β-防御素-2,AHL内酯酶对肺部铜绿假单胞菌感染的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:β-防御素-2在宿主防御病原微生物发挥着着重要作用,其不仅具有直接溶菌作用,同时也具有免疫调节的功能。本研究旨在探讨高表达β-防御素-2是否能减轻大鼠慢性铜绿假单胞菌的肺部感染。
     方法:借助线性聚乙烯亚胺(polyethylenimine,PEI)为载体,质粒编码的β-防御素2通过气道滴入的方法来介导质粒DNA的体内传递,48小时后再通过气道滴入藻酸盐包被的5×107c.f.u的铜绿假单胞菌。在感染后三天和感染后七天,观测大体病理,显微病理,细菌学计数,炎症的浸润程度及致炎细胞因子(IL-1β和TNF-α)和化学增活素(KC和MIP-2)的表达水平。
     结果:rBD-2质粒组大鼠三天生存率明显增高,感染后3天和7天的肺部细菌负荷明显下降。同时该组老鼠具有明显减轻的病理学改变相对于无任何处理的感染组和空质粒组。此外,相比无任何处理的感染组和空质粒组,在感染早期(感染后三天),rBD-2质粒组,中性粒细胞的募集和致炎细胞因子(IL-1β和TNF-α)和化学增活素(KC和MIP-2)蛋白的表达水平升高,然而在感染后期(感染后七天)其表达水平下降。结论:高表达β-防御素-2增加感染动物的存活率,降低了细菌的负荷。同时,高表达β-防御素-2增加早期中性粒细胞募集到感染部位和增强铜绿假单胞菌诱导的早期免疫反应。我们的研究结果表明,高表达β-防御素-2可能是慢性铜绿假单胞菌肺部感染的有效干预。
     目的:铜绿假单胞菌(PA)利用群体感应(QS)系统,一种细菌相互交流的信号系统,参与其多种致病因素.其中信号分子3OC12-HSL在PA的QS系统中起着重要作用。对氧磷酶1 (PON1)是一种内酯酶,可降解3OC12-HSL。本研究旨在观测高表达PON1是否对大鼠慢性铜绿假单胞菌的肺部感染有一定的保护作用及其可能的机制。
     方法:借助线性聚乙烯亚胺(PEI)为载体,通过气道滴注的方法介导PON1的高表达,48小时后再通过气道滴入藻酸盐包被的5×107c.f.u的野生型铜绿假单胞菌(PAO1),在感染后三天和感染后七天,分别观察大体病理,显微病理,细菌学计数,中性粒细胞的浸润程度(MPO).另再经气道滴入藻酸盐包被的QS报告基因的铜绿假单胞菌((PAO1-qsc102-lacZ),通过X-gal染色来反应β-半乳糖苷酶的量,从而间接反应了铜绿假单胞菌信号分子3OC12-HSL的量。
     结果:与无任何处理的感染组和空质粒组相比,PON1质粒组大鼠三天生存率无明显改变,7天的肺部细菌负荷和病理学改变明显下降。此外,相比无任何处理的感染组和空质粒组,在感染早期(感染后三天),PON1质粒组,中性粒细胞的募集明显升高,然而在感染后期(感染后七天)其下降。切片X-gal染色发现,PON1组未见明显的阳性的表达,而空质粒组X-gal染色见大量染成蓝色的阳性表达。
     结论:高表达PON1对大鼠慢性铜绿假单胞菌肺部感染有一定的保护作用,可能是通过作用于铜绿假单胞菌的QS系统,并增加早期中性粒细胞募集到感染部位来实现的。抑制QS可能作为治疗铜绿假单胞菌感染的新靶位,尤其是在对抗生素耐药的细菌感染病人。
Objective:Beta-defensin-2 (BD-2) plays an important role in host defense against pathogenic microbe challenge by its direct antimicrobial activity and immunomodulatory functions. The present study aimed to determine whether genetic up-regulation of rat BD-2 (rBD-2) could ameliorate chronic Pseudomonas aeruginosa lung infection in rats.
