脊柱微创手术机器人机械手轴位引导腰椎弓根置针及精度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     脊柱疾患的手术治疗方法很多,包括传统的开放手术以及近年来发展起来的各种微创手术,如脊柱骨折切开复位椎弓根钉内固定术、经后路脊柱畸形矫形术、脊柱肿瘤切除椎弓根螺钉固定重建术、经皮椎弓根钉置入术、经皮椎体成形术(PVP、PKP)、经皮椎体活检术、经皮齿状突骨折螺钉内固定术等。由于这些术式涉及内植物置入或注入,就必然涉及不同的穿刺路径与精度,其中以精确的经椎弓根途径最为重要。不当的经椎弓根穿刺可导致严重的并发症,如穿破椎弓根,可损伤脊髓、神经根;穿破椎体侧前方,可损伤大血管或内脏器官等。以椎弓根螺钉置入为例,文献报道其误置率可高达30%。目前引导穿刺置入的方法主要包括X线正侧位透视引导监测、辅助仪器引导监测、术中诱发电位引导监测及计算机辅助技术监测等,这些方法均存在一定的不足之处,如X线正侧位透视引导监测判断螺钉位置准确性和安全性不够高,很大程度上还要依靠手术医生的临床经验;辅助仪器引导监测不能对进钉点及进钉角度同时准确控制,且需手动控制角度,仍有较大的人为因素存在;诱发电位引导监测术中连续应用困难,椎弓根穿破后无法继续监测,而且不能直观反映螺钉的位置,发现神经损伤可能为时已晚;计算机辅助导航系统需要借助昂贵的设备和特殊的器械,操作程序繁琐,且存在不能动态监测、注册匹配失误等问题,椎弓根穿刺精度仍不理想,限制了其广泛推广。因此,探索更为安全可靠、操作简便的引导椎弓根穿刺的方法,是亟待解决的重要课题之一。
     目的
     本实验采用自行研发的脊柱微创手术机器人,用其机械手轴位引导行腰椎弓根穿刺并分析其精度,以期为临床探索一种穿刺精度高、安全可靠、简便易行的经椎弓根置入方法。
     方法
     1标本选择
     6具L1-L5干燥脊柱标本(共30个)。X线摄片排除发育异常及骨缺损者。
     2设计TSA
     对所选脊柱标本逐一CT扫描。在侧位像平分椎弓根的椎体横断面CT图像上,测量椎弓根导针理想轴线与椎体自身矢状线夹角(设计TSA)。
     3操作方法与步骤
     (1)锁定导针矢状面角:将C型臂X线机调整至固定好的目标椎体的标准侧位像,移动机械手使导针投影的延长线通过椎弓根投影中心且与椎体上终板平行,限制机械手头尾方向移动并锁定矢状面倾斜角;
     (2)确定“0点”:透视确定椎体标准正位像,以此作为“0点”;
     (3)匹配C臂投射轴线与椎弓根设计轴线:根据设计TSA,按该角度值向目标椎弓根一侧旋转C型臂,使其投射轴线与椎弓根设计轴线一致;
     (4)匹配机械手轴线与椎弓根设计轴线:调整机械手至导针投影为一圆点并位于椎弓根投影中心(即机械手轴位,导针轴位),使机械手轴线与椎弓根设计轴线一致;
     (5)监测导针置入:启动机械手正反转旋转导针,使其经椎弓根进入椎体内约35mm,实时透视监测导针置入过程,确保其投影不偏离椎弓根投影中心。
     4测量指标
     用C臂摄椎体标准侧位像或CT扫描导针针道图像分别确定:
     (1)导针矢状面夹角(SSA),导针与上终板平行为0°,斜向上终板记为正,反之记为负;
     (2)导针实际TSA;
     (3)狭部平面针道偏离中心的距离b,到内外侧骨皮质的距离d1、d2。
     5统计学处理
     所有参数用均数加减标准差((?)±s)表示,用SPSS10.0统计软件进行统计分析,腰椎各节段术前设计TSA与术后导针实际TSA采用配对设计资料t检验,检验水准α=0.05。
     结果
     共60个椎弓根,均成功置入导针。
     (1) L1-L5导针与椎体上终板夹角(矢状面角,SSA)为-0.13±0.83°(-2~1°);
     (2) L1-L5术前设计TSA分别为13.11±1.75°、14.63±2.18°、16.79±2.38°、19.25±2.79°、29.67±4.58°,导针实际TSA分别为13.42±2.13°、14.83±1.72°、16.45±2.45°、19.70±3.19°、30.33±4.94°,两者相差最大不超过2度。各节段两者差异均无统计学意义(P>0.05)。
     (3) L1-L5导针针道在椎弓根狭部平面偏离中心的距离分别为0.17±0.16mm(0~0.5mm)、0.18±0.22mm(0~0.6mm)、0.16±0.17mm(0~0.5mm)、0.58±0.49mm(0~1.2mm)、0.86±0.68mm(0~1.7mm),到内侧骨皮质的距离分别为1.85±0.47mm(1.0~2.6mm)、1.90±0.42mm(1.6~2.9mm)、2.12±0.36mm(1.6~2.6mm)、3.02±0.97mm(1.8~4.9mm)、4.67±1.40mm(2.2~6.9mm),到外侧骨皮质的距离分别为1.61±0.35mm(1.0~2.3mm)、1.80±0.29mm(1.6~2.5mm)、2.27±0.41mm(1.7~3.1mm)、3.09±0.83mm(1.7~4.2mm)、5.22±1.41mm(3.0~7.1mm)。
     导针在椎体侧位像及CT扫描横断面图像中无一例接触或穿破椎弓根骨皮质。
     结论
     机械手轴位法引导脊柱微创手术机器人腰椎弓根导针置入,可使导针准确地沿设计轴线穿过椎弓根,是一种安全可靠、简便易行的椎弓根导针置入方法,具有推广应用价值。
Background
     There are many surgical methods in the treatment of spinal diseases, including traditional open surgery, as well as a variety of minimally invasive surgery which have developed in recent years, such as with open reduction and pedicle screw fixation for spinal fractures, posterior scoliosis surgery, spinal reconstruction with pedicle screw fixation after tumor resection, minimally invasive percutaneous pedicle screw osteosynthesis, percutaneous vertebropiasty (PVP), percutaneous kyphoplasty (PKP), percutaneous transpedicular