液压支架关键元件内部流动及系统工作特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压支架作为采煤工作面的主要安全支护设备,对于建设高产高效的本安化矿井具有决定性的意义,其关键部件的结构、性能及整体动态性能的好坏直接影响着整个综采工作面的可靠性及安全性。由于缺乏相应的理论支撑以及实验手段支持,对于液压支架关键部件(液控单向阀及安全阀)、液压支架系统内部流场、流动规律及各自的动态特性研究不够充分。
     本文针对工作面常用的ZY4000/09/21型液压支架,进行了理论分析、计算研究、FLUENT和ABAQUS数值模拟、Matlab/Simulink仿真及实验研究,全方位的分析了影响液压支架关键部件、系统稳定的因素。
     首先,鉴于液控单向阀和安全阀在支架液压系统性能的突出作用,本文建立三维流场模型,利用计算流体力学软件FLUENT对液控单向阀和安全阀进行数值模拟,研究其内部流动对性能的影响。结果表明液控单向阀在不同阀芯开度,不同流量时的压力损失有较大的差别,阀芯开度增大到一定程度时,在节流口附近引起的压力损失随阀芯开度增大而变化很小,总压力损失的减小量随阀芯开度增大也逐渐减小,液体在阀座拐角处、阀套通油孔、阀套与阀壳形成的容腔等处产生漩涡。对于安全阀而言,阀芯没有全开时,在节流口出口附近出现低压区;阀芯全开时(1mm),在溢流口入口附近出现低压区,且范围增大;安全阀入口压力不变时,最大流速出现在溢流口处且随阀芯开度增大而增大,阀芯溢流口总是存在漩涡,漩涡范围随阀芯开度增大而减小。
     其次,建立各系统数学模型,通过动态特性理论分析及使用功率键合图法结合数字仿真软件Matlab/Simulink分别对于液压支架关键部件、液压系统进行了动态特性分析。分析结果表明:合适的阀芯承压面面积A,降低阀口流量增益Kq,增加系统总液容C+C1,提高有效阻尼比可以增加液控单向阀系统稳定性;安全阀阀芯与阀套搭合量、弹簧刚度、阀芯部分的质量、溢流口面积等参数对安全阀动态特性有较大的影响。顶板突然来压时,顶板下沉速度为0.1m/s时,阀腔压力曲线和溢流量曲线没有波动。系统动态性能良好,当下降速度增加到0.12m/s时,系统压力在35MPa附近振荡,系统动态性能开始恶化,最大瞬时溢流量达到326.6L/min,溢流流量呈现振荡现象,不断有大流量阶跃。
     再次,在液压支架关键部件流动规律数值模拟及整体系统动态特性仿真的基础上,对支架实物的关键部件和支架系统进行了基于2500吨压架实验台的实验研究。分别模拟现场工作条件下的工作环境和条件,对液控单向阀、安全阀的各种性能进行研究,对液压支架在工作过程中的受力情况进行了分析。结果表明:在额定工况下的支架关键部件强度、寿命等工作性能良好,泄露性能较差;液压支架系统中,支架顶端受力的位置对于支架各部位的应力有显著的影响,但在外主筋后圆弧、顶梁外主筋贴板旁处于刚度转换处,应力一直较大,易出现塑性变形。
     最后,针对在支架应用过程出现的压架事故进行了分析,认为基岩下沉量大于支架初撑压力是事故的主要原因。利用理论计算及ABAQUS软件渗流-应力耦合模型进行模拟分析了顶板压力受到岩层及渗流流体的耦合作用下的活柱下缩量,精确的计算了复合破断块整体下沉量,发现支架工作阻力与活柱下缩量近似呈双曲线关系,支架工作阻力为10000kN时防水煤岩柱下沉量与支架活柱下缩量急剧减小。
     本文通过数值分析及仿真模拟揭示了液压支架关键部件和支架系统的内部流动规律、动态特性,在试验中找出了支架的薄弱部位,并针对典型的支架事故通过理论计算和数值模拟给出了基岩下沉和支撑压力的关系和具体的防治措施。本文的研究对于液压支架的设计、使用维护、故障诊断和事故处理具有重要的指导意义。
     该论文有图122幅,表6个,参考文献102篇。
As the main security support equipment in the coal face, hydraulic supports have decisive significance on constructing the intrinsically safe mine.The structure, performance and the quality of the overall dynamic performance of the key components will affect the reliability and security of the whole coal face. Due to a lack of appropriate theoretical support and the experiments, the study of the hydraulic support for key components (check valve and safety valve), the flow field within hydraulic support system, flow rule and the dynamic properties of their respective is inadequate.