     Methods:Plasmid-encoding rBD-2 was delivered to lungs in vivo using linear polyethylenimine at 48 h before challenging with seaweed alginate beads containing P. aeruginosa. Macroscopic and histopathological changes of the lungs, bacterial loads, inflammatory infiltration, and the levels of cytokines/chemokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, kertinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2)] were measured at 3 and 7 days post-infection (p.i.).
     Results:The overexpression of rBD-2 resulted in a significant increase in animal survival rate (at 3 days p.i.), a significant decrease in bacterial loads in the lungs (at 3 and 7 days p.i.), and significantly milder lung pathology. In addition, the overexpression of rBD-2 led to increased infiltration of polymorphonuclear neutrophils (PMN), and elevated protein expression of cytokines/chemokines (IL-1β, TNF-α, KC and MIP-2) at the early stage of infection (at 3 days p.i.), at the same time as being dramatically decreased at the later stage of infection (at 7 days p.i.).
     Conclusions:Genetic up-regulation of rBD-2 increased animal survival rate, and reduced bacterial loads in lungs after bacterial infection. The overexpression of rBD-2 also modulated the production of several cytokines/chemokines and increased PMN recruitment at the early stage of infection. Our findings indicate that the enhancement of BD-2 may be an efficacious intervention for chronic P. aeruginosa lung infection.
     Objective:Pseudomonas aeruginosa uses quorum sensing, an interbacterial comm-unication system, to regulate gene expression. The signaling molecule N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL) is thought to play a central role in quorum sensing. Since 3OC12-HSL can be degraded by paraoxonase-1 (PON1), and PON1 expression protected against Pseudomonas aeruginosa lethality in Drosophila, suggesting that PON1 can interfere with quorum sensing in vivo, we hypothesized that the therapeutic potential of rat PON1 gene transfer in rats with P.aeruginosa-induced lung infection.
     Methods:Rats intratracheally infected with P.aeruginosa (PAO1) encapsulated in alginate beads were treated with a plasmid encoding PON1 or empty plasmid, which are complexed with linear polyethylenimine (L-PEI) and examined for survival of animals, lung bacterial load, inflammation, cytokine levels up to 3 and 7 days post-infection (p.i.). And rats intratracheally infected flies with a quorum-sensing reporter strain of P. aeruginosa (PAO1-qsc102-lacZ) that expressesβ-galactosidase under control of qsc102, which responds primarily to 3OC12-HSL
     Results:The overexpression of PON1 was associated with significant reductions in bacterial load and significantly milder lung pathology at 7 days post-infection. In addition, the overexpression of PON 1 led to increased infiltration of polymorphonuclear neutrophils (PMN) at the early stage of infection (at 3 days p.i.), at the same time as being dramatically decreased at the later stage of infection (at 7 days p.i.). And genetic up-regulation of PON 1 had less pronounced significant X-gal staining in rats.
     Conclusions:Overexpression of PON 1 ameliorates chronic P. aeruginosa lung infection in rats, probably through interfering with quorum sensing in vivo and increasing neutrophil recruitment an the early stage of P. aeruginosa infection. Novel therapeutic interventions aimed at directly regulating quorum sensing or PON activity may show promise for treatment with chronic P. aeruginosa lung infection.
引文
1. Rello J, Diaz E. Pneumonia in the intensive care unit. Crit Care Med 2003; 31: 2544-2551.
    2. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165:867-903.
    3. Chastre J, Trouillet JL. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect 2000; 15:287-298.
    4. Bergen GA, Shelhamer JH. Pulmonary infiltrates in the cancer patient. New approaches to an old problem. Infect Dis Clin North Am 1996; 10(2):297-325.
    5. Dunn M, Wunderink RG. Ventilator-associated pneumonia caused by Pseudomonas infection. Clin Chest Med 1995; 16(1):95-109.
    6. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177:853-860.
    7. Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa:useful tools for cystic fibrosis studies. Lab Anim 2008; 42: 389-412.