biopsy, percutaneous anterior screw fixation for treatment of odontoid process fracture. As a result of these surgical procedures involving implantation of instrumentation, it will inevitably involve puncture accuracy and different path, especially transpedicular surgery which requests the highest puncture accuracy. Improper transpedicular puncture may lead to neurovascular damage or suboptimal biomechanical spinal stabilization. A number of studies have reported up to a 30% rate of screw misplacement. Currently there are several methods to monitor the process of pedicle screw placement, including X-ray, guide device, stimulus-evoked electromyography, computer-assisted image-guided technology and so on. However, these methods have some shortcomings. The accuracy and security is not high enough by X-ray guiding and guide device guiding, which depend on the clinical experience of the surgeon to a large extent; stimulus-evoked electromyography can not continue to monitor after the pedicle perforation; computer-assisted image-guided technology has been advanced to improve accuracy. However, these systems need expensive and special equipments with the disadvantage of cumbersome procedures. Some technical problems remain fully unresolved, such as dynamic monitoring, registration errors, unsatisfactory precision of screw implantation. Because of the suboptimal reliability and complexity, the frequency of use of the computer-assisted surgery technologies is relatively low. Therefore, to explore a more secure and reliable, simple and effective way to guide percutaneous pedicle puncture is urgent.
     Purpose
     To evaluate the feasibility and accuracy of pedicle guide wire placement by MISS robot with manipulator axial position guiding, with a view to researching a method of minimally invasive pedicle guide wire implantation safely and reliably with high puncture precision.
     Methods
     1. Specimen selection.
     Six dry human cadaveric lumbar spines (L1 to L5) were used and inspected visually and radiographically to exclude abnormal morphology and bone defects.
     2. Preoperative determination.
     Spine specimens underwent pre-intervention CT scanning, and ideal transverse section angle (TSA) was measured according to the lateral cross-sectional image of each vertebral body.
     3. Operating methods and procedures.
     (1)The vertebral body specimen was fixed and C-arm was adjusted till the standard lateral image was obtained. The manipulator was lowered and its direction was adjusted, so that the guide wire could project through the center of the pedicle's projection , and parallel upper endplate of the vertebral.
     (2)C-arm was adjusted till a standard posteroanterior image was obtained and the projection was in the center of the screen.
     (3) C-arm was rotated at a certain angle (design TSA) to obtain the projection of the target pedicle.