     This paper have taken the theoretical analysis, calculation, FLUENT and ABAQUS simulation, Matlab/Simulink simulation and experimental study aiming at the common ZY4000/09/21 hydraulic support. And it has analyzed the factors which will affect the key components of hydraulic support and system stability in all domains.
     Firstly, since the outstanding performance of the relief valve and check valve in the hydraulic support system, the paper establishes the role of three-dimensional flow model, using FLUENT, the computational fluid dynamics software, to simulate the relief valve and check valve aiming at studying the internal-flow-impact on the performance.
     Secondly, key components of hydraulic supports and hydraulic system dynamics have been analyzed dynamically by constructing mathematical model of the system, through theoretical analysis and using dynamic bond graph method combined with digital simulation software Matlab / Simulink respectively.
     Again, the material key components of the support and the support systems have been studied based on flow role of the key components in the hydraulic support simulation and the overall system dynamic performance simulation. It has studied the various properties of hydraulic of check valve, safety valve and analyzed the force condition of the support in the work process by means of simulating work environment and conditions in the site operating conditions.
     Finally, the paper holds that: bedrock subsidence is greater than the pressure, which is the main reason for the accident by analyzing the crushing accident in the applied process. It analysis the descending amount of piston when the roof pressure receives the coupled affect of the roof strata and the flow of seepage fluid by using the theoretical calculation and flow-mechanical model with software ABAQUS simulation.
     This paper revealed the flow role of key components of hydraulic support and internal system and the dynamic characteristics using numerical analysis and simulation. It has identified the weak parts in the support, and has offered the relationship between bedrock sinking and pressure support and specific prevention measures aiming at the typical crushing accident through theoretical calculation and numerical simulation. This paper has an important guiding significance on the design of hydraulic support, maintenance, troubleshooting and incident handling of.
引文
[1]全国职业培训教学工作指导委员会煤炭专业委员会.液压支架与泵站[M].北京:煤炭工业出版社.2005.
    [2]寇子明.液压支架动态特性分析与检测[M].北京:冶金工业出版社.1996.
    [3]何存兴,张铁华.液压传动与气压传动[M].武汉:华中科技大学出版社.2000.
    [4]江晓明.液压冲击的物理本质、产生原因及其改善措施[J].科技创新导报.2009,(10):59-60.
    [5]唐晓莲.液压系统的故障原因分析[J].化学工业与工程技术.2009,30(1):51-53.
    [6]Feng Jilin,Tan Bin,Liu Xuanmin,etc.Fluid Induced Hydraulic System Vibration of Powered Support[J]. Journal of Coal Science and Engineering.1998,4:36-39.
    [7]宋大庆.液压系统振动和噪声的产生原因及消除措施[J].流体传动与控制.2007,(3):49-50.
    [8]张琳.液压系统的振动与噪声分析[J].机械研究与应用.2005,18(6):43.
    [9]张中金,李金艳.液压支架液压系统泄漏原因分析及对策.煤矿机械.2005,(7):134-135
    [10] Yao Zhichang, Yang Zhiyi, Lin Bin. Analysis and identification of leakage failure in hydraulic system of hydraulic powered support [A ]. Mining Science and Technology 99 [C ]. London: A. A. Balkema Publishers, 2002: 743 - 746.
    [11]付奇,刘旭.矿用液压支架千斤顶泄漏原因与排除对策分析[J].润滑与密封.2009,34(9):120-123
    [12]邓补明,梁文学.液压支架泄漏故障分析及工作性能的改善[J].北京工业职业技术学院学报,2006,5(1):28-32.
    [13]丁原廉.液压支架中片式组合操纵阀泄漏研究[J].山西煤炭管理干部学院学报.2003,(4): 47-48.
    [14]向虎,韦文术. CFD技术及其在液压支架用阀设计中的应用探讨[J].煤矿机械.2007,28(1):13-14.