    8. Kempner ES, Hanson FE. Aspects of light production by Photobacterium fischeri. J Bacteriol 1968; 95:975-979.
    9. Eberhard A. Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 1972; 109:1101-1105.
    10. Njoroge J, Sperandio V. Jamming bacterial communication:new approaches for the treatment of infectious diseases. EMBO Mol Med 2009; 1 (4):201-210.
    11. Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 2009; 290(1):1-9.
    12. Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295-298
    13. Pearson JP, VanDelden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Baeteriol 1999; 181:1203-1210.
    14. Shiner EK, Terentyev D, Bryan A, et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 2006; 8: 1601-1610.
    15. Tang HB, DiMango E, Bryan R, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun.1996; 64:37-43.
    16. Rumbaugh KP, Griswold JA, Iglewski BH, et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 1999; 67:5854-5862.
    17. Pearson JP, Feldman M, Iglewski BH, et al. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun 2000; 68:4331-4334.
    18. Wu H, Song Z, Givskov M, et al.2001. Pseudomonas aeruginosa mutations in lasl and rhll quorum sensing systems result in milder chronic lung infection. Microbiology.147:1105-1113.
    19. Smith RS, Harris, SG., Phipps R, et al. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 2002; 184:1132-1139.
    20. Imamura Y, Yanagihara K, Tomono K, et al. Role of Pseudomonas aeruginosa quorum-sensing systems in a mouse model of chronic respiratory infection. J Med Microbiol 2005; 54:515-518.
    21. Stoltz DA, Ozer EA, Ng CJ, et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 292(4):852-860.
    22. Yates EA, Philipp B, Buckley C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70(10): 5635-46.
    23. Lai Y, Gallo RL. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30:131-141.
    24. DossM,White MR,Tecle T, et al. Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 2010; 87(1):79-92.
    25. Varoga D, Pufe T, Harder J, et al. Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis Rheum 2005; 52:1736-1745.
    26. Varoga D, Paulsen FP, Kohrs S, et al. Expression and regulation of human beta-defensin-2 in osteoarthritic cartilage. J Pathol 2006; 209:166-173.
    27. Reiniger N, Lee MM, Coleman FT, et al. Resistance to Pseudomonas aeruginosa chronic lung infection. requires cystic fibrosis transmembrane conductance regulatormodulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007; 75:1598-1608.
    28. Waqner JG, Roth RA. Neutrophil migrationmechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 2000; 52:349-374.
    1. Rello J, Diaz E. Pneumonia in the intensive care unit. Crit Care Med 2003; 31:2544-2551.
    2. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165: 867-903.
    3. Chastre J, Trouillet JL. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect 2000; 15: 287-298.
    4. Afessa B, Green B. Bacterial pneumonia in hospitalized patients with HIV infection: the pulmonary complications, ICU support, and prognostic factors of hospitalized patients with HIV (PIP) study. Chest 2000; 117: 1017-1022.
    5. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177: 853-860.
    6. Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 2008; 42:389-412.
    7. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30: 131-141.
    8. DossM, White MR, Tecle T, HartshomKL.Humandefensins and LL-37 in mucosal immunity. J Leukoc Biol 2010; 87(1): 79-92.
    9. Varoga D, Pufe T, Harder J, el al. Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis Rheum 2005; 52: 1736-1745.
    10. Varoga D, Paulsen FP, Kohrs S, et al. Expression and regulation of human beta-defensin-2 in osteoarthritic cartilage. J Pathol 2006; 209: 166-173.
    11. DiamondG, KaiserV, RhodesJ, RussellJP, BevinsCL. Transcription regulation of beta-defensin gene expression in tracheal epithetial cells. Infect Immun 2000; 68:
    113-119.
    12. Harder J, Meyer-Hoffert U, Teran LM, et al. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1 beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 2000; 22: 714-721.
    13. Tsutsumi-Ishii Y, Nagaoka I. Modulation of human beta defensin- 2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 2003; 170: 4226-4236.
    14. Hiratsuka T, Nakazato M, Date Y, et al. Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem Biophys Res Commun 1998; 249: 943-947.
