunol,2004.40(12):903-908.
    24. Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G, Hoffmann, J.A., et al., The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature,2002.416(6881):640-644.
    25. Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H., and Hultmark, D., A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A,2000.97(25):13772-13777.
    26. Greenberg, J.W., Fischer, W., and Joiner, K.A., Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun, 1996.64(8):3318-3325.
    27. Elola, M.T., Wolfenstein-Todel, C., Troncoso, M.F., Vasta, G.R., and Rabinovich, G.A., Galectins:matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci,2007.64(13):1679-1700.
    28. Pace, K.E., Lebestky, T., Hummel, T., Arnoux, P., Kwan, K., and Baum, L.G., Characterization of a novel Drosophila melanogaster galectin. Expression in developing immune, neural, and muscle tissues. J Biol Chem,2002.277(15): 13091-13098.
    29. Kimbrell, D.A. and Beutler, B., The evolution and genetics of innate immunity. Nat Rev Genet,2001.2(4):256-267.
    30. Iwanaga, S., The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol,2002.14(1):87-95.
    31. Volanakis, J.E. and Frank, M., The Human Complement System in Health and Disease. New York:Marcel Deiierk Inc,1998.9-32.
    32.于善谦,王洪海,朱乃硕,叶荣.免疫学导论(第一版).北京:高等教育出版社,施普林格出版社,1997.69-70.
    33. Pillemer, L., Lepow, I.H., and Blum, L., The requirement for a hydrazine-sensitive serum factor and heat-labile serum factors in the inactivation of human C'3 by zymosan. J Immunol,1953.71(5):339-345.
    34. Pillemer, L., Blum, L., Lepow, I.H., Ross, O.A., Todd, E.W., and Wardlaw, A.C., The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science,1954. 120(3112):279-285.
    35. Muller-Eberhard, H.J., Nilsson, U., and Aronsson, T., Isolation and characterization of two betal-glycoproteins of human serum. J Exp Med,1960. 111:201-215.
    36. Turner, M.W., Mannose-binding lectin:the pluripotent molecule of the innate immune system Immunol Today,1996.17(11):532-540.
    37.金伯泉主编.细胞和分子免疫学(第二版).北京:科学出版社,2001.240-258.
    38. Fujita, T., Matsushita, M., and Endo, Y., The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev,2004.198:185-202.
    39. Tom Tang, Y., Hu, T., Arterburn, M., Boyle, B., Bright, J.M., Palencia, S., et al, The complete complement of Clq-domain-containing proteins in Homo sapiens. Genomics,2005.86(1):100-111.
    40. Arlaud, GJ., Gaboriaud, C., Thielens, N.M., and Rossi, V., Structural biology of Cl. Biochem Soc Trans,2002.30(6):1001-1006.
    41. Matsushita, M. and Fujita, T., Ficolins and the lectin complement pathway. Immunol Rev,2001.180:78-85.
    42. Endo, Y, Takahashi, M., and Fujita, T., Lectin complement system and pattern recognition. Immunobiology,2006.211(4):283-293.
    43. Endo, Y., Takahashi, M., Nakao, M., Saiga, H., Sekine, H., Matsushita, M., et al., Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J Immunol,1998.161(9):4924-4930.
    44. Thiel, S., Vorup-Jensen, T., Stover, C.M., Schwaeble, W., Laursen, S.B., Poulsen, K., et al., A second serine protease associated with mannan-binding lectin that activates complement Nature,1997.386(6624):506-510.
    45. Dahl, M.R., Thiel, S., Matsushita, M., Fujita, T., Willis, A.C., Christensen, T., et al., MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity,2001.15(1):127-135.
    46. Takahashi, M., Endo, Y., Fujita, T., and Matsushita, M., A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. Int Immunol,1999.11(5):859-863.
    47. Thiel, S., Petersen, S.V., Vorup-Jensen, T., Matsushita, M., Fujita, T., Stover, C.M., et al., Interaction of Clq and mannan-binding lectin (MBL) with Clr, Cls, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19. J Immunol,2000.165(2):878-887.
    48. Matsushita, M. and Fujita, T., Cleavage of the third component of complement (C3) by mannose-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiology,1995.194(4-5):443-448.
