弓形虫自杀性DNA疫苗及重组杆状病毒疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刚地弓形虫(Toxoplasma gondii)广泛存在于世界各地,寄生于人和200多种脊椎动物的有核细胞内而引起人兽共患弓形虫病(Toxoplasmosis)。该病严重影响人类优生优育与畜牧业的健康发展。目前弓形虫病的防治主要依靠药物防治,但药物防治无法从根本上清除宿主体内的弓形虫,仅仅是将弓形虫从快速繁殖的速殖子转变为缓慢繁殖的缓殖子,一旦宿主的免疫功能出现障碍,弓形虫将从缓殖子再度活化为速殖子。因此研制安全高效的新型疫苗来预防和控制弓形虫病成为各国研究者关注的焦点。但由于弓形虫的生活史复杂,影响免疫的因素多,目前弓形虫病的免疫预防研究进展不大。
     本研究对弓形虫病两种新型疫苗进行了探索,构建了“自杀性DNA疫苗”pSCA-MIC3和重组杆状病毒疫苗Ac-V-MIC3、Ac-V-SAG1,并在实验鼠模型BALB/c上对构建的候选疫苗进行了免疫效力研究,主要研究结果如下:
     1.弓形虫“自杀性DNA疫苗”pSCA-MIC3的构建及免疫原性研究
     DNA疫苗具有高效、稳定、易构建等优点被研究者认为是最有潜力的新型疫苗,但DNA疫苗免疫后长期存在于宿主体内,一旦整合进宿主染色体可能会引起宿主基因的改变,另外宿主体内可能会产生针对该DNA疫苗的抗体,因此存在很大的安全隐患。基于甲病毒复制子的自杀性DNA疫苗继承了DNA疫苗的上述优点,但它能随宿主细胞的凋亡自我凋亡,同时具有免疫增强的作用,因此被认为是一种优良的新型疫苗载体。
     本研究从弓形虫全基因组中利用PCR扩增弓形虫MIC3全基因,并克隆到“自杀性DNA疫苗”质粒载体pSAGl和常规DNA疫苗载体pcDNA3.1+中,获得“自杀性DNA疫苗”pSCA-MIC3和常规DNA疫苗pcDNA-MIC3。间接免疫荧光实验和RT-PCR检测结果表明pSCA-MIC3和pcDNA-MIC3均能够介导弓形虫MIC3基因在BHK-21细胞中有效表达。将该疫苗与常规DNA疫苗pcDNA-MIC3分别以50ug和100ug免疫六周龄BALB/c鼠,试验结果表明,在首疫后两周pSCA-MIC3、pcDNA-MIC3均能利用ELISA检测到微弱的抗弓形虫MIC3抗体,第四周,第六周加强免疫后两组的抗体水平继续升高,但pSCA-MIC3、pcDNA-MIC3两组之间抗体水平差异不显著,PBS和空载体对照组均检测不到MIC3抗体的存在。细胞免疫水平检测表明pSCA-MIC3、pcDNA-MIC3免疫组的BALB/c鼠诱导的淋巴细胞增殖、IFN-y的表达均显著高于PBS和空载体对照组,但pSCA-MIC3、pcDNA-MIC3两组之间细胞免疫水平差异不显著。使用弓形虫RH株攻击时二者均能显著延长BALB/c鼠的存活时间。以上研究结果表明“自杀性DNA疫苗”pSCA-MIC3具有良好的免疫原性,同时其随宿主细胞自我凋亡的特性导致它比常规的DNA疫苗有着更高的安全性,是一种极具潜力的弓形虫候选疫苗。
     2.弓形虫重组杆状病毒疫苗Ac-V-MIC3、Ac-V-SAG1的构建及免疫原性的研究
     在合适的启动子驱动下,杆状病毒可以在多种哺乳动物细胞中表达外源基因,但自身并不感染哺乳动物细胞。但杆状病毒介导外源基因表达的能力在一定程度上受到血清补体系统的抑制,从而影响杆状病毒疫苗的应用。水泡性口炎病毒G蛋白的引入,可以消除杆状病毒对补体的敏感性。因此利用哺乳动物极早期启动子CMV驱动的,水泡性口炎病毒G蛋白修饰的杆状病毒载体pFast-VSV-G-CMV (Ac-V)成为一种优良的疫苗载体。
     本研究分别将弓形虫的MIC3、SAG1基因插入杆状病毒载体pFast-VSV-G-CMV构建了重组杆状病毒Ac-V-MIC3、Ac-V-SAG1.间接免疫荧光实验表明重组杆状病毒Ac-V-MIC3、Ac-V-SAG1均能高效转导哺乳动物PK-15细胞。将重组杆状病毒Ac-V-MIC3、Ac-V-SAG1分别以不同的剂量(1010pfu/mL,109pfu/mL,108pfu/mL)免疫BALB/c鼠,试验结果表明,在首免后第三周,重组病毒Ac-V-MIC3、Ac-V-SAG1免疫组和相应的DNA疫苗对应组均可检测到特异的抗弓形虫ELISA抗体,二次免疫之后,重组病毒Ac-V-MIC3、Ac-V-SAG1免疫组ELISA平均抗体水平随之升高,均显著的高于其它对照组。重组杆状病毒Ac-V-MIC3、Ac-V-SAG1免疫组的细胞免疫水平同样显著高于对照组,重组病毒1010pfu/mL免疫组表现出最高的体液和细胞免疫水平,显著高于108pfu/mL免疫组和DNA疫苗对照组。使用弓形虫RH株攻击时重组病毒1010pfu/mL免疫组BALB/c鼠存活时间最长,显著高于108pfu/mL免疫组和DNA疫苗对照组。上述结果表明重组杆状病毒Ac-V-MIC3、Ac-V-SAG1是一种具有良好发展前景的弓形虫新型候选疫苗。
Toxoplasma gondii is an obligate intracellular protozoan parasite. As a significant human and animal pathogen, it was estimated to infect about one-third of the world's human population and all warm-blooded mammals which was frequently associated with congenital infection and abortion (Montoya & Liesenfeld,2004; Tenter et al.,2000). Therefore, T. gondii is of veterinary and medical importance. So far, drugs can not clean T. gondii from host. Thus, development of an effective and safe vaccine for controlling T. gondii infection in those animals is an important goal for scientists worldwide. However, due to T. gondii multiplicity immunity, the progress of new vaccines against T. gondii maintains is slowly.
     Therefore, in the present study, we explored the new vaccine design against T. gondii, and constructed "suicidal DNA vaccine" pSCA-MIC3 and the recombinant baculovirus vaccine Ac-V-MIC3, Ac-V-SAG1. Furthermore, the immune efficacy of the candidate vaccines was investigated in BALB/c mice. The research works were as following:
     1. Construction and immune effect of Toxoplasma gondii suicidal DNA vaccine pSCA-MIC3
     Among new kinds of vaccines, DNA vaccines become a focus as such vaccines have been shown to elicit potent, long-lasting humoral and cell-mediated immunity and low cost in manufacture,storage, and administration. But conventional DNA vaccines raise certain concerns such as potential integration into the host genome and cell transformation as well as their potency since they do not have the intrinsic ability to amplify in vivo as viral vaccines do. More recently, "suicidal DNA vaccine vector pSCA1", based on the replicon of alphaviruses, has been developed. Besides the advantages of conventional DNA vaccines, it has some prominent advantages. For example, it could break immunological tolerance by activating innate antiviral pathways, catalyzes cytoplasmic self-amplification of recombinant RNA,and high-level expression of the heterologous antigens.Furthermore,when a suicidal DNA vaccine is transfected into cells, it leads eventually to apoptosis of the transfected cells, which is particularly important in alleviating the concerns of potential integration and celltransformation generated by the use of conventional DNAvaccines. All these advantages indicate that suicidal DNA vaccine is a good delivery vehicle and could be used to replace conventional DNA vaccines.
     In this study, the microneme protein 3 (MIC3) gene was cloned into suicidal vector pSCA1 and conventional DNA vaccine vector pcDNA3.1+respectively, their protection against T. gondii challenge were assessed in this study. The recombinant plasmids named pSCA/MIC3 and pcDNA/MIC3 were transfected into BHK-21 cells. The expression of MIC3 in BHK-21 cells was confirmed by RT-PCR and indirect immunofluorescence test. Then BALB/c mice were immunized with pSCA/MIC3 or pcDNA/MIC3. Anti-Tg-MIC3 antibodies were detected by indirect ELISA and the cell immune response were examined by lymphocyte proliferation assay. The results showed that the titre of anti-Tg-MIC3 antibodies, stimulation index (SI) of lymphocyte proliferationresponse and IFN-y induced by pSCA/MIC3 and pcDNA/MIC3 were significantly higher than controls (P< 0.05), whereas IL-4 expression level in BALB/c mice immunized with either pSCA/MIC3 or pcDNA/MIC3 was lower than that in control group. After a lethal challenge against T. gondii, survival time of the mice immunized with this suicidal DNA vaccine pSCA/MIC3 and conventional DNA vaccine pcDNA/MIC3 were significantly prolonged in comparison with the control groups (P< 0.05), but the difference of protective immune response in BALB/c mice between pSCA/MIC3 and pcDNA/MIC3 was not statistically significant (P> 0.05). The findings demonstrated that like conventional DNA vaccine pcDNA/MIC3, suicidal DNA vaccine pSCA/MIC3 also provided favourable efficacy, but it could improve the biosafety of conventional vaccines. This result suggested that suicidal DNA vaccine pSCA/MIC3 is a potential candidate vaccine against toxoplasmosis.