    15. Kolls JK, McCray PB Jr, Chan YR. Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 2008; 8: 829-835.
    16. Paulsen F, Pufe T, Conradi L, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 2002; 198: 369-377.
    17. Varoga D, Klostermeier E, Paulsen F, et al. The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis. Virchows Arch 2009; 454: 685-694.
    18. Varoga D, Pufe T, Harder J, et al. Production of endogenous antibiotics in articular cartilage. Arthritis Rheum 2004; 50: 3526-3534.
    19. Varoga D, Tohidnezhad M, Paulsen F, et al. The role of human beta-defensin-2 in bone.J Anat 2008; 213: 749-757.
    20. Hao HN, Zhao J, Lotoczky G, Grever WE, Lyman WD. Induction of human beta-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines.JNeurochem 2001; 77: 1027-1035.
    21. Brandenburg LO, Varoga D, Nicolaeva N, et al. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 2008: 67: 1041-1054.
    22. Brandenburg LO, Varoga D, Nicolaeva N, et al. Expression and regulation of antimicrobial peptide rCRAMP after bacterial infection in primary rat meningeal cells.J Neuroimmunol 2009; 217: 55-64.
    23. Singh PK, Jia HP, Wiles K, et al. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998; 95: 14961-14966.
    24. Chen CI, Schaller-Bals S, Paul KP, Wahn U, Bals R. Beta defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 2004; 3:45-50.
    25. Tsutsumi-Ishii Y, Nagaoka I. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukocyte Biol 2002;71: 154-162.
    26. Shu Q, Shi Z, Zhao Z, et al. Protection against Pseudomonas aeruginosa pneumonia and sepsis-induced lung injury by overexpression of beta-defensin-2 in rats. Shock 2006; 26: 365-71.
    27. Waqner JG, Roth RA. Neutrophil migrationmechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 2000; 52: 349-374.
    28. Courtney JM, Ennis M, Elborn JS. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004; 3: 223-231.
    29. Kosorok MR, Zeng L, West SE, et al. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 2001; 32:277-287.
    30. Schuster A, Haarmann A, Wahn V. Cytokines in neutrophildominated airway inflammation in patients with cystic fibrosis. Eur Arch Otorhinolaryngol 1995;252(Suppl 1): S59-S60.
    31. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002; 298: 1025-1029.
    32. Niyonsaba F, Oqawa H, Naqaoka I. Human beta-defensin-2 functions as a chemotactic
    agent for tumour necrosis factoralpha-treated human neutrophils. Immunology 2004; 11:273-281.
    33. KawaiT, TakeuchiO, FujitaT, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001;167: 5887-5894.
    34. Liu H, Liu L, Fletcher BS, Visner GA. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006; 173:566-572.
    35. Johansen HK, Espersen F, Pedersen SS, Hougen HP, Rygaard J, H(?)iby N. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats. APMIS 1993;101:207-225.
    36. Liu L, Sanz S, Heggestad AD, Antharam V, Notterpek L, Fletcher BS. Endothelial targeting of the sleeping beauty transposon within lung. Mol Ther 2004; 10: 97-105.
    37. Stover CK, Pham XQ, Erwin AC, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406: 959-964.
    38. Pedersen SS, Shand GH, Hansen BL, Hansen GN. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS 1990; 98: 203-211.
    39. Wu H, Song Z, Givskov M, et al. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 2001;147:1105-1113.
    40. Johansen HK, Espersen F, Cryz SJ Jr, et al. Immunization with Pseudomonas aeruginosa vaccines and adjuvant can modulate the type of inflammatory response subsequent to infection. Infect Immun 1994; 62: 3146-3155.
    41. Song Z, Kharazmi A, Wu H, et al. Effects of ginseng treatment on neutrophil chemiluminescence and immunoglobulin G subclasses in a rat model of chronic
    Pseudomonas aeruginosa pneumonia. Clin Diagn Lab Immunol 1998; 5: 882-887.