     (4) The robot manipulator was adjusted, so that the projection of the guide wire was at the projection center of target pedicle.
     (5) The manipulator was lowered. The robot set 0, when the guide wire reached the pedicle posterior cortex. The whole process was monitored to make sure the projection of the guide wire will not deviate from the center of pedicle projection until the guide wire was within the vertebral body.
     4. Measurement of indicators.
     (1) Sagital section angle (SSA) on standard lateral images;
     (2) Transverse section angle (the actual TSA) on post-procedural CT scans.
     (3) Deviation of the actual position from the center at the pedicle isthmus plane, and the distance between the guide wire track and medial cortical or lateral cortical on post-procedural CT scans.
     5. Statistical analysis.
     The results were expressed as (x|-)±s. Paired t test was used to analyze the difference between preoperative TSA and postoperative TSA with SPSS 10.0. Statistical significance was determined at the 0.05 Alpha level.
     Results
     A total of 60 guide wires were successfully inserted.
     (1) Sagital section angles (SSA) of L1-5 were -0.13±0.83°(range, -2-1°).
     (2) The designed transverse section angles of Ll-5 were 13.11±1.75°, 14.63±2.18°,16.79±2.38°,19.25±2.79°,29.67±4.58°, and the actual transverse section angles were 13.42±2.13°,14.83±1.72°,16.45±2.45°,19.70±3.19°,30.33±4.94°. There were no significant difference (P > 0.05) between actual TSA and designed TSA in all leves, no more than 2 degrees.
     (3) Deviation of the guide wire track from the center at the pedicle isthmus plane of Ll-5 was 0.17±0.16mm(0~0.5mm), 0.18±0.22mm(0~0.6mm), 0.16±0.17mm(0~0.5mm), 0.58±0.49mm(0~1.2mm), 0.86±0.68mm(0~1.7mm). The distance between the guide wire track and medial cortical was 1.85±0.47mm(1.0~ 2.6mm), 1.90±0.42mm(1.6~2.9mm), 2.12±0.36mm(1.6~2.6mm), 3.02±0.97mm(1.8~4.9mm), 4.67±1.40mm(2.2~6.9mm). The distance between the guide wire track and lateral cortical was 1.61±0.35mm(1.0~2.3mm), 1.80±0.29mm(1.6~2.5mm), 2.27±0.41mm(1.7~3.1mm), 3.09±0.83mm(1.7~4.2mm), 5.22±1.41mm(3.0~7.1mm).
     None of the guide wire track was found to have contracted or perforated the pedicle wall.
     Conclusion
     Lumbar pedicle puncture is performed perfectly by MISS robot with manipulator axial position guiding, which can accurately guide the wire through the pedicle axis. This method can guide the pedicle wire plantation safely and reliably with the promotion of application value.
引文
1.Tae-Sob Shin,Hyun-Woo Kim,Keung-Suk Park,et al.Short-segment Pedicle Instrumentation of Thoracolumbar Burst-compression Fractures;Short Term Follow-up Results[J].J Korean Neurosurg Soc,2007,42(4):265-270.
    2.郭海龙,盛伟斌,普拉提,等.一期后路楔形截骨治疗青春期后严重先天性脊柱侧弯[J].中国矫形外科杂志,2009,17(5):326-329.
    3.Suhail Afzal,Saleem Akbar,Shabir A.Short segment pedicle screw instrumentation and augmentation vertebroplasty in lumbar burst fractures:an experience[J].Eur Spine J,2008,17(3):336-341.
    4.崔成亮,雪原,马信龙,等.CT引导经皮椎弓根穿刺技术[J].天津医科大学学报,2008,14(2):184-186.
    5.王建,周跃,任先军,等.经皮和开放前路螺钉内固定术治疗齿状突骨折的比较[J].中国脊柱脊髓杂志,2008,14(5):361-364.
    6.镇万新,高国勇,王巨,等.微创经皮椎弓根内固定术治疗胸腰椎骨折[J].中华创伤骨科杂志,2007,9(7):638-641.
    7.乔永东,王自立,陈军,等.外科切除与稳定性重建治疗脊柱肿瘤[J].宁夏医学杂志,2007,29(6):511-512.
    8.Maciejczak A,Barnas P,Dudziak P,et al.Minimally invasive posterior corpectomy of the lumbar spine with transpedicular fixation[J].Neurol Neurochir Pol,2004,38(6):511-516.