     2. Construction and immune effect of recombinant baculovirus vaccine Ac-V-MIC3、Ac-V-SAG1
     Although AcMNPV are failing to replicate in vertebrate cells, it does express aline genes that are dependent on the strength of the promoter used to drive transcription of the foreign gene. Follwing these findings, baculovirus have emerged as a vector with great potential for gene transfer in mammalian cells. Furthermore, it has been reported that a pseudotype baculovirus displaying the glycoprotein of vesicular stomatitis virus (VSV-G) on the envelope can extend the host range and increase the transduction efficiency in mammalian cells.so it was considered as an excellent expressing vector.
     In this study, the value of Bac-VSV-G in delivering T. gondii antigen was investigated. T. gondii MIC3、SAG1 gene was cloned into Bac-VSV-G, and recombinant baculovirus Ac-V-MIC3、Ac-V-SAG1 were obtained. Indirect immunofluorescence test showed Ac-V-MIC3、Ac-V-SAG1 were efficiently transduced and expressed in pig kidney cells. Then BALB/c mice were immunized with Ac-V-MIC3、Ac-V-SAG1 at different doses (1010pfu/mL,109pfu/mL,108pfu/mL/mouse) and challenged with T. gondii RH strain tachyzoites after immunization. The levels of specific T. gondii antibody, IFN-y, IL-4, IL-10 expression and release, and the survival rate of treated mice were evaluated. Compared with the mice immunized with DNA vaccine (pcDNA/SAG1、pcDNA/MIC3) encoding the same gene, Ac-V-MIC3、Ac-V-SAG1 induced higher levels of specific T. gondii antibody and IFN-y expression and the survival rate of mice with Ac-V-MIC3、Ac-V-SAG1 were significantly improved. These results indicated that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop new generation of vaccines against T. gondii infection.
引文
1.江涛.猪弓形虫病分子诊断方法的建立与基因免疫研究.博士学位论文].武汉:华中农业大学,2006
    2.张东林.弓形虫病分子诊断方法及弓形虫分离株耐药性的研究.[博士学位论文].武汉:华中农业大学,2008
    3.王金苹.弓形虫病PCR和ELISA诊断方法的建立和初步应用.[硕士学位论文].武汉:华中农业大学,2005
    4.方六荣.猪繁殖与呼吸综合征“自杀性"DNA疫苗与或病毒载体疫苗研究.[博士学位论文].武汉:华中农业大学,2004
    5.肖少波.伪狂犬病毒gC基因“自杀性"DNA疫苗及VP22蛋白转导的免疫增强效应研究.[博士学位论文].武汉:华中农业大学,2004
    6.余晓岚.口蹄疫基因工程疫苗与DNA疫苗的研究.[博士学位论文].武汉:华中农业大学,2005
    7.孙世琪.猪水疱病病毒衣壳蛋白基因自杀性DNA疫苗研究.[博士学位论文].兰州:中国农业科学院,2006
    8.樊惠英.猪圆环病毒2型基因工程疫苗的研究.[博士学位论文].武汉:华中农业大学,2007
    9.王升平.猪繁殖与呼吸综合征重组假型杆状病毒基因工程疫苗研究.[硕士学位论文].武汉:华中农业大学,2008
    10.宋建华.杆状病毒介导的基因表达及p35抗生物素及非生物素胁迫的研究.[博士论文].武汉:中国科学院武汉病毒研究所,2006
    11.梁昌镛.杆状病毒与哺乳动物细胞相互作用的研究.[博士学位论文].武汉:中国科学院武汉病毒研究所,2005
    12.胡少敏,王海,吴忠道.杆状病毒作为哺乳动物细胞表达载体及其在医学中的应用.国外医学寄生虫病分册,2004,31(5):222-226
    13. Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y,& Takaku H.Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol,2003,171:1133-1139
    14. Airenne K J, Makkonen K E, Mahonen A J,& Yla-Herttuala S. In vivo application and tracking of baculovirus. Curr Gene Ther:
    15. Ajioka J W,& Morrissette N S. A century of Toxoplasma research. Int J Parasitol, 2009,39:859-860
    16. Angus C W, Klivington-Evans D, Dubey J P,& Kovacs J A. Immunization with a DNA plasmid encoding the SAG1 (P30) protein of Toxoplasma gondii is immunogenic and protective in rodents. J Infect Dis,2000,181:317-324
    17. Angus C W, Klivington D, Wyman J,& Kovacs J A. Nucleic acid vaccination against Toxoplasma gondii in mice. J Eukaryot Microbiol,1996,43:117S
    18. Aucoin M G, Mena J A,& Kamen A A. Bioprocessing of baculovirus vectors:A review. Curr Gene Ther:
    19. Ayres M D, Howard S C, Kuzio J, Lopez-Ferber M,& Possee R D. The complete DNA sequence of autographa californica nuclear polyhedrosis virus. Virology,1994, 202:586-605
    20. Barsoum J, Brown R, McKee M,& Boyce F M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus g glycoprotein. Hum Gene Ther,1997,8:2011-2018
    21. Beauvillain C, Juste M O, Dion S, Pierre J,& Dimier-Poisson I. Exosomes are an effective vaccine against congenital Toxoplasmosis in mice. Vaccine,2009,27: 1750-1757