    49. Goldsby, R., Kindt, T., Kuby, J., and Osborne, B. Immunology,5th edtion. New York:W. H. Freeman,2002.300-317.
    50. Huber-Lang, M., Sarma, J.V., Zetoune, F.S., Rittirsch, D., Neff, T.A., McGuire, S.R., et al., Generation of C5a in the absence of C3:a new complement activation pathway. Nat Med,2006.12(6):682-687.
    51. Mastellos, D. and Lambris, J., Complement:more than a'guard'against invading pathogens?. Trends Immunol,2002.23:485-491.
    52. Schmidt, B.Z. and Colten, H.R., Complement:a critical test of its biological importance. Immunol Rev,2000.178:166-176.
    53. Nonaka, M. and Yoshizaki, F., Primitive complement system of invertebrates. Immunol Rev,2004.198:203-215.
    54. Nonaka, M. and Yoshizaki, F., Evolution of the complement system. Mol. Immunol,2004.40:897-902.
    55. Janssen, B.J., Huizinga, E.G., Raaijmakers, H.C., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., et al., Structures of complement component C3 provide insights into the function and evolution of immunity. Nature,2005.437(7058): 505-511.
    56. Suzuki, M.M., Satoh, N., and Nonaka, M., C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol,2002.54(5):671-679.
    57. Zhang, S.C., Wang, C.F., and Wang, Y.J., Presence and characterization of complement like activity in the amphioxus Branchiostoma belcheri tsingtauense. Zoological Science,2003.20:1207-1214.
    58. Marino, R., Kimura, Y., De Santis, R., Lambris, J.D., and Pinto, M.R., Complement in urochordates:cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics,2002.53(12):1055-1064.
    59. Nonaka, M., Azumi, K., Ji, X., Namikawa-Yamada, C., Sasaki, M., Saiga, H., et al., Opsonic complement component C3 in the solitary ascidian, Halocynthia roretzi. J Immunol,1999.162(1):387-391.
    60. Clow, L.A., Gross, P.S., Shih, C.S., and Smith, L.C., Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics,2000.51(12):1021-1033.
    61. Smith, L.C., Clow, L.A., and Terwilliger, D.P., The ancestral complement system in sea urchins. Immunol Rev,2001.180:16-34.
    62. Al-Sharif, W.Z., Sunyer, J.O., Lambris, J.D., and Smith, L.C., Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol,1998.160(6):2983-2997.
    63. Smith, L.C., Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol,2002.26(7):603-614.
    64. Clow, L.A., Raftos, D.A., Gross, P.S., and Smith, L.C., The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol,2004.207(Pt 12):2147-2155.
    65. Shah, M., Brown, K.M., and Smith, L.C., The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol,2003.27(6-7):529-538.
    66. Iwaki, D., Kawabata, S., Miura, Y., Kato, A., Armstrong, P.B., Quigley, J.P., et al., Molecular cloning of Limulus alpha 2-macroglobulin. Eur J Biochem,1996. 242(3):822-831.
    67. Bender, R.C. and Bayne, C.J., Purification and characterization of a tetrameric alpha-macroglobulin proteinase inhibitor from the gastropod mollusc Biomphalaria glabrata. Biochem J,1996.316 (Pt 3):893-900.
    68. Yigzaw, Y., Gielens, C., and Preaux, G, Isolation and characterization of an alpha-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment Biochim Biophys Acta,2001.1545(1-2):104-113.
    69. Dodds, A.W. and Law, S.K., The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev,1998. 166:15-26.
    70. Sottrup-Jensen, L., Stepanik, T.M., Kristensen, T., Lonblad, P.B., Jones, C.M., Wierzbicki, D.M., et al., Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci U S A,1985.82(1): 9-13.
    71. Nonaka, M. and Kimura, A., Genomic view of the evolution of the complement system. Immunogenetics,2006.58(9):701-713.
    72. Dishaw, L.J., Smith, S.L., and Bigger, C.H., Characterization of a C3-like cDNA in a coral:phylogenetic implications. Immunogenetics,2005.57(7):535-548.