    42. Song Z, Wu H, Mygind P, et al. Effects of intratracheal administration of novispirin G10 on a rat model of mucoid Pseudomonas aeruginosa lung infection. Antimicrob Agents Chemother 2005; 49: 3868-3874.
    43. Schneider T, Issekutz AC. Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase application in a brown norway rat model of allergic pulmonary inflammation. J Immunol Methods 1996; 198: 1-14.
    44. Ouhara K, Komatsuzawa H, Yamada S, et al. Susceptibilities of periodonto pathogenic and cariogenic bacteria to antibacterial peptides, β-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 2005; 55: 888-896.
    45. Mookherjee N, Hancock RE. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 2007; 64: 922-33.
    46. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006; 18:24-30.
    47. Bonnet ME, Erbacher P, Bolcato-Bellemin AL. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res 2008; 25: 2972-2982.
    48. Ferrari S, Pettenazzo A, Garbati N, Zacchello F, Behr JP, Scarpa M. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta 1999;1447: 219-225.
    49. Bals R, Goldman MJ, Wilson JM. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 1998; 66: 1225-1232.
    50. Morrison GM, Davidson DJ, Dorin JR. A novel mouse beta-defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 1999; 442: 112-116.
    
    51. H¨olzl MA, Hofer J, Steinberger P, Pfistershamnier K, Zlabinger GJ. Host antimicrobial proteins as endogenous immunomodulators. Immunol Lett 2008; 119:4-11.
    52. Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulatormodulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007; 75: 1598-1608.
    53. Vora P, Youdim A, Thomas LS, et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol 2004; 173: 5398-5405.
    54. Wu M, McClellan SA, Barrett RP, Hazlett LD. Beta-defensin-2 promotes resistance against infection with P aeruginosa. J Immunol 2009; 182:1609-1616.
    55. Mizgerd JP. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol 2002; 14:123-132.
    56. Tsai WC, Strieter RM, Mehrad B, Newstead MW, Zeng X, Standiford T.T. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun 2000; 68: 4289-4296.
    57. Rovai LE, Herschman HR, Smith JB. The murine neutrophilchemoattractant chemokines LIX, KC, and MJP-2 have distinct induction kinetics, tissue distributions,and tissue-specific sensitivities to glucocor-ticoid regulation in endotoxemia. J Leukoc Biol 1998; 64: 494-502.
    58. Auvynet C, Rosenstein Y. Multifunctional host defense peptides: Antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEDS J 2009; 276(22): 6497-6508.
    1. Bergen GA, Shelhamer JH. Pulmonary infiltrates in the cancer patient. New approaches to an old problem. Infect Dis Clin North Am 1996; 10(2):297-325.
    2. Dunn M, Wunderink RG. Ventilator-associated pneumonia caused by Pseudomonas infection. Clin Chest Med 1995; 16(1):95-109.
    3. Kempner ES, Hanson FE. Aspects of light production by Photobacterium fischeri.J Bacteriol 1968; 95:975-979.
    4. Eberhard A. Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 1972; 109:1101-1105.
    5. Njoroge J, Sperandio V. Jamming bacterial communication:new approaches for the treatment of infectious diseases. EMBO Mol Med 2009;1(4):201-210.
    6. Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 2009; 290(1):1-9.
    7. Fuqua C, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176 (2) 269-275.
    8. Girard G, Bloemberg GV. Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 2008; 3: 97-106.
    9. Williams P, Camara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa:a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12(2):182-191.
    10. Schuster M, Greenberg EP. A network of networks:Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbioll 2006; 296(2-3):73-81.
    11. Willcox MD, Zhu H, Conibear TC, Hume EB, Givskov M, Kjelleberg S, Rice SA. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 2008; 154(Pt 8):2184-2194.