    [15]郑淑娟,刘楷安,孙雪丽.基于CFD的液压锥阀内部流场的数值模拟分析[J].华北水利水电学院学报.2008,29(2):56-58.
    [16] M. R. Mokhtarzadeh-Dehghan, N. Ladommatos, T. J. Brennan. Finite element analysis of flow in a hydraulic pressure valve . Applied Mathematical Modelling, 1997,21(7): 437-445.
    [17]Z.Mazur,R.Campos-Amezcua,G.Urquiza-Beltrán,A. García-Gutiérrez.Numerical 3D simulation of the erosion due to solid particle impact in the main stop valve of a steam turbine[J].Applied Thermal Engineering, 2004,24(13): 1877-1891.
    [18]李松晶,阮健,弓永军.先进液压传动技术概论[M].哈尔滨:哈尔滨工业大学出版社.2008.
    [19]ThomasM,Barezak,DavidF.Gearchart.Canopy and Base Load Distribution on a long wall Shield[J].Bureau of Mine,1997.
    [20]Shi Yuanwei.Research on the Interaction Between Roof Strata and Shield Supports[C].16th Conference On Groud Control in Mining, 1999.
    [21]赵建华,许纪波,苏庆礼.当代采掘技术动态及展望[J].山东煤炭科技.2009,(6):135-136.
    [22]袁晓光.液压支架技术现状及发展趋势[J].科学之友.2006:9-10.
    [23]罗恩波.国内外液压支架现状及我国的发展趋势[J].煤矿机电.2000,3:27-29.
    [24]高有进.6.2米液压支架关键技术研究与优化设计[D].华中科技大学博士学位论文.2008.
    [25]刘栋.煤矿液压支架的现状与发展思路[J].煤炭技术,2008,27(5),18-20.
    [26]姚连登,崔强,王国法等.高强钢在液压支架中的应用现状和发展前景[J].宽厚板.2003,9(1),16-22.
    [27]鲁忠良,景国勋等.液压支架设计使用安全辨析[M].煤炭工业出版社,2006.
    [28]刘洪宇,范迅.液压支架检验标准和实验设备的发展及现状[J].矿山机械.2008,36(14),5-8.
    [29]袁晓光.液压支架技术现状及发展趋势[J].科学之友.2006(7):9-10.
    [30]李占利,王天平.液压支架CAD研究现状[J].矿山机械.1994:26-28.
    [31]Barczak,T M,Design and operation of powered supports for longwall mining[J],International Journalof Rock Mechanics and Mining Science&Geomechanics Abstracts,Volume 30,Issue 1,February 1993:45.
    [32]Tang,Y.G.;Ding,Q.;Chen,Y.S.,Vibration Control of the Platform System With Hydraulic Supports[J],JVC/J Vib Control,2003:1093-1100
    [33]B.G.M.vanWachem,A.E.Almstedt.Methods for multiphase computational fluid dynamics. Chemical Engineering Journal 96(2003):81–98.
    [34]J.S.Shang.Three decades of accomplishments in computational fluid dynamics[J].Progress in Aerospace Sciences 40(2004):173–197.
    [35]吴乐兵.液压支架的发展与前瞻[J].淮南职业技术学院学报.2006, 6(18),44-45.
    [36]陈星止.支架安全阀设计中的几个问题[J].煤矿机械.1982, 29-34.
    [37]徐良.国产、引进液压支架安全阀性能测试与分析[J].能源技术与管理,1987:42-45.
    [38]李昌熙,杜长龙,李秉钺.液压支架用大流量安全阀的设计研究[J].中国矿业学院学报.1988,(2),1-10.
    [39]王慧,隗金文.液压支架用大流量安全阀动态特性的数字仿真[J].煤矿机械.1990,(5):9-13.
    [40]王裕清.平面密封型安全阀的动态特性分析.焦作工学院学报[J]. 1996,15 (3):69-74.
    [41]王裕清.非线性因素对安全阀动态特性的影响[J].矿山机械.1997,(6):42-44
    [42]翟京,杨一青,刘欣科.安全阀溢流流量与压力的对应关系[J].煤矿开采.2005,10(2):6-9.
    [43]王勇.大流量安全阀试验系统模型对比分析[J].煤矿开采.2007,12(1):95-97.