    73. Zhu, Y., Thangamani, S., Ho, B., and Ding, J.L., The ancient origin of the complement system. Embo J,2005.24(2):382-394.
    74. Putnam, N.H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., et al., Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science,2007.317(5834):86-94.
    75. Prado-Alvarez, M., Rotllant, J., Gestal, C., Novoa, B., and Figueras, A., Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol,2009.26(2):305-315.
    76. Castillo, M.G, Goodson, M.S., and McFall-Ngai, M., Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dcv Comp Immunol,2009.33(1): 69-76.
    77. Yoshizaki, F.Y., Ikawa, S., Satake, M., Satoh, N., and Nonaka, M., Structure and the evolutionary implication of the triplicated complement factor B genes of a urochordate ascidian, Ciona intestinalis. Immunogenetics,2005.56(12):930-942.
    78. Smith, L.C., Shih, C.S., and Dachenhausen, S.G., Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol,1998.161(12):6784-6793.
    79. He, Y., Tang, B., Zhang, S., Liu, Z., Zhao, B., and Chen, L., Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri:implications for involvement of hepatic cecum in acute phase response. Fish Shellfish Immunol,2008.24(6):768-778.
    80. Ohta, Y, Goetz, W., Hossain, M.Z., Nonaka, M., and Flajnik, M.F., Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol,2006. 176(6):3674-3685.
    81. Nonaka, M., Takahashi, M., and Sasaki, M., Molecular cloning of a lamprey homologue of the mammalian MHC class III gene, complement factor B. J Immunol,1994.152(5):2263-2269.
    82. Kuroda, N., Wada, H., Naruse, K., Simada, A., Shima, A., Sasaki, M., et al., Molecular cloning and linkage analysis of the Japanese medaka fish complement Bf/C2 gene. Immunogenetics,1996.44(6):459-467.
    83. Nakao, M., Fushitani, Y, Fujiki, K., Nonaka, M., and Yano, T., Two diverged complement factor B/C2-like cDNA sequences from a teleost, the common carp (Cyprinus carpio). J Immunol,1998.161(9):4811-4818.
    84. Seeger, A., Mayer, W.E., and Klein, J., A complement factor B-like cDNA clone from the zebrafish (Brachydanio rerio). Mol Immunol,1996.33(6):511-520.
    85. Yu, Y., Huang, H., Wang, Y., Yu, Y, Yuan, S., Huang, S., et al., A novel Clq family member of amphioxus was revealed to have a partial function of vertebrate Clq molecule. J Immunol,2008.181(10):7024-7032.
    86. Matsushita, M., Matsushita, A., Endo, Y., Nakata, M., Kojima, N., Mizuochi, T., et al., Origin of the classical complement pathway:Lamprey orthologue of mammalian Clq acts as a lectin. Proc Natl Acad Sci U S A,2004.101(27): 10127-101231.
    87. Kishore, U. and Reid, K.B., Clq:structure, function, and receptors. Immunopharmacology,2000.49(1-2):159-170.
    88. Gerlach, D., Schlott, B., and Schmidt, K.H., Cloning and expression of a sialic acid-binding lectin from the snail Cepaea hortensis. FEMS Immunol Med Microbiol,2004.40(3):215-221.
    89. Ma, T.H., Tiu, S.H., He, J.G., and Chan, S.M., Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei:early gene down-regulation after WSSV infection. Fish Shellfish Immunol,2007.23(2):430-437.
    90. Zheng, P., Wang, H., Zhao, J., Song, L., Qiu, L., Dong, C., et al., A lectin (CfLec-2) aggregating Staphylococcus haemolyticus from scallop Chlamys farreri. Fish Shellfish Immunol,2008.24(3):286-293.
    91.Dimopoulos, G, Christophides, G.K., Meister, S., Schultz, J., White, K.P., Barillas-Mury, C., et al., Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA,2002.99(13):8814-8819.
    92. Wang, X., Rocheleau, T.A., Fuchs, J.F., Hillyer, J.F., Chen, C.C., and Christensen, B.M., A novel lectin with a fibrinogen-like domain and its potential involvement in the innate immune response of Armigeres subalbatus against bacteria. Insect Mol Biol,2004.13(3):273-282.