    12. Stoltz DA, Ozer EA, Ng CJ, et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 292(4):852-860.
    13. Yates EA, Philipp B, Buckley C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70(10):5635-46.
    14.14. Shiner EK, Terentyev D, Bryan A, et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 2006; 8: 1601-1610.
    15. Skindersoe ME, Zeuthen LH, Brix S, et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol 2009; 55(3):335-345.
    16. Zhang LH, Murphy PJ, Kerr A, et al. A grobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 1993; 362,446-447.
    17. Pearson JP, Gray KM, Passador L, et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 1994; 91(1):197-201.
    18. Miller, JA. Experiments in Molecular Genetics (Cold Spring Harbor Lab. Press, Plainview, NY) 1976; 352-355.
    19. Sambrook J, Fritsch E F, Maniatis T.1989. Molecular Cloning:A Laboratory Manual, ed. Nolan, C. (Cold Spring Harbor Lab. Press, Plainview, NY),2nd Ed.
    20. Bonnet ME, Erbacher P, Bolcato-Bellemin AL. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res 2008; 25:2972-2982.
    21. Liu H, Liu L, Fletcher BS, Visner GA. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006; 173: 566-572.
    22. Liu L, Sanz S, Heggestad AD, et al. Endothelial targeting of the sleeping beauty transposon within lung. Mol Ther 2004; 10:97-105.
    23. Ferrari S, Pettenazzo A, Garbati N, et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta 1999; 1447:219-225.
    24. Song Z, Kharazmi A, Wu H, et al. Effects of ginseng treatment on neutrophil chemiluminescence and immunoglobulin G subclasses in a rat model of chronic Pseudomonas aeruginosa pneumonia. Clin Diagn Lab Immunol 1998; 5:882-887.
    25. Pedersen SS, Shand GH, Hansen BL, et al. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS 1990; 98:203-211.
    26. Johansen HK, Espersen F, Pedersen SS, et al. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats. APMIS 1993; 101:207-225.
    27. Tang HB, DiMango E, Bryan R, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun.1996; 64:37-43.
    28. Rumbaugh KP, Griswold JA, Iglewski BH, et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 1999; 67:5854-5862.
    29. Pearson JP, Feldman M, Iglewski BH, et al. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 2000; 68:4331-4334.
    30. Wu H, Song Z, Givskov M, et al.2001. Pseudomonas aeruginosa mutations in lasl and rhll quorum sensing systems result in milder chronic lung infection. Microbiology.147:1105-1113.
    31. Smith RS, Harris, SG., Phipps R, et al. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 2002; 184:1132-1139.
    32. Imamura Y, Yanagihara K, Tomono K, et al. Role of Pseudomonas aeruginosa quorum-sensing systems in a mouse model of chronic respiratory infection. J Med Microbiol 2005; 54:515-518.
    33. Ozer EA, Pezzulo A, Shih DM, et al.Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005; 253(1):29-37.
    34. Draganov DI, La Du BN. Pharmacogenetics of paraoxonase:a brief review. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:78-88.
    35. Stoltz DA, Ozer EA, Taft PJ, et al. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest 2008;118(9):3123-3131.
    36. Reiniger N, Lee MM, Coleman FT, et al. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulatormodulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007;75:1598-1608.
    37. Waqner JG, Roth RA. Neutrophil migrationmechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 2000; 52:349-374.
    38. Courtney JM, Ennis M, Elborn JS. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004; 3:223-231.
    1. Ganz T, Weiss J. Antimicrobial PePtides of Phagocytes and ePihtelia. Seminar sin Hematology 1997; 34(4):343-354. J Med Microbiol
    2. Lehrer RI, Ganz T. Antimierobial PePtides in mammalian and in seet host defenee. Current OPinionin Immunology 1999; 11:23-27.
    3. Gnaz T, Selsted ME, Lehrer RI Defensins. Eur J Haematol 1990; 44:1-8.
    4. YangD, ChertovO, BykovskaiaSNetal, Beta-Defensins:Linking innate adaptive immuniy through dendritic and Tcell CCR6. Science 1999; 286:525-528.
    5. Ganz T, Leherer RI. Defensins. Curr Opin Immunol 1994; 6 (4):584-589.
    6. Quayle AJ, Porter EM, Nussbaum AA, et al. Gene expression, immunolocalization, and secretion of human defensin25 in human female reproductive rat. Am J Pat hol 1998; 152(5):1247-1258.