    [44]安林超,廉自生.基于AMESim的安全阀动态特性优化仿真[J].流体传动与控制.2009, 3(34):35-38.
    [45]樊淑趁,吴宜友.液控单向阀动态特性的分析及试验研究.煤矿机械[J].1994,2:9-13.
    [46]卞岳望,高云峰.液控单向阀动态特性浅析.山西矿业学院学报[J].1997,15(4):359-364
    [47]韩伟.液压支架控制系统大流量阀与移架速度定量化研究[D].煤炭科学研究总院博士学位论文.2006.
    [48]杨明杰.新型液压支架换向阀性能分析与研究[D].郑州大学硕士学位论文.2007.
    [49]宋艳亮.3种结构的立柱单向阀对支架液压系统的影响[J].煤矿机械.2008,29(10):64-66.
    [50]袁红兵,岳大灵,廉自生.基于AMESim的液控单向阀卸载动态特性仿真研究[J].2008,36 (12):69-71.
    [51]韩伟.大流量液控单向阀防冲击技术研究[J].煤矿开采.2009,14(2):64-66.
    [52] Avtar Singh. An Analytical Study of the Dynamics and Stability of a Spring Loaded Safety Valve[J]. Nuclear Engineering and Design, 1982, 72 (3) : 197-204.
    [53] Bilanin A J ,Teske M E. Modeling Flow Through Spring-Loaded Safety Valves[C]. ASME PVP Conference ,1990:29-36.
    [54] Bernhard FOllmer , Armin Schnettler . Challengers in Designing API Safety Relief Valves[J ]. Valve World , 2003 : 25-31.
    [55]廉自生,王芳.高水基电磁先导阀三维流动特性的可视化模拟[J].流体传动与控制.2006,5 (18):6-9.
    [56]张秋菊,廉自生.高水基安全阀流场的CFD仿真[J].科学之友.2008,11-13 .
    [57]岳大灵,廉自生.支架液控单向阀流场的数值模拟和可视化分析[J].煤矿机械.2008,29 (5):40-42.
    [58]王慧,席亚兵,王超等.基于FLUENT的液压支架双极保护安全阀的仿真研究[J].煤矿机械.2009,30(12):32-34.
    [59]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社.2003
    [60] Li Sheng,Zhang Peilin,Wang Guode. Hydraulic System Faults Diagnosis Based on Multi-class Support Vector Machine[A]. Digital Manufacturing and Automation (ICDMA). 2010 International Conference on.2010,1:812-814.
    [61] Liangmou Hu,Keqiang Cao,Haojun Xu,Baorui Li. Fault Diagnosis of Hydraulic Actuator Based on Least Squares Support Vector Machines[A]. Automation and Logistics, 2007 IEEE International Conference on.2007: 985– 989.
    [62]吴根茂,邱敏秀等.实用电液比例技术[M].杭州:浙江大学出版社.2006,09.
    [63]王扬杉.液压支架电磁阀数值仿真研究[D].杭州:浙江大学.2008.
    [64]杨师斌,祁利巧.液压支架架型优化设计与模拟[J].重庆工商大学学报(自然科学版).2008,25(6):646-649.
    [65]胡少刚,周堃敏,褚辉生.面向液压系统动态特性的数字仿真技术研究[J].现代机械.2008(1): 30-32.
    [66]李松竹,李聚领.液压支架用缓冲式液控单向阀的研究[J].液压与气动.2009,(9):69-71.
    [67]韩伟.大流量液控单向阀防冲击技术研究[J].煤矿开采.2009,14(2):64-66.
    [68]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社.1998.
    [69]陈殿京,刘殿坤,董海波等.安全阀流场数值模拟研究.流体机械.2008,36(10): 24-27.
    [70]Huang Huaxiong, Prosperetti A. Effect of grid orthorgonality on the solution accuracy of the two-dimensional convection-diffusion equation[J].Numer Heat Transfer,Part B.1994,26:1-2
    [71]邵卫.对旋式轴流通风机叶轮级间流场流动特性分析[D].徐州:中国矿业大学图书馆,2007.
    [72]韩伟.液压支架控制系统大流量阀与移架速度定量化研究[D].北京:煤炭科学研究总院.