    93. Zdobnov, E.M., von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R.R., et al., Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science,2002.298(5591):149-159.
    94. Rego, R.O., Hajdusek, O., Kovar, V., Kopacek, P., Grubhoffer, L., and Hypsa, V., Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol,2005.35(9):991-1004.
    95. Rego, R.O., Kovar, V., Kopacek, P., Weise, C., Man, P., Sauman, I., et al., The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochem Mol Biol,2006.36(4):291-299.
    96. Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., et al., Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci U S A,1999.96(18): 10086-10091.
    97. Adema, C.M., Hertel, L.A., Miller, R.D., and Loker, E.S., A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci U S A,1997. 94(16):8691-8696.
    98. Zhang, S.M. and Loker, E.S., The FREP gene family in the snail Biomphalaria glabrata:additional members, and evidence consistent with alternative splicing and FREP retrosequences. Fibrinogen-related proteins. Dev Comp Immunol,2003. 27(3):175-187.
    99. Fan, C., Zhang, S., Li, L., and Chao, Y., Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity. Molecular Immunology,2008.45(12):3338-3346.
    100. Sekine, H., Kenjo, A., Azumi, K., Ohi, G, Takahashi, M., Kasukawa, R., et al., An ancient lectin-dependent complement system in an ascidian:novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi. J Immunol, 2001.167(8):4504-4510.
    101. Takahashi, M., Iwaki, D., Matsushita, A., Nakata, M., Matsushita, M., Endo, Y., et al., Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). J Immunol,2006.176(8):4861-4868.
    102. Kakinuma, Y, Endo, Y, Takahashi, M., Nakata, M., Matsushita, M., Takenoshita, S., et al., Molecular cloning and characterization of novel ficolins from Xenopus laevis. Immunogenetics,2003.55(1):29-37.
    103. Kenjo, A., Takahashi, M., Matsushita, M., Endo, Y, Nakata, M., Mizuochi, T., et al., Cloning and characterization of novel ficolins from the solitary ascidian, Halocynthia roretzi. J Biol Chem,2001.276(23):19959-19965.
    104. Endo, Y, Nonaka, M., Saiga, H., Kakinuma, Y., Matsushita, A., Takahashi, M., et al., Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. J Immunol,2003.170(9):4701-4707.
    105. Ji, X., Azumi, K., Sasaki, M., and Nonaka, M., Ancient origin of the complement lectin pathway revealed by molecular cloning of mannan binding protein-associated serine protease from a urochordate, the Japanese ascidian, Halocynthia roretzi. Proc Natl Acad Sci U S A,1997.94(12):6340-6345.
    106. Nunn, M.A., Sharma, A., Paesen, G.C., Adamson, S., Lissina, O., Willis, A.C., et al., Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol,2005.174(4):2084-2091.
    107. Roversi, P., Lissina, O., Johnson, S., Ahmat, N., Paesen, G.C., Ploss, K., et al., The structure of OMCI, a novel lipocalin inhibitor of the complement system. J Mol Biol,2007.369(3):784-793.
    108. Hepburn, N.J., Williams, A.S., Nunn, M.A., Chamberlain-Banoub, J.C., Hamer, J., Morgan, B.P., et al., In vivo characterization and therapeutic efficacy of a C5-specific inhibitor from the soft tick Ornithodoros moubata. J Biol Chem,2007. 282(11):8292-8299.
    109. Multerer, K.A. and Smith, L.C., Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus, encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics,2004. 56(2):89-106.
    110.张福绥,何义朝,亓玲欣,孙鲁宁,海湾扇贝引种复状的研究.海洋与湖沼,1997.28:146-152.
    111.Barcia, R., Cao, A., Arbeteta, J., and Ramos-Martinez, J.I., The IL-2 receptor in hemocytes of the sea mussel Mytilus galloprovincialis Lmk. IUBMB Life,1999. 48(4):419-423.
    112.Cao, A., Ramos-Martinez, J.I., and Barcia, R., In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. Fish Shellfish Immunol,2004.16(2):215-25.