    22. Berglund P, Smerdou C, Fleeton M N, Tubulekas I,& Liljestrom P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol,1998,16:562-565
    23. Bertaux L, Mevelec M N, Dion S, Suraud V, Gregoire M, Berthon P,& Dimier-Poisson I. Apoptotic pulsed dendritic cells induce a protective immune response against Toxoplasma gondii. Parasite Immunol,2008,30:620-629
    24. Bowie W R, King A S, Werker D H, Isaac-Renton J L, Bell A, Eng S B,& Marion S A. Outbreak of Toxoplasmosis associated with municipal drinking water. Lancet, 1997,350:173-177
    25. Boyce F M,& Bucher N L. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A,1996,93:2348-2352
    26. Boyle J P, Rajasekar B, Saeij J P, Ajioka J W, Berriman M, Paulsen I, Roos D S, Sibley L D, White M W,& Boothroyd J C. Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci U S A,2006,103:10514-10519
    27. Bulow R,& Boothroyd J C. Protection of mice from fatal Toxoplasma gondii infection by immunization with P30 antigen in liposomes. J Immunol,1991,147: 3496-3500
    28. Buxton D. Toxoplasmosis:The first commercial vaccine. Parasitol Today,1993,9: 335-337
    29. Buxton D,& Innes E A. A commercial vaccine for ovine Toxoplasmosis. Parasitology, 1995,110 Suppl:S11-16
    30. Buxton D, Thomson K, Maley S, Wright S,& Bos H J. Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant. Vet Rec,1991,129:89-93
    31. Buxton D, Thomson K M, Maley S, Wright S,& Bos H J. Experimental challenge of sheep 18 months after vaccination with a live (S48) Toxoplasma gondii vaccine. Vet Rec,1993,133:310-312
    32. Chen G, Chen H, Guo H,& Zheng H. Protective effect of DNA-mediated immunization with a combination of SAG 1 and IL-2 gene adjuvant against infection of Toxoplasma gondii in mice. Chin Med J (Engl),2002,115:1448-1452
    33. Debierre-Grockiego F, Campos M A, Azzouz N, Schmidt J, Bieker U, Resende M G, Mansur D S, Weingart R, Schmidt R R, Golenbock D T, Gazzinelli R T,& Schwarz R T. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii.J Immunol,2007,179:1129-1137
    34. Denkers E Y,& Gazzinelli R T. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev,1998,11:569-588
    35. Denkers E Y, Gazzinelli R T, Martin D,& Sher A. Emergence of NK cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in mhc class i-deficient mice. J Exp Med,1993,178:1465-1472
    36. Desolme B, Mevelec M N, Buzoni-Gatel D,& Bout D. Induction of protective immunity against toxoplasmosis in mice by DNA immunization with a plasmid encoding Toxoplasma gondii GRA4 gene. Vaccine,2000,18:2512-2521
    37. Dubey J P. The history of Toxoplasma gondii--the first 100 years. J Eukaryot Microbiol,2008,55:467-475
    38. Dubey J P. History of the discovery of the life cycle of Toxoplasma gondii. Int J Parasitol,2009a:
    39. Dubey J P. Toxoplasmosis in pigs--the last 20 years. Vet Parasitol,2009b,164: 89-103
    40. Dubey J P,& Fayer R, Sarcocystosis. Toxoplasmosis, and Cyptosporidiosis in cattle. Vet Clin North Am Food Anim Pract,1986,2:293-298
    41. Dziadek B, Gatkowska J, Brzostek A, Dziadek J, Dzitko K,& Dlugonska H. Toxoplasma gondii:The immunogenic and protective efficacy of recombinant ROP2 and ROP4 rhoptry proteins in murine experimental toxoplasmosis. Exp Parasitol, 2009,123:81-89
    42. Facciabene A, Aurisicchio L,& La Monica N. Baculovirus vectors elicit antigen-specific immune responses in mice. J Virol,2004,78:8663-8672
    43. Fan H, Pan Y, Fang L, Wang D, Wang S, Jiang Y, Chen H,& Xiao S. Construction and immunogenicity of recombinant pseudotype baculovirus expressing the capsid protein of porcine circovirus type 2 in mice. J Virol Methods,2008,150:21-26
    44. Fleeton M N, Liljestrom P, Sheahan B J,& Atkins G J. Recombinant semliki forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. J Gen Virol,2000,81:749-758
    45. Frenkel J K, Pfefferkorn E R, Smith D D,& Fishback J L. Prospective vaccine prepared from a new mutant of Toxoplasma gondii for use in cats. Am J Vet Res, 1991,52:759-763