    [73]张秋菊,廉自生.高水基安全阀流场的CFD仿真[J].科学之友,2008:11-13.
    [74]李开亮.挖掘装载机反铲装置回转液压系统动态分析[D].吉林大学硕士学位论文.2004
    [75] Hongyan Hao,Qingshan Ji. Implementation of field-bus interface with high performance hydraulic proportional valve[A]. Mechanic Automation and Control Engineering (MACE), 2010 International Conference on.2010:2225-2227.
    [76]ZHANG Wei,HAN Xiao,SUN Jing-jing.Mathematical model of electric hydraulic and powered support control system at a plough mining face[J]Journal of China University of Mining & Technology,.2008,(01):55-58.
    [77]张伟,韩基新.综采工作面液压支架计算机分布式控制系统[J]矿山机械, 2002,(02):17
    [78]CUI Chang-long,LIU Song-yong,CUI Xin-xia,LI Ti-jian.Study on pick arrangement of shearer drum based on load fluctuation[J]. Journal of China University of Mining & Technology 305-310.
    [79]张林慧.支撑掩护式液压支架各作用点受力分析[J].山西煤炭管理干部学院学报.2005(02): 101-103.
    [80]冯海明.键合图在液压系统建模和仿真中的应用[J].北京工业职业技术学院学报.2002, 1(1):6-8.
    [81]张尚才.工程系统的键图模拟和仿真[M].北京:机械工业出版社.1993
    [82]高扬.新型液压支架用液控单向阀系统动态特性的分析与研究[D].郑州大学硕士学位论文.2007.
    [83]何文斌,李宏,许兰贵.基于ANSYS的液压支架强度有限元分析[J].煤矿机械.2006.27(10).
    [84]卞岳望,高云峰.液控单向阀动态特性浅析[J]山西矿业学院学报.1997,(04):359-364
    [85]马胜钢.液压支架用高水基高压大流量安全阀的研究与开发[D].郑州大学硕士学位论文.2010.
    [86]房虎林,曹连民.液压支架总体设计分析[J].煤矿机械.2007,28(2).8-10.
    [87] Lirong Wan,Xiaowang Wu,Chenglong Wang,Xin Zhang. Mechanical-hydraulic integration modeling and simulation of hydraulic support[A]. Computer Application and System Modeling (ICCASM), 2010 International Conference on.2010,5:69-72.
    [88] Xin Zhang,Qingliang Zeng,Jianwu Zhang,Hanzheng Dai. The Design of Four-Bar Linkage of Large Inclined Angle Hydraulic Support[A]. Engineering Computation, 2009. ICEC '09. International Conference on.2009:167-170.
    [89]安林超.支架立柱液压系统动态特性仿真[D].太原理工大学硕士学位论文.2009.
    [90]杨明杰.新型液压支架换向阀性能分析与研究[D].郑州大学硕士学位论文.2007
    [91]任锡义.液压支架整体动态特性仿真分析[D].太原理工大学硕士学位论文.2010.
    [92]王国法.液压支架技术[M].北京:煤炭工业出版社,1999.
    [93]张建卓,李新淼,毛君等.基于功率键合图的大流量安全阀仿真研究[J].煤矿机械.2008, 29(12):60-62
    [95]郭世伟,任中全,刘永军.基于功率键合图的MATLAB建模仿真在液压系统中的应用研究[J].煤矿机械.2001(2):11-15.
    [96]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社.2003.
    [97]余龙.基于多领域统一建模的液压支架建模与仿真[D].郑州大学硕士学位论文.2011
    [98]刘真祥,曾湘黔;刘应文.液压支架模拟测试系统模型[J].贵州大学学报.1999,16(4):288-291
    [99]王士刚.液压系统可视化动态建模技术及其软件实现方法研究[D].大连理工大学博士学位论文.2001.
    [100] Chen Xiaoxiang, Yang Kaikai, Gou Panfeng. Numerical simulation research on supports and sorrounding rock interaction of sublevel caving hydraulic in Da ping Mine 15071 working face[A]. Computer Engineering and Technology (ICCET), 2010 2nd International Conference on.2010,6:309-312.
    [101]袁晓光.液压支架技术现状及发展趋势[J]科学之友(学术版).2006,(07):9-10
    [102]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700