    113.萨姆布鲁克,拉塞尔,黄培堂等译.分子克隆实验指南.第三版.北京:科学出版社,2002.1686-1687
    114.Kumar, S., Tamura, K., and Nei, M., MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform,2004. 5(2):150-163.
    115.Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C., SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res,2003.31(13): 3381-3385.
    116.Guex, N. and Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling. Electrophoresis 1997.18: 2714-2723.
    117.Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001. 25(4):402-408.
    118.Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., et al., Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri. Mol Immunol,2007.44(5):722-731.
    119.Minagawa, S., Hikima, J., Hirono, I., Aoki, T., and Mori, H., Expression of Japanese flounder c-type lysozyme cDNA in insect cells. Dev Comp Immunol, 2001.25(5-6):439-445.
    120. Yu, X.Q. and Kanost, M.R., Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. J Biol Chem,2000.275(48):37373-37381.
    121. Sun, J., Wang, L., Wang, B., Guo, Z., Liu, M., Jiang, K., et al., Purification and characterisation of a natural lectin from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immunol,2007.23(2):292-299.
    122. Nonaka, M. and Takahashi, M., Complete complementary DNA sequence of the third component of complement of lamprey. Implication for the evolution of thioester containing proteins. J Immunol,1992.148(10):3290-3295.
    123. Ishiguro, H., Kobayashi, K., Suzuki, M., Titani, K., Tomonaga, S., and Kurosawa, Y., Isolation of a hagfish gene that encodes a complement component. EMBO, 1992.11:829-837.
    124. Nonaka, M. and Azumi, K., Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol,1999.23(4-5):421-427.
    125. Dodds, A.W. and Law, S.K., Structural basis of the binding specificity of the thioester-containing proteins, C4, C3 and alpha-2-macroglobulin. Complement, 1988.5(2):89-97.
    126. Suda, S.A., Dolmer, K., and Gettins, P.G., Critical role of asparagine 1065 of human alpha2-macroglobulin in formation and reactivity of the thiol ester. J Biol Chem,1997.272(49):31107-31112.
    127. Mutsuro, J., Nakao, M., Fujiki, K., and Yano, T., Multiple forms of alpha2-macroglobulin from a bony fish, the common carp (Cyprinus carpio): striking sequence diversity in functional sites. Immunogenetics,2000.51(10): 847-855.
    128. Saravanan, T., Weise, C., Sojka, D., and Kopacek, P., Molecular cloning, structure and bait region splice variants of alpha2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochcm Mol Biol,2003.33(8):841-851.
    129. Sottrup-Jensen, L., Alpha-macroglobulins:structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem,1989.264:11539-11542.
    130. Lambris, J.D., The multifunctional role of C3, the third component of complement. Immunol Today,1988.9(12):387-393.
    131. Andus, T., Gross, V., Tran-Thi, T.A., Schreiber, G, Nagashima, M., and Heinrich, P.C., The biosynthesis of acute-phase proteins in primary cultures of rat hepatocytes. Eur J Biochem,1983.133(3):561-571.
    132. Raftos, D.A., Fabbro, M., and Nair, S.V., Exocytosis of a complement component C3-like protein by tunicate hemocytes. Dev Comp Immunol,2004. 28(3):181-190.
    133. Vaseeharan, B., Lin, Y.C., Ko, C.F., Chiou, T.T., and Chen, J.C., Molecular cloning and characterisation of a thioester-containing alpha2-macroglobulin (alpha2-M) from the haemocytes of mud crab Scylla serrata. Fish Shellfish Immunol,2007.22(1-2):115-130.
    134. Lin, Y.C., Vaseeharan, B., Ko, C.F., Chiou, T.T., and Chen, J.C., Molecular cloning and characterisation of a proteinase inhibitor, alpha 2-macroglobulin (alpha2-M) from the haemocytes of tiger shrimp Penaeus monodon. Mol Immunol, 2007.44(6):1065-1074.
    135. Halanych, K.M., The new of animal phylogeny. Annu. Rev. Ecol. Evol. Syst. 2004.35:229-256.
    136. Matsuo, R., Misawa, K., and Ito, E., Genomic structure of nitric oxide synthase in the terrestrial slug is highly conserved. Gene,2008.415(1-2):74-81.