    9.Ahmet Yilmaz Sarlak,Levent Buluc,Hasan Tahsin Sarisoy,et al.Placement of pedicle screws in thoracic idiopathic scoliosis:a magnetic resonance imaging analysis of screw placement relative to structures at risk[J].Eur Spine J,2008,17(5):657-662.
    10.吴敏,肖玉周,周建生,等.“C”型臂X线机透视引导下经椎弓根穿刺活检在脊柱疾病诊断中的应用价值[J].蚌埠医学院学报,2007,32(3):289-290.
    11.崔志明,李卫东,保国锋,等.经皮植入椎弓根螺钉固定系统治疗胸腰椎骨折[J].中华急诊医学杂忐,2006,15(9):840-842.
    12.Teitelbaum GP,Shaolian S,McDougall CG,et al.New percutaneously inserted spinal fixation system[J].Spine,2004,29(6):703-709.
    13.Esses SI,Sachs BL,Dreyzin V.Complications associated with the technique of pedicle screw fixation.A selected survey of ABS members[J].Spine,1993,18(15):2231-2238.
    14.Castro WH,Halm H,Jerosch J,et al.Accuracy of pedicle screw placement in lumbar vertebrae[J].Spine,1996,21(11):1320-1324.
    15.Farber GL,Place HM,Mazur RA,et al.Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography[J].Spine,1995,20(13):1494-1499.
    16.Bailey SI,Bartolozzi P,Bertagnoli R,et al.The BWM spinal fixator system:a preliminary report of a 2-year prospective,international multicenter study in a range of indications requiting surgical intervention for bone grafting and pedicle screw fixation[J].Spine,1996,21(17):2006-2015.
    17.Barr SJ,Schuette AM,Emans JB.Lumbar pedicle screws versus hooks:results in double major curves in adolescent idiopathic scoliosis[J].Spine,1997,22(12):1369-1379.
    18.Brown CA,Lenke LG,Bridwell KH,et al.Complications of pediatric thoracolumbar and lumbar pedicle screws[J].Spine,1998,23(14):1566-1571.
    19.Faraj AA,Webb JK.Early complications of spinal pedicle screw[J].Eur Spine J,1997,6(5):324-326.
    20.Gaines RW Jr.The use of pedicle-screw internal fixation for the operative treatment of spinal disorders[J].J Bone Joint Surg(Am),2000,82(10):1458-1476.
    21.陈永铵,姚汉刚,李佛保,等.对称性可调节式椎弓根钻空导向器的研制及应用[J].中国脊柱脊髓杂志,2003,13(6):328-331.
    22.Jee Soo Jang,Won Bok Lee,Hansen A Yuan.Ues of a guide device to place pedicle screws in the thoracic spine:a cadaveric study[J].Journal of Neurosurg,2001,94(2):328-333.
    23.沈炳华,刘建青,吕世桥,等.椎弓根钉水平偏角仪的研制与临床应用[J].中 华骨科杂志,2002,22(11):701-702.
    24.肖京,邓磊,顾敏琪.椎弓根轴线导向器的研制和应用研究[J].中国骨伤,2007,20(7):442-444.
    25.王袅冶,曹盛俊,廖瑛.胸腰椎椎弓根钉置入导向器的设计及应用实验[J].中国脊柱脊髓杂志,2003,13(9):554-557.
    26.Myers BS,Hasty CC,Floberg DR,et al.Measurement of vertebral cortial integrity during pedicle exploration for intrapedicular fixation[J].Spine,1995,20(2):144-148.
    27.Moed BR,Ahmad BK,Craig JG,et al.Intraoperative monitoring with stimulus-evoked electromyography during placement of iliosacral screws.An initial clinical study[J].J Bone Surg Am,1998,80(4):537-546.
    28.Holland NR,Kostuik JP.Continuous electromyographic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery[J].Spine,1997,22(21):2547-2550.
    29.Joe IM,Lai KA.Neuromonitoring of an experimental model of clip compression on the spinal nerve root to characterize acute nerve root injury[J].Spine,1998,23(8):932-939.
    30.Austin MS,Vaccaro AR,Brislin B,et al.Image-guided spine surgery:a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models[J].Spine,2002,27(22):2503-2508.
    31.冯海龙,陈隆益,谭海斌,等.计算机导航辅助椎弓根螺钉固定的临床研究[J].中华神经外科杂志,2007,23(5):322-335.
