先进高强度钢的选择性氧化及镀锌性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作首先研究了先进高强度钢板及模型合金在连续热浸镀锌过程中发生的选择性氧化的机理,然后探讨了选择性氧化对钢板镀锌性能的影响,最后探索了连续热浸镀锌工艺对钢板组织和性能的影响。
     通过在合金表面建立氧化的热力学平衡区,可以预测钢的化学成分及退火气氛对选择性氧化的影响。计算结果发现,合金元素Al、Cr、Mn、P及Si等元素在传统连续热浸镀锌的退火过程中发生的选择性氧化是热力学支持的,是不可避免的,且在氧化过程中,表面氧化物的种类取决于钢中合金元素的种类及含量。Si,Al,Cr元素能与Mn元素结合生成复合氧化物,且分别遵循Mn-Si、Al-Mn及Mn-Cr规律。由于其活泼性与Fe相近,Mo元素并不参与选择性氧化。另外,结合本工作的实验结果发现,除从热力学角度考虑氧化过程外,还必须考虑氧和合金元素在热力学平衡区域的扩散动力学。
     本工作利用了XPS及FESEM-EDS对4种模型合金在-30℃和+10℃两个露点下的选择性氧化进行了研究。结果发现,合金的化学成分、初始状态及退火气氛的露点影响着合金的选择性氧化行为。合金元素Mn和Si元素发生选择性氧化遵循热力学上的Mn-Si规律。在本工作的退火时间内(120s),高达1.5wt.%Si元素显著增加了合金表面的氧化物,Cr元素并未与Mn结合生成稳定的Mn-Cr-O复合氧化物,而只是生成了Cr的二元氧化物,且Cr元素在-30℃及+10℃两个露点下都发生了表面偏聚。同时,随着露点的升高,合金表面的氧化物由薄膜状或网络状转变成颗粒状,表面氧化物覆盖率有降低的趋势。由于铸造合金的晶粒粗大,晶界较少,合金元素的表面偏聚量较轧制合金低,且不易受退火气氛的露点的影响。而轧制合金的晶粒较小,晶界较多,合金元素的表面偏聚量较高,且合金元素的偏聚量受露点的影响。另外,合金的初始状态不影响表面生成的氧化物类型。
     通过研究工业用TRIP钢的选择性氧化发现,露点影响钢板合金元素的表面偏聚状态及氧化行为。对于Al和Cr元素,提高露点能促进其发生内氧化。对于P元素,在低露点下,该元素不发生表面选择性氧化,而提高露点则会促进其表面偏聚。同时,露点的提高促使钢板表面的氧化物变成岛状或颗粒状,减少了表面的氧化物覆盖率。工业用双相钢的表面选择性氧化行为与TRIP钢类似。双相钢中加入Cr,Mo等元素会改变Mn,Si元素的偏聚行为。值得注意的是,由于内氧化及脱碳消耗合金元素,提高露点至+10℃会导致TRIP钢近表面产生铁素体带,促使双相钢近表面组织容易被硝酸酒精溶液腐蚀出凹坑。另外,往双相钢中加入Cr和Mo会改变内氧化物的形貌。
     模型合金氧化表面对锌液润湿性能的分析结果表明,氧化物形貌影响着锌液对合金表面的润湿性能。氧化物呈细小颗粒状的表面容易被锌液润湿,且润湿动力学很快;而氧化物呈薄膜状或大颗粒状的表面不容易被锌液润湿,且润湿动力学慢。合金中高达1.5wt.%的Si严重影响着锌液对表面的润湿性能。通过分析润湿反应界面,本工作发现,所有的漏镀点皆处于晶界或者晶内氧化物密集的地方,即使在一些区域生成了金属间化合物层,这些化合物都不致密,且含有较多的氧元素。XPS分析表明,模型合金润湿界面处存在的单质态的Fe和Mn,这是锌液中的Al还原了铁氧化物和锰氧化物的结果。
     工业用钢板的镀锌性能同样与表面的氧化物形貌紧密相关。薄膜状氧化物显著恶化镀锌性能,颗粒细小状的氧化物对镀锌性能的恶化作用较小。调节露点可以改变钢板表面的氧化物形貌,能从一定程度上改善钢板的可镀性,但是改善的能力有限。锌液中的Al能还原表面的氧化物,但是由于Al元素被消耗,贫Al区的存在会导致润湿界面处的金属间化合物具有不同的尺寸和致密度。由于晶界或某些晶粒内部的氧化物分布密集且致密,Al还原过程很难在短时间内完成,因而导致了那些地方不能被润湿,产生漏镀点。
     本工作还发现,连续热浸镀锌工艺对TRIP钢和双相钢的力学性能有显著的影响。为了获得具有良好力学性能的TRIP钢,必须选择合适的热处理参数。适当增加冷却速率和缩短镀锌时间能使双相钢获得最佳的力学性能。Cr元素和Mo元素的添加能提高双相钢与传统连续热浸镀锌线的兼容性。
Firstly in this work, the surface selective oxidation of several advanced highstrength steels and model alloys was fundamentally investigated in the context of thecontinuous hot-dip galvanizing. Then the impact of selective oxidation on the gal-vanisability of sheet steel was examined. Finally, this work explored the influence ofthe galvanizing thermal route on the mechanical properties of three dual phase steelsand one TRIP-aided steel.
     By establishing a local thermodynamic equilibrium region, the influence of steelchemisty and annealing atmosphere on the selective oxidation was investigated bythermodynamics. It was found that the selective oxidation of element Al, Cr, Mn, Pand Si occurred in the galvanizing atmosphere is thermodynamical favorable andunavoidable. The type of oxides present on the steel surface depends on the alloy el-ements and their content in the matrix. Element Si, Al and Cr can react with Mn aswell as O to form mixed oxides, which follows the so-called Mn-Si, Al-Mn or Mn-Crrules. Element Mo doesn’t take part in the selective oxidation due to its similarchemical stability with Fe. However, combining the experiment results of this work,it is nessaccery to point out that we must also consider the diffusion kinetics of oxy-gen and alloy elements through the local equilibrium region.
     The selective oxidation behavior of four model alloys at two dew points,-30℃and+10℃, were studied by XPS and FESEM-EDS