    137. van den Elsen, J.M., Martin, A., Wong, V., Clemenza, L., Rose, D.R., and Isenman, D.E., X-ray crystal structure of the C4d fragment of human complement component C4. J Mol Biol,2002.322(5):1103-1115.
    138. Lynch, K.W., Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol,2004.4(12):931-940.
    139. Modrek, B. and Lee, C., A genomic view of alternative splicing. Nat Genet,2002. 30(1):13-19.
    140. Moy, GW. and Vacquier, V.D., Bindin genes of the Pacific oyster Crassostrea gigas. Gene,2008.423(2):215-220.
    141. Zhang, S.M., Zeng, Y., and Loker, E.S., Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics, 2007.59(11):883-898.
    142. Nakhost, A., Houeland, G, Blandford, V.E., Castellucci, V.F., and Sossin, W.S., Identification and characterization of a novel C2B splice variant of synaptotagmin I. J Neurochem,2004.89(2):354-363.
    143. Lee, C.J. and Irizarry, K., Alternative splicing in the nervous system:an emerging source of diversity and regulation. Biological Psychiatry,2003.54(8): 771.
    144. Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., et al., Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell,2000.101(6):671-684.
    145. Watson, F.L., Puttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., Kondo, M., et al., Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science,2005.309(5742):1874-1878.
    146. Nair, S.V., Del Valle, H., Gross, P.S., Terwilliger, D.P., and Smith, L.C., Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics,2005.22(1):33-47.
    147. Terwilliger, D.P., Buckley, K.M., Brockton, V., Ritter, N.J., and Smith, L.C., Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus:an unexpectedly diverse family of transcripts in response to LPS, beta-1,3-glucan, and dsRNA. BMC Mol Biol,2007.8:16.
    148. Green, R.E., Lewis, B.P., Hillman, R.T., Blanchette, M., Lareau, L.F., Garnett, A.T., et al., Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics,2003.19 Suppl 1:i118-121.
    149. Lewis, B.P., Green, R.E., and Brenner, S.E., Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A,2003.100(1):189-192.
    150. Lykke-Andersen, J., Shu, M.D., and Steitz, J.A., Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science,2001.293(5536):1836-1839.
    151. Lopez, A.J., Alternative splicing of pre-mRNA:developmental consequences and mechanisms of regulation. Annu Rev Genet,1998.32:279-305.
    152. Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem,2003.72:291-336.
    153. Matlin, A.J., Clark, F., and Smith, C.W., Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol,2005.6(5):386-398.
    154. Scherer, P.E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H.F., A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem, 1995.270(45):26746-26749.
    155. Reid, K.B., Colomb, M., Petry, F., and Loos, M., Complement component C1 and the collectins-first-line defense molecules in innate and acquired immunity. Trends Immunol,2002.23(3):115-117.
    156. Botto, M. and Walport, M.J., Clq, autoimmunity and apoptosis. Immunobiology, 2002.205(4-5):395-406.
    157. Kondo, N. and Kondo, J., Identification of novel blood proteins specific for mammalian hibernation. J Biol Chem,1992.267(1):473-478.
    158. Hu, E., Liang, P., and Spiegelman, B.M., AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem,1996.271(18):10697-10703.
    159. Urade, Y., Oberdick, J., Molinar-Rode, R., and Morgan, J.I., Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement Clq B chain. Proc Natl Acad Sci U S A,1991.88(3):1069-1073.
    160. Bobak, D.A., Frank, M.M., and Tenner, A.J., Clq acts synergistically with phorbol dibutyrate to activate CR1-mediated phagocytosis by human mononuclear phagocytes. Eur J Immunol,1988.18(12):2001-2007.
    161. Kishore, U., Ghai, R., Greenhough, T.J., Shrive, A.K., Bonifati, D.M., Gadjeva, M.G., et al., Structural and functional anatomy of the globular domain of complement protein Clq. Immunol Lett,2004.95(2):113-128.
    162. Bohlson, S.S., Fraser, D.A., and Tenner, A.J., Complement proteins Clq and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol,2007.44(1-3):33-43.