    32.李华,张蒲,俞超,等.计算机导航辅助椎弓根螺钉固定[J].中华创伤骨科杂志,2005,7(7):634-636.
    33.Richter M,Amiot LP,Neller S,et al.Computer-assisted surgery in posterior instrumentation of the cervical spine:an in-vitro feasibility study[J].Eur Spine J,2000,9(Suppl 1):S65-S70.
    34.田伟,刘亚军,刘波,等.计算机导航在脊柱外科手术应用实验和临床研究[J].中华骨科杂志,2006,26(10):671-675.
    35.杨立江,陈华江,陈德玉,等.计算机辅助导航技术在脊柱侧凸手术中应用的初步经验[J].中国矫形外科杂志,2007,15(23):1173-1176.
    36.杨慧林,Yuan HA,陈亮等.椎体后凸成形术治疗老年骨质疏松脊柱压缩骨折[J].中华骨科杂志,2003,23(5):262-265.
    37.王根林,杨惠林,牛国旗等.标准位X线片上胸腰椎椎弓根轴线的放射学研究[J].中国临床解剖学杂志,2006,24(5):502-505.
    38.Kavoussi LR,Moore RG,Partin AW,et al.Telerobotic assisted laparoscopic surgery:initial laboratory and clinical experience[J].Urology,1994,44(1):15-19.
    39.Jacobs LK,Shayani V,Sackier JM.Determination of the learning curve of the AESOP robot[J].Surg Endosc,1997,11(1):54-55.
    40.Ballantyne GH.Telerobotic gastrointestinal surgery.Phase 2-safety and efficacy [J].Surg Endosc,2007,21(7):1054-1062.
    41.Bodner J,Lucciarini P,Fish J,et al.Laparoscopic splenectomy with the da Vinci robot[J].J Laparoendosc Adv Surg Tech A,2005,15(1):1-5.
    42.Woo R,Le D,A banese CT,et al.Robot-assisted laparoscopic resection of a type Ⅰ choledochal cyst in a child[J].J Lapsroendosc Adv Surg Tech A,2006,16(2):179-183.
    43.周汉新,余小舫,李富荣,等.遥控宙斯机器人胆囊切除术的临床应用[J].中华医学杂志,2005,85(3):154-157.
    44.Barzilay Y,Liebergall M,Fridlander A,et al.Miniature robotic guidance for spine surgery-introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres[J].Int J Med Robot,2006,2(2):146-153.
    45.Sukovich W,Brink DS,Hardenbrook M,et al.Miniature robotic guidance for pedicle screw placement in posterior spinal fusion:early clinical experience with the SpineAssist[J].Int J Med Robot,2006,2(2):114-122.
    46.Lieberman IH,Togawa D,Kayanja MM,et al.Bone-mounted miniature robot for pedicle screw and translaminar facetscrew placement:Part Ⅰ-technical development and a test case result[J].Neurosurg,2006,59(3):641-650.
    47.Togawa D,Kayanja MM,Reinhardt MK,et al.Bone-mounted miniature robot for pedicle screw and translaminar facet screw placement:Part Ⅱ-evaluation of system's accuracy[J].Neutosurgery,2007,60(Suppl 1):S129-S139.
    48.刘浩,饶书城,沈怀信,等.术中照片对判断胸腰段椎弓根螺钉位置的价值[J].中国脊柱脊髓杂志,1993,3(3):126-129.
    49.Whitecloud TS,Batler JC,Cohen JL,et al.Complications with the variable spinal plating system[J].Spine,1989,14(4):472-476.
    50.Weinsten JN,Spartt KF,Spengler D.Spinal pedicle fixation:reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement[J].Spine,1988,13(9):1012-1018.
    51.于海龙,雷伟,朱锦宇,等.模拟腰段椎弓根螺钉置入获取置入三维参数[J].实用放射学杂志,2006,22(2):220-222.
    52._王田苗,范兴,刘文勇,等.C臂X光图像几何失真校正与误差分析[J].高技术通讯,2006,16(6):600-605.
    1. Simon DA, Lavallee S. Medicla imaging and registration in computer assisted surgery: Computer assisted orthopaedic surgery [J]. Clin Orthop, 1998, (354): 17-27.
    2. Schlenzka D, Laine T, Lund T. Computer-assisted spine surgery: principles, technique, results and perspectives [J]. Orthopade, 2000, 29(27): 658-669.