    7. Frye M, Bargon J, Dauletbaev N, et al. Expression of human α-defensin 5 (HD5) mRNA in nasal and bronchial epit helial cells. Clin Pat hol 2000; 53 (10):7702773.
    8. Bensch KW, Raida M, Magert HJ, et al. The hBD21:A novel beta-Defensin from human plasma. FEBS Letters 1995; 368 (2):331-335.
    9. Park K, Moon SK, Choung YH, et al. Expression of beta-defensins in human middle ear cholesteatoma. Acta Otolaryngol 2003; 123 (2):2362240.
    10. Oren A, Ganz T. Liu L, et al. In human epidermis, beta defensin2 is packaged in lamellar bodies. Exp Mol Pathol 2003; 74 (2):180-182.
    11. Paulsen F, Pufe T, Conradi L, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 2002; 198:369-377.
    12. Varoga D, Klostermeier E, Paulsen F, et al. The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and-4 are induced in synovial membranes in case of septic arthritis. Virchows Arch 2009; 454:685-694.
    13. Varoga D, Pufe T, Harder J, et al. Production of endogenous antibiotics in articular cartilage. Arthritis Rheum 2004; 50:3526-3534.
    14. Varoga D, Tohidnezhad M, Paulsen F, et al. The role of human beta-defensin-2 in bone. JAnat 2008; 213:749-757.
    15. Hao HN, Zhao J, Lotoczky G, et al. Induction of human beta-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines. J Neurochem 2001; 77: 1027-1035.
    16. Brandenburg LO, Varoga D, Nicolaeva N, et al. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 2008; 67:1041-1054.
    17. Brandenburg LO, Varoga D, Nicolaeva N, et al. Expression and regulation of antimicrobial peptide rCRAMP after bacterial infection in primary rat meningeal cells. J Neuroimmunol 2009; 217:55-64.
    18. Harder J, Bartel J, Christophers E, et al. Isolation and characterization of human beta-defensin-3 a novel human inducible peptide antibiotic. J Bid chem 2001; 276 (8): 5707-5713.
    19. Garcia J R, Krause A, Schulz S, et al. Human beta-defensin-4:anovel inducible peptide wit h a specific salt2sensitive spectrum of antimicrobial activity. FASEB J 2001;15 (10):1819-1821.
    20. Yamaguchi Y, Nagase T, Makita R, et al. Identification of multiple novel epidermis specific beta-defensin isoforms in human and mice. J Immunol 2002; 169 (5):2516-2523.
    21. Hao HN, Zhao J, Lotoczky G, et al. Induction of human beta-defensin-2 in human astrocytesby lipopolysaccharide and cytokines. J Neurochem 2001; 77 (4):1027-1035.
    22. DiamondG, KaiserV, RhodesJ, et al. Transcription regulation of beta-defensin gene expression in tracheal epithetial cells. Infect Immun 2000; 68:113-119.
    23. Harder J, Meyer-Hoffert U, Teran LM, et al. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1 beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 2000; 22:714-721.
    24. Tsutsumi-Ishii Y, Nagaoka I. Modulation of human beta defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 2003; 170:4226-4236.
    25. Soong LB, Ganz T, Ellison A, et al. Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res 1997; 46:98-102
    26. Diamond G., Bevins CL. Endotoxin upregulates expression of an antimicrobial peptide gene in mammalian airway epithelial cells. Chest 1994; 105:51S-52S.
    27. Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. JBiol Chem 1993; 268:6641-6648.
    28. Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 2002; 299: 2129-2133.