    163. Kishore, U., Gaboriaud, C., Waters, P., Shrive, A.K., Greenhough, T.J., Reid, K.B., et al., Clq and tumor necrosis factor superfamily:modularity and versatility. Trends Immunol,2004.25(10):551-561.
    164. Kojouharova, M.S., Tsacheva, I.G, Tchorbadjieva, M.I., Reid, K.B., and Kishore, U., Localization of ligand-binding sites on human Clq globular head region using recombinant globular head fragments and single-chain antibodies. Biochim Biophys Acta,2003.1652(1):64-74.
    165. Medzhitov, R. and Janeway, C.A., Jr., Decoding the patterns of self and nonself by the innate immune system. Science,2002.296(5566):298-300.
    166. Janeway, C.A., Jr. and Medzhitov, R., Innate immune recognition. Annu Rev Immunol,2002.20:197-216.
    167. Rimoldi, M.T., Tenner, A.J., Bobak, D.A., and Joiner, K.A., Complement component Clq enhances invasion of human mononuclear phagocytes and fibroblasts by Trypanosoma cruzi trypomastigotes. J Clin Invest,1989.84(6): 1982-1989.
    168. Kovacsovics, T.J., Peitsch, M.C., Kress, A., and Isliker, H., Antibody-independent activation of Cl. I. Differences in the mechanism of Cl activation by nonimmune activators and by immune complexes:Clr-independent activation of Cls by cardiolipin vesicles. J Immunol,1987.138(6):1864-1870.
    169. Butko, P., Nicholson-Weller, A., and Wessels, M.R., Role of complement component Clq in the IgG-independent opsonophagocytosis of group B streptococcus. J Immunol,1999.163(5):2761-2768.
    170. Innamorati, G, Bianchi, E., and Whang, M.I., An intracellular role for the Clq-globular domain. Cell Signal,2006.18(6):761-770.
    171. Yu, X.Q., Tracy, M.E., Ling, E., Scholz, F.R., and Trenczek, T., A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochem Mol Biol,2005.35(4):285-295.
    172. Koizumi, N., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H., and Sato, R., The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett,1999.443(2):139-143.
    173. Tunkijjanukij, S. and Olafsen, J.A., Sialic acid-binding lectin with antibacterial activity from the horse mussel:further characterization and immunolocalization. Dev Comp Immunol,1998.22(2):139-150.
    174. Dodd, R.B. and Drickamer, K., Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology,2001. 11(5):71R-79R.
    175. East, L. and Isacke, C.M., The mannose receptor family. Biochim Biophys Acta, 2002.1572(2-3):364-386.
    176. Shagin, D.A., Barsova, E.V., Bogdanova, E., Britanova, O.V., Gurskaya, N., Lukyanov, K.A., et al., Identification and characterization of a new family of C-type lectin-like genes from planaria Girardia tigrina. Glycobiology,2002.12(8): 463-472.
    177. Watanabe, A., Miyazawa, S., Kitami, M., Tabunoki, H., Ueda, K., and Sato, R., Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph:mechanism of wide-range microorganism recognition and role in immunity. J Immunol,2006.177(7):4594-4604.
    178. Liu, Y.C., Li, F.H., Dong, B., Wang, B., Luan, W., Zhang, X.J., et al., Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol Immunol,2007. 44(4):598-607.
    179. Drickamer, K. and Dodd, R.B., C-Type lectin-like domains in Caenorhabditis elegans:predictions from the complete genome sequence. Glycobiology,1999. 9(12):1357-1369.
    180. Head, J.F., Mealy, T.R., McCormack, F.X., and Seaton, B.A., Crystal structure of trimeric carbohydrate recognition and neck domains of surfactant protein A. J Biol Chem,2003.278(44):43254-43260.
    181. Sugawara, H., Kusunoki, M., Kurisu, G., Fujimoto, T., Aoyagi, H., and Hatakeyama, T., Characteristic recognition of N-acetylgalactosamine by an invertebrate C-type Lectin, CEL-I, revealed by X-ray crystallographic analysis. J Biol Chem,2004.279(43):45219-45225.