    3. Schlenzka D, Laine T, Lund T. Computer-assisted spine surgery [J]. Eur Spine J, 2000, 9(Suppl 1): S57-S64.
    4. Bailey SI, Bartolozzi P, Bertagnoli R, et al. The BWM spinal fixator system: a preliminary report of a 2-year prospective, international multicenter study in a range of indications requiring surgical intervention for bone grafting and pedicle screw fixation [J]. Spine, 1996, 21(17): 2006-2015.
    5. Barr SJ, Schuette AM, Emans JB. Lumbar pedicle screws versus hooks: results in double major curves in adolescent idiopathic scoliosis [J]. Spine 1997, 22(12): 1369-1379.
    6. Blumenthal S, Gill K. Complications of the Wiltse Pedicle Screw Fixation System [J]. Spine, 1993,18(13): 1867-1871.
    7. Brown CA, Lenke LG, Bridwell KH, et al. Complications of pediatric thoracolumbar and lumbar pedicle screws [J]. Spine, 1998, 23(14): 1566-1571.
    8. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members [J]. Spine, 1993, 18(15): 2231-2238.
    9. Faraj AA, Webb JK. Early complications of spinal pedicle screw [J]. Eur Spine J, 1997, 6(5): 324-326.
    10. Gaines RW Jr. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders [J]. J Bone Joint Surg (Am), 2000, 82(10): 1458-1476.
    11. Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis [J]. Spine, 1997, 22(19): 2239-2245.
    12.Vaccaro AR,Rizzolo SJ,Balderston RA,et al.Placement of pedicle screws in the thoracic spine.Part Ⅱ:an anatomical and radiographic assessment[J].J Bone Joint Surg,1995,77(8):1200-1206.
    13.Laine T,Lund T,Ylikoski M,et al.Accuracy of pedicle screw insertion with and without computer assistance:a randomised controlled clinical study in 100consecutive patients[J].Eur Spine J,2000,9(3):235-240.
    14.Weinstein JN,Spratt KF.,Spengler D,et al.Spinal pidicle fixation:reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement[J].Spine,1988,13(9):1012-1018.
    15.Schulze CJ,Munzinger E,Weber U,et al.Clinical relevance of accuracy of pedicle screw placement:a computed tomographic-supported analysis[J].Spine,1998,23(20):2215-2220.
    16.Liljenqvist UR,Halm HF,Link TM.Pedicle screw instrument of the thoracic spine in idiopathic scoliosis[J].Spine,1997,22(21):2239-2245.
    17.Vaccaro AR,Rizzolo SJ,Balderston RA,et al.Placement of pedicle screws in the thoracic spine.Part Ⅱ:an anatomical and radiographic assessment[J].J Bone Joint Surg,1995,77(8):1200-1206.
    18.Xu R,Ebraheim NA,Ou Y,et al.Anatomic comsiderations of pedicle screw placement in the thoracic spine:Roy-Camille technique versus open-lamina technique[J].Spine,1998,23(9):1065-1068.
    19.Liljenqvist UR,Halm HF,Link TM.Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis[J].Spine,1997,22(19):2239-2245.
    20.Gebhard F,Kinzl L,Arand M.Limits of CT-based computer navigation in spinal surgery[J].Unfallchirurg,2000,103(8):696-701.
    21.Nolte L,Zamorano L,Arm E,et al.Image-guided computer-assisted spine surgery:A pilot study on pedicle screw fixation[J].Stereotact Funct Neurosurg,1996,66(1-3):108-117.
    22.Glossop ND,Hu RW,Randle JA.Computer-aided pedicle screw placement using frameless stereotaxis.Spine,1996,21(17):2026-2034.
    23.杨立江,陈华江,陈德玉,等.计算机辅助导航技术在脊柱侧凸手术中应 用的初步经验[J].中国矫形外科杂志,2007,15(23):1173-1176.
    24.Austin MS,Vaccaro AR,Brislin B,et al.Image-guided spine surgery:a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models[J].Spine,2002,27(22):2503-2508.
    25.Girardi FP,Cammisa FP Jr,Sandhu HS,et al.The placement of lumbar pedicle screws using computerised stereotactic guidance[J].J Bone Joint Surg(Br),1999,81(5):825-829.
    26.Richter M,Amiot LP,Neller S,et al.Computer-assisted surgery in posterior instrumentation of the cervical spine:an in-vitro feasibility study[J].Eur Spine J,2000,9(7):S65-S70.