    29. Tang YQ, Selsted ME. Characterization of the disulfide motif in BNBD-12, an antimicrobial beta-defensin peptide from bovine neutrophils. J Biol Chem 1993,268:6649-6653
    30. Weinberg A, Krisanaprakornkit S, Dale BA. Epithelial antimicrobial peptides:review and significance for oral applications. Crit Rev Oral Biol Med 1998; 9:399-4.14
    31. Diamond G, Zasloff M, Eck H, et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa:peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 1991; 88:3952-3956
    32. Schonwetter BS, Stolzenberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation. Science 1995; 267:1645-1648
    33. Mathews M, Jia HP, Guthmiller JM, et al. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun 1999; 67:2740-2745
    34. Bensch KW, Raida M, Magert HJ, et al. HBD-1:a novel β-defensin from human plasma. FEBS Lett 1995; 368:331-335
    35. Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 1999; 45:785-794
    36. Schroder JM. Epithelial antimicrobial peptides:innate local host response elements. Cell Mol Life Sci 1999; 56:32-46
    37. Travis S M, Conway B A, Zabner J, et al. Activity of abundant antimicrobials of the human airway. AmJ Respir Cell Mol Biol 1999; 20(5):872-879.
    38. Mookherjee N, Hancock RE. Cationic host defence peptides:Innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 2007; 64: 922-33.
    39. Auvynet C, Rosenstein Y. Multifunctional host defense peptides:Antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 2009; 276(22):6497-6508
    40. Hancock RE, Diamond G. [J]. Microbiology,2000; 9 (8):402-410.
    41.韩献萍,彭朝晖,徐冰,等.柞蚕杀菌肽D对宫颈癌细胞系和阴道毛滴虫生长的损伤作用[J].生物技术通讯1994;5:124
    42. Travis S M, Conway B A, Zabner J, et al. Activity of abundant antimicrobials of the human airway. AmJ Respir Cell Mol Biol 1999; 20(5):872-879.
    43. Tsutsumi-Ishii Y, Nagaoka I. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukocyte Biol 2002; 71:154-162.
    44. Lai Y, Gallo RL. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30:131-141.
    45. DossM, White MR,Tecle T, HartshomKL.Humandefensins and LL-37 in mucosal immunity. J Leukoc Biol 2010; 87(1):79-92.
    46. Niyonsaba F, Oqawa H, Naqaoka I. Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factoralpha-treated human neutrophils. Immunology 2004; 11:273-281.
    47. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002; 298:1025-1029.
    48. Vora P, Youdim A, Thomas LS, et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol 2004; 173:5398-5405.
    49. Zhang G, Hiraiwa H, Yasue H, et al. [J]. J Biol Chem 1999; 274 (34):24031-24037.
    50. Goldman MJ, Anderson GM, Stozenberg ED, et al. Humana-defensin-1 is a salt-sensitive antibiotic in lung that is inactived in cystic fibrosis[J].Cell 1997; 88(4): 553-5611.
    51. Singh PK, Jia HP, Wiles K, et al. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA,1998; 95:14961-14966.
    52. Chen CI, Schaller-Bals S, Paul KP, et al. Beta defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 2004; 3:45-50.
    53. Hao HN, Zhao J, Lotoczky G, et al. Induction of human beta2defensin22 in human astrocytesby lipopolysaccharide and cytokines. J Neurochem,2001; 77 (4):1027-1035.
    54. Shu Q, Shi Z, Zhao Z, et al. Protection against Pseudomonas aeruginosa pneumonia and sepsis-induced lung injury by overexpression of beta-defensin-2 in rats. Shock 2006; 26:365-71.
    55. Qiongjie Hu, Peng Zuo, Bing Shao, et al. Administration of nonviral gene vector encoding rat beta-defensin-2 ameliorates chronic Pseudomonas aeruginosa lung infection in rats. J Gene Med 2010; 12 (3):276-286.
    56. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins:linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999; 286(5439):525-528.
    57. Goldman MJ, Anderson GM, Stozenberg ED, et al. Humana-defensin-1 is a salt-sensitive antibiotic in lung that is inactived in cystic fibrosis.Cell,1997; 88(4):553-5611.
    58. Zhang G, Hiraiwa H, Yasue H, et al. Cloning and Characterization of the Gene for a New Epithelial β-Defensin genomic structure chromosomal localization, and evidence for its constitutive expression. J Biol Chem 1999; 274(34):24031-24037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700