    182. Poget, S.F., Legge, GB., Proctor, M.R., Butler, P.J., Bycroft, M., and Williams, R.L., The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with D-galactose. J Mol Biol,1999.290(4):867-879.
    183. Wootton, E.C., Dyrynda, E.A., and Ratcliffe, N.A., Bivalve immunity: comparisons between the marine mussel(Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish Shellfish Immunol, 2003.15(3):195-210.
    184. Weis, W.I., Taylor, M.E., and Drickamer, K., The C-type lectin superfamily in the immune system. Immunol Rev,1998.163:19-34.
    185. Yu, X.Q., Ling, E., Tracy, M.E., and Zhu, Y., Immulectin-4 from the tobacco hornworm Manduca sexta binds to lipopolysaccharide and lipoteichoic acid.
    Insect Mol Biol,2006.15(2):119-128.
    186. Wang, N., Whang, I., and Lee, J., A novel C-type lectin from abalone, Haliotis discus discus, agglutinates Vibrio alginolyticus. Dev Comp Immunol,2008.32(9): 1034-1040.
    187. Soanes, K.H., Figuereido, K., Richards, R.C., Mattatall, N.R., and Ewart, K.V., Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics,2004.56(8):572-584.
    188. Loukas, A., Doedens, A., Hintz, M., and Maizels, R.M., Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands. Parasitology,2000.121 Pt 5:545-554.
    189. Zhang, H., Song, L., Li, C., Zhao, J., Wang, H., Qiu, L., et al., A novel C1q-domain-containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity. Fish Shellfish Immunol,2008.25(3): 281-289.
    190. Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., et al., A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol,2009. 26(1):56-64.
    191. Doolittle, R.F., A detailed consideration of a principal domain of vertebrate fibrinogen and its relatives. Protein Sci,1992.1(12):1563-1577.
    192. Endo, Y., Matsushita, M., and Fujita, T., Role of ficolin in innate immunity and its molecular basis. Immunobiology,2007.212(4-5):371-379.
    193. Honore, C., Hummelshoj, T., Hansen, B.E., Madsen, H.O., Eggleton, P., and Garred, P., The innate immune component ficolin 3 (Hakata antigen) mediates the clearance of late apoptotic cells. Arthritis Rheum,2007.56(5):1598-15607.
    194. Holmskov, U., Thiel, S., and Jensenius, J.C., Collections and ficolins:humoral lectins of the innate immune defense. Annu Rev Immunol,2003.21:547-578.
    195. Teh, C., Le, Y., Lee, S.H., and Lu, J., M-ficolin is expressed on monocytes and is a lectin binding to N-acetyl-D-glucosamine and mediates monocyte adhesion and phagocytosis of Escherichia coli Immunology,2000.101(2):225-232.
    196. Le, Y., Lee, S.H., Kon, O.L., and Lu, J., Human L-ficolin:plasma levels, sugar specificity, and assignment of its lectin activity to the fibrinogen-like (FBG) domain. FEBS Lett,1998.425(2):367-370.
    197. Hertel, L.A., Adema, C.M., and Loker, E.S., Differential expression of FREP genes in two strains of Biomphalaria glabrata following exposure to the digenetic trematodes Schistosoma mansoni and Echinostoma paraensei. Dev Comp Immunol,2005.29(4):295-303.
    198. Matsushita, M., Endo, Y., Taira, S., Sato, Y., Fujita, T., Ichikawa, N., et al., A novel human serum lectin with collagen-and fibrinogen-like domains that functions as an opsonin. J Biol Chem,1996.271(5):2448-2454.
    199. Kairies, N., Beisel, H.G, Fuentes-Prior, P., Tsuda, R., Muta, T., Iwanaga, S., et al., The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proc Natl Acad Sci U S A,2001.98(24):13519-13524.
    200. Kawabata, S. and Tsuda, R., Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim Biophys Acta,2002.1572(2-3):414-421.
    201. Garlatti, V., Belloy, N., Martin, L., Lacroix, M., Matsushita, M., Endo, Y, et al., Structural insights into the innate immune recognition specificities of L-and H-ficolins. Embo J,2007.26(2):623-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700