    27.Sama AA,Khan SN,Girardi FP,et al.Computerized frameless stereotactic image guidance in spinal surgery[J].Orthop Clin North Am,2002,33(2):375-380.
    28.田伟,刘亚军,刘波,等.计算机导航在脊柱外科手术应用实验和临床研究[J].中华骨科杂志,2006,26(106):71-675.
    29.Merloz P,Tonetti J,Pittet L,et al.Pedicle screw placement using image guided techniques[J].Clin Orthop Relat Res,1998,(354):39-48.
    30.冯海龙,陈隆益,谭海斌,等.计算机导航辅助椎弓根螺钉固定的临床研究[J].中华神经外科杂志,2007,23(5):322-335.
    31.李华,张蒲,俞超,等.计算机导航辅助椎弓根螺钉固定[J].中华创伤骨科杂志,2005,7(7):634-636.
    32.Foley KT,Smith MM.Image-guided spine surgery[J].Neurosurg Clin N Am,1996,7(2):171-186.
    33.Kalfas IH,Kormos DW,Murphy MA,et al.Application of frameless stereotaxy to pedicle screw fixation of the spine[J].J Neueosury,1995,20(4):497-500.
    34.Youkilis AS,Quint DJ,McGillicuddy JE,et al.Stereotactic navigation for placement of pedicle screws in the thoracic spine[J].Neurosurg,2001,48(6):771-781.
    35.海涌,邹德威,邵水霖,等.电磁导航技术在胸腰椎手术的应用[J].中国 脊柱脊髓杂志,2003,13(11):660-662.
    36.Gebhard F,Weidner A,Liener U,et al.Navigation at the spine[J].Injury,2004,35(1):35-45.
    37.Amiot L P,Lang K,Zippel H,et al.Comparative accuracy between conventional and computer-assisted pedicle screw installation[J].J Bone Surg (Br),1998,80(Supp 3):S240.
    38.Schwarzenbach O,Berleman U,Jost B,et al.Accuracy of computer-assisted pedicle screw placement:an in vivo computed tomography analysis[J].Spine,1997,22(4):452-458.
    39.Galibert P,Deramond H,Rosat P,et al.Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty[J].Neurochirurgie,1987,33(2):166-168.
    40.Muto M,Muto E,Lzzo R,et al.Vertebroplasty in the treatment of back pain[J].Radiol Med,2005,109(3):208-219.
    41.Peridinakis K,Damilakis J,Theocharopoulos N,et al.Patient exposure and associated radiation risks from fluoroscopically guided vertebroplasty or kyphoplasty[J].Radiology,2004,232(3):701-707.
    42.van de Kraats EB,van Walsum T,Verlaan JJ,et al.Three-dimensional rotational X-ray navigation for needle guidance in percutaneous vertebroplasty:an accuracy study[J].Spine,2006,31:1359-1364.
    43.王黎明,喻忠,桂鉴超,等.计算机导航辅助下经皮椎体成形术[J].中华骨科杂志,2006,26(10):676-681.
    44.孙辉,白波,钱东阳,等.导航精确定位下经皮注入骨水泥椎体成形的特点[J].中国组织工程与临床康复.2008,12(23):4450-4452.
    45.杨俊,王德江,赵继宗.手术导航系统下切除椎管内外肿瘤[J].中国脊柱脊髓杂志,2002,12(2):87-89.
    46.王德江,杨俊,赵继宗等.计算机辅助导航在脊柱脊髓手术中的应用[J].中华医学杂志,2004,84(18):1554-1557.
    47.Van Royen BJ,Baayen JC,Pijpers R,et al.Osteoid osteoma of the spine:a novel technique using combined computer-assisted and gamma probe-guided high-speed intralesional drill excision[J].Spine,2005,30(3):369-373.
    48.Madawi AA,Casey AT,Solanki GA,et al.Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique[J].J Neurosurg,1997,86(6):961-968.
    49.Paramore CG,Dickman CA,Sonntag VKH.The anatomical suitability of the C1-2 complex for transarticular screw fixation[J].J Neurosurg,1996,85(2):221-224.
    50.Bloch O,Holly LT,Park J,et al.Effect of frameless stereotaxy to the accuracy of C1-2 transarticular screw placement[J].J Neurosury,2001,95(1):74-79.