    46. Freyre A, Choromanski L, Fishback J L,& Popiel I. Immunization of cats with tissue cysts, bradyzoites, and tachyzoites of the T-263 strain of Toxoplasma gondii. J Parasitol,1993,79:716-719
    47. Garcia J L. Vaccination concepts against Toxoplasma gondii. Expert Rev Vaccines, 2009,8:215-225
    48. Garcia J L, Gennari S M, Navarro I T, Machado R Z, Sinhorini I L, Freire R L, Marana E R, Tsutsui V, Contente A P,& Begale L P. Partial protection against tissue cysts formation in pigs vaccinated with crude rhoptry proteins of Toxoplasma gondii. Vet Parasitol,2005,129:209-217
    49. Garcia J L, Navarro I T, Biazzono L, Freire R L, da Silva Guimaraes Junior J, Cryssafidis A L, Bugni F M, da Cunha I A, Hamada F N,& Dias R C. Protective activity against oocyst shedding in cats vaccinated with crude rhoptry proteins of the Toxoplasma gondii by the intranasal route. Vet Parasitol,2007,145:197-206
    50. Gazzinelli R, Xu Y, Hieny S, Cheever A,& Sher A. Simultaneous depletion of CD4+ and CD8+T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol,1992,149:175-180
    51. Gazzinelli R T, Hakim F T, Hieny S, Shearer G M,& Sher A. Synergistic role of CD4+and CD8+T lymphocytes in ifn-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol,1991,146:286-292
    52. Ghosh S, Parvez M K, Banerjee K, Sarin S K,& Hasnain S E. Baculovirus as mammalian cell expression vector for gene therapy:An emerging strategy. Mol Ther, 2002,6:5-11
    53. Golkar M, Shokrgozar M A, Rafati S, Musset K, Assmar M, Sadaie R, Cesbron-Delauw M F,& Mercier C. Evaluation of protective effect of recombinant dense granule antigens GRA2 and GRA6 formulated in monophosphoryl lipid a (mpl) adjuvant against Toxoplasma chronic infection in mice. Vaccine,2007,25:4301-4311
    54. Gronowski A M, Hilbert D M, Sheehan K C, Garotta G,& Schreiber R D. Baculovirus stimulates antiviral effects in mammalian cells. J Virol,1999,73: 9944-9951
    55. Guo H, Chen G, Lu F, Chen H,& Zheng H.Immunity induced by DNA vaccine of plasmid encoding the rhoptry protein 1 gene combined with the genetic adjuvant of pcifn-gamma against Toxoplasma gondii in mice. Chin Med J (Engl),2001,114: 317-320
    56. Hakim F T, Gazzinelli R T, Denkers E, Hieny S, Shearer G M,& Sher A. CD8+t cells from mice vaccinated against Toxoplasma gondii are cytotoxic for parasite-infected or antigen-pulsed host cells. J Immunol,1991,147:2310-2316
    57. Hervas-Stubbs S, Rueda P, Lopez L,& Leclerc C. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type 1 ifn. J Immunol,2007,178: 2361-2369
    58. Hiszczynska-Sawicka E, Li H, Xu J B, Oledzka G, Kur J, Bickerstaffe R,& Stankiewicz M. Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Exp Parasitol,124:365-372
    59. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P,& Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A, 1995,92:10099-10103
    60. Hu Y C. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin,2005,26:405-416
    61. Innes E A, Bartley P M, Maley S, Katzer F,& Buxton D. Veterinary vaccines against Toxoplasma gondii. Mem Inst Oswaldo Cruz,2009,104:246-251
    62. Innes E A, Panton W R, Sanderson A, Thomson K M, Wastling J M, Maley S,& Buxton D. Induction of CD4+and CD8+T cell responses in efferent lymph responding to Toxoplasma gondii infection:Analysis of phenotype and function. Parasite Immunol,1995,17:151-160
    63. Innes E A, Panton W R, Thomson K M, Maley S,& Buxton D. Kinetics of interferon gamma production in vivo during infection with the S48 vaccine strain of Toxoplasma gondii. J Comp Pathol,1995,113:89-94
    64. Ismael A B, Dimier-Poisson I, Lebrun M, Dubremetz J F, Bout D,& Mevelec M N. MIC1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital Toxoplasmosis in mice. J Infect Dis,2006,194:1176-1183
    65. Ismael A B, Hedhli D, Cerede O, Lebrun M, Dimier-Poisson I,& Mevelec M N. Further analysis of protection induced by the MIC3 DNA vaccine against t. Gondii: CD4+and CD8+T cells are the major effectors of the MIC3 DNA vaccine-induced protection, both lectin-like and egf-like domains of MIC3 conferred protection. Vaccine,2009,27:2959-2966
    66. Ismael A B, Sekkai D, Collin C, Bout D,& Mevelec M N, The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis. Infect Immun,2003,71:6222-6228
    67. Jackson M H,& Hutchison W M. The prevalence and source of Toxoplasma infection in the environment. Adv Parasitol,1989,28:55-105
    68. Jauniaux E, Jurkovic D, Gulbis B, Liesnard C, Lees C,& Campbell S. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum Reprod,1995,10:3297-3300
    69. Jiang Y, Fang L, Xiao S, Li B, Pan Y, Luo R,& Chen H. A suicidal DNA vaccine co-expressing two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus antigens induce protective responses. Biotechnol Lett, 2009,31:509-518
    70. Johnson L L, Lanthier P, Hoffman J,& Chen W. Vaccination protects B cell-deficient mice against an oral challenge with mildly virulent Toxoplasma gondii. Vaccine,2004, 22:4054-4061
    71. Jongert E, Lemiere A, Van Ginderachter J, De Craeye S, Huygen K,& D'Souza S. Functional characterization of in vivo effector CD4+and CD8+T cell responses in acute toxoplasmosis:An interplay of ifn-gamma and cytolytic t cells. Vaccine,28: 2556-2564
    72. Jongert E, Melkebeek V, De Craeye S, Dewit J, Verhelst D,& Cox E.An enhanced GRA1-GRA7 cocktail DNA vaccine primes anti-toxoplasma immune responses in pigs. Vaccine,2008,26:1025-1031
    73. Jongert E, Roberts C W, Gargano N, Forster-Wald E,& Petersen E. Vaccines against Toxoplasma gondii:Challenges and opportunities. Mem Inst Oswaldo Cruz,2009, 104:252-266
    74. Jongert E, Verhelst D, Abady M, Petersen E,& Gargano N.Protective Thl immune responses against chronic toxoplasmosis induced by a protein-protein vaccine combination but not by its DNA-protein counterpart. Vaccine,2008,26:5289-5295
    75. Kim L, Butcher B A, Lee C W, Uematsu S, Akira S,& Denkers E Y. Toxoplasma gondii genotype determines MYD88-dependent signaling in infected macrophages. J Immunol,2006,177:2584-2591
    76. Kitagawa Y, Tani H, Limn C K, Matsunaga T M, Moriishi K,& Matsuura Y. Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J Virol,2005,79:3639-3652
    77. Kost T A, Condreay J P,& Jarvis D L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol,2005,23:567-575
    78. Kringel H, Dubey J P, Beshah E, Hecker R,& Urban J F, Jr.. Cpg-oligodeoxynucleotides enhance porcine immunity to'Toxoplasma gondii. Vet Parasitol,2004,123:55-66
    79. Kur J, Holec-Gasior L,& Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines,2009,8:791-808
    80. Lang C, Gross U,& Luder C G. Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitol Res,2007,100:191-203
    81. LaRosa D F, Stumhofer J S, Gelman A E, Rahman A H, Taylor D K, Hunter C A,& Turka L A. T cell expression of myd88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci U S A,2008,105:3855-3860
    82. Lau Y L,& Fong M Y. Toxoplasma gondii:Serological characterization and immunogenicity of recombinant surface antigen 2 (SAG2) expressed in the yeast pichia pastoris. Exp Parasitol,2008,119:373-378
    83. Li Y, Ye J, Cao S, Xiao S, Zhao Q, Liu X, Jin M,& Chen H. Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice. J Gene Med,2009,11:57-65
    84. Lindsay D S, Blagburn B L,& Dubey J P. Safety and results of challenge of weaned pigs given a temperature-sensitive mutant of Toxoplasma gondii. J Parasitol,1993,79: 71-76
    85. Liu J, Cai J Z, Zhang W, Liu Q, Chen D, Han J P,& Liu Q R. Seroepidemiology of neospora caninum and Toxoplasma gondii infection in yaks (bos grunniens) in qinghai, china. Vet Parasitol,2008,152:330-332