    51.Heller JG,Carlson GD,Abitol JJ,et al.Anatomic comparison of the Roy-Camille and Magerl techniques for screw placement in the lower cervical spine[J].Spine,1991,16(suppl 10):S552-S557.
    52.Foley KT,Smith KR,Smith MM.Frameless stereotactic guidance of cervical spine lateral mass screw fixation[M].In:Nolte LP,GanZ R(eds).Computer assisted orthopedic surgery.Hogrefe & Huber,Seattle Toronto Bern,1999,S89-S98.
    53.郑艳秋,刘新宇,原所茂,等.计算机导航及内窥镜下颈前路齿突螺钉固定术[J].中华骨科杂志,2006,26(3):175-178.
    54.Howe RD,Matsuoka Y.Robotics for surgery[J].Annu Rev Biomed Eng,1999,1:211-240.
    55.Jacobs LK,Shayani V,Sackier JM.Determination of the learning curve of the AESOP robot[J].Surg Endosc,1997,11(1):54-55.
    56.Ballantyne GH.Telerobotic gastrointestinal surgery.Phase 2-safety and efficacy [J].Surg Endosc,2007,21(7):1054-1062.
    57.Bodner J,Lucciarini P,Fish J,et al.Laparoscopic splenectomy with the da Vinci robot[J].J Laparoendosc Adv Surg Tech A,2005,15(1):1-5.
    58.Woo R,Le D,A banese CT,et al.Robot-assisted laparoscopic resection of a type Ⅰ choledochal cyst in a child[J].J Lapsroendosc Adv Surg Tech A,2006,16(2):179-183.
    59.周汉新,余小舫,李富荣,等.遥控宙斯机器人胆囊切除术的临床应用[J]. 中华医学杂志, 2005, 85 (3): 154-157.
    60. Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery a current perspective [J]. Ann Surg, 2004, 239(1): 14-21.
    61. Katz RD, Taylor JA, Rosson GD, et al. Robotics in plastic and reconstructive surgery: use of a telemanipulator slave robot to perform microvascular anastomoses [J]. J Reconstr Microsurg, 2006, 22(1): 53-57.
    62. Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres[J]. Int J Med Robot, 2006, 2(2): 146-153.
    63. Sukovich W, Brink DS, Hardenbrook M, et al. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist [J]. Int J Med Robot, 2006, 2(2): 114-122.
    64. ShohamM, Burman M, Zehavi E, et al. Bone-mounted miniature robot for surgical procedures: concept and clinical applications [J]. IEEE Trans Robotics Automation, 2003, 19(5): 893-901.
    65. Wolf A, Shoham M, Michael S, et al. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments [J]. Spine, 2004, 29(2): 220-228.
    66. Togawa D, Lieberman IH, Benzel BC, et al. Bone-mounted miniature robot for spinal surgery-accurate insertion for pedicle screws and translaminar facet screws in cadaveric experiments. In: Proceedings of the 12th International Meeting on Advanced Spine Techniques (IMAST), Banff, Alberta, Canada, July 2005.
    67. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robot for pedicle screw and translaminar facetscrew placement: Part I-technical development and a test case result [J]. Neurosurg, 2006, 59(3): 641-650.
    68. Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robot for pedicle screw and translaminar facet screw placement: Part II - evaluation of system's accuracy [J]. Neutosurgery, 2007, 60(Suppl 1): S129-S139.
    69.Shoham M,Lieberman IH,Benzel EC,et al.Robotic assisted spinal surgery-from concept to clinical practice[J].Computer Aided Surgery,2007,12(2):105-115.
    70.Yinhao Song,Gang An,Jianxun Zhang,et al.Medical robotic system for minimally invasive spine surgery[J].Bioniformatics and Biomedical Engineering,2008,2:1703-1706.
    71.鞠浩,张建勋,安刚等.机器人辅助脊柱微创手术系统设计与实现[J].南开大学学报(自然科学版),2008,41(4):31-35.
    72.Onoqi S,Morimoto K,Sakuma I,et al.Development of the needle insertion robot for percutaneous vertebroplasty[J].Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv,2005,8:105-113.
    73.王田苗,张家磊,刘忠军等.基于力反馈的脊柱外科机器人系统的设计与实现[J].机器人,2007,29(5):463-468.
    74.梁国穗.外科机器人的发展历程及临床应用[J].中华骨科杂志,2006,26,10(5):707-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700