    86. Liu Q, Gao S, Jiang L, Shang L, Men J, Wang Z, Zhai Y, Xia Z, Hu R, Zhang X,& Zhu X Q. A recombinant pseudorabies virus expressing tgsagl protects against challenge with the virulent Toxoplasma gondii RH strain and pseudorabies in balb/c mice. Microbes Infect,2008,10:1355-1362
    87. Liu S, Shi L, Cheng Y B, Fan G X, Ren H X,& Yuan Y K. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice. Parasitol Res,2009,105:267-274
    88. Lu F, Huang S,& Kasper L H. The temperature-sensitive mutants of Toxoplasma gondii and ocular toxoplasmosis. Vaccine,2009,27:573-580
    89. Matowicka-Karna J, Dymicka-Piekarska V,& Kemona H. Does Toxoplasma gondii infection affect the levels of ige and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clin Dev Immunol,2009,2009:374696
    90. McLeod R, Frenkel J K, Estes R G, Mack D G, Eisenhauer P B,& Gibori G. Subcutaneous and intestinal vaccination with tachyzoites of Toxoplasma gondii and acquisition of immunity to peroral and congenital toxoplasma challenge. J Immunol, 1988,140:1632-1637
    91. Moire N, Dion S, Lebrun M, Dubremetz J F,& Dimier-Poisson I. Micl-3ko tachyzoite a live attenuated vaccine candidate against toxoplasmosis derived from a typel strain shows features of type 2 strain. Exp Parasitol,2009,123:111-117
    92. Montoya J G,& Liesenfeld O. Toxoplasmosis. Lancet,2004,363:1965-1976
    93. Nielsen H V, Lauemoller S L, Christiansen L, Buus S, Fomsgaard A,& Petersen E. Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infect Immun,1999,67:6358-6363
    94. Pavia C S, Bittker S J,& Curnick K E. Passive immunization protects guinea pigs from lethal toxoplasma infection. FEMS Microbiol Immunol,1992,4:97-104
    95. Peng G H, Yuan Z G, Zhou D H, He X H, Liu M M, Yan C, Yin C C, He Y, Lin R Q, & Zhu X Q. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine,2009,27:6570-6574
    96. Pfefferkorn E R,& Pfefferkorn L C. Arabinosyl nucleosides inhibit Toxoplasma gondii and allow the selection of resistant mutants. J Parasitol,1976a,62:993-999
    97. Pfefferkorn E R,& Pfefferkorn L C. Toxoplasma gondii:Isolation and preliminary characterization of temperature-sensitive mutants. Exp Parasitol,1976b,39:365-376
    98. Qu D, Wang S, Cai W,& Du A. Protective effect of a DNA vaccine delivered in attenuated salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine,2008,26:4541-4548
    99. Qu D, Yu H, Wang S, Cai W,& Du A. Induction of protective immunity by multiantigenic DNA vaccine delivered in attenuated salmonella typhimurium against Toxoplasma gondii infection in mice. Vet Parasitol,2009,166:220-227
    100.Ramirez J R, Gilchrist K, Robledo S, Sepulveda J C, Moll H, Soldati D,& Berberich C. Attenuated Toxoplasma gondii TS-4 mutants engineered to express the leishmania antigen KMA-11 elicit a specific immune response in balb/c mice. Vaccine,2001,20: 455-461
    101.Sayles P C, Gibson G W,& Johnson L L. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun,2000, 68:1026-1033
    102.Scorza T, D'Souza S, Laloup M, Dewit J, De Braekeleer J, Verschueren H. Vercammen M, Huygen K,& Jongert E, A gral DNA vaccine primes cytolytic CD8(+) T cells to control acute Toxoplasma gondii infection. Infect Immun,2003,71: 309-316
    103.Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, Miyamura T,& Matsuura Y. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol,1997,78 (Pt 10):2657-2664
    104.Sibley L D,& Boothroyd J C. Construction of a molecular karyotype for Toxoplasma gondii. Mol Biochem Parasitol,1992,51:291-300
    105.Strauss R, Huser A, Ni S, Tuve S, Kiviat N, Sow P S, Hofmann C,& Lieber A. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein. Mol Ther,2007, 15:193-202
    106.Sukhumavasi W, Egan C E, Warren A L, Taylor G A, Fox B A, Bzik D J,& Denkers E Y. TLR adaptor MYD88 is essential for pathogen control during oral Toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. J Immunol,2008,181:3464-3473
    107. Sun S Q, Liu X T, Guo H C, Yin S H, Shang Y J, Feng X, Liu Z X,& Xie Q G. Protective immune responses in guinea pigs and swine induced by a suicidal DNA vaccine of the capsid gene of swine vesicular disease virus. J Gen Virol,2007,88: 842-848
    108.Tenter A M, Heckeroth A R,& Weiss L M. Toxoplasma gondii:From animals to humans. Int J Parasitol,2000,30:1217-1258
    109.Vandepapeliere P, Lau G K, Leroux-Roels G, Horsmans Y, Gane E, Tawandee T, Merican M I, Win K M, Trepo C, Cooksley G, Wettendorff M,& Ferrari C. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy:A randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine,2007,25:8585-8597
    110.Wang H, He S, Yao Y, Cong H, Zhao H, Li T,& Zhu X Q. Toxoplasma gondii: Protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp Parasitol,2009,122:226-232
    111.Wang Q, Wu K, Chen X G, Hao L,& Cheng L. [cloning and expression of a bradyzoite-specific gene of Toxoplasma gondii and immunoreactive analysis on the recombinant antigen]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,2007,25:295-299
    112.Wang S, Fang L, Fan H, Jiang Y, Pan Y, Luo R, Zhao Q, Chen H,& Xiao S. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine,2007,25: 8220-8227
    113.Wastling J M, Harkins D,& Buxton D. Western blot analysis of the igg response of sheep vaccinated with S48 Toxoplasma gondii (toxovax). Res Vet Sci,1994,57: 384-386
    114.Wastling J M, Harkins D, Maley S, Innes E, Panton W, Thomson K,& Buxton D. Kinetics of the local and systemic antibody response to primary and secondary infection with S48 toxoplasma gondii in sheep. J Comp Pathol,1995,112:53-62
    115.Wu Q, Fang L, Wu X, Li B, Luo R, Yu Z, Jin M, Chen H,& Xiao S. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol Immunol,2009,46: 2210-2217
    116.Xiang W, Qiong Z, Li-peng L, Kui T, Jian-wu G,& Heng-ping S. The location of invasion-related protein MIC3 of Toxoplasma gondii and protective effect of its DNA vaccine in mice. Vet Parasitol,2009,166:1-7
    117.Xiao S, Chen H, Fang L, Liu C, Zhang H, Jiang Y,& Hong W. Comparison of immune responses and protective efficacy of suicidal DNA vaccine and conventional DNA vaccine encoding glycoprotein c of pseudorabies virus in mice. Vaccine,2004, 22:345-351
    118.Xue M, He S, Cui Y, Yao Y,& Wang H. Evaluation of the immune response elicited by multi-antigenic DNA vaccine expressing SAG1, ROP2 and GRA2 against Toxoplasma gondii. Parasitol Int,2008,57:424-429
    119.Yan C, Yue C L, Yuan Z Q He Y, Yin C C, Lin R Q, Dubey J P,& Zhu X Q. Toxoplasma gondii infection in domestic ducks, free-range and caged chickens in southern china. Vet Parasitol,2009,165:337-340
    120.Yarovinsky F,& Sher A. Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol,2006,36:255-259
    121.Yarovinsky F, Zhang D, Andersen J F, Bannenberg G L, Serhan C N, Hay den M S, Hieny S, Sutterwala F S, Flavell R A, Ghosh S,& Sher A. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science,2005,308:1626-1629
    122.Yu X, Xiao S, Fang L, Jiang Y,& Chen H. Enhanced immunogenicity to food-and-mouth disease virus in mice vaccination with alphaviral replicon-based DNA vaccine expressing the capsid precursor polypeptide (p1). Virus Genes,2006, 33:337-344
    123.Zenner L, Estaquier J, Darcy F, Maes P, Capron A,& Cesbron-Delauw M F. Protective immunity in the rat model of congenital toxoplasmosis and the potential of excreted-secreted antigens as vaccine components. Parasite Immunol,1999,21: 261-272
    124.Zhu J, Yin J, Xiao Y, Jiang N, Ankarlev J, Lindh J,& Chen Q. A sero-epidemiological survey of Toxoplasma gondii infection in free-range and caged chickens in northeast china. Vet Parasitol,2008,158:360-363
    125.Zou F C, Sun X T, Xie Y J, Li B, Zhao G H, Duan G,& Zhu X Q. Seroprevalence of Toxoplasma gondii in pigs in southwestern china. Parasitol Int,2009,58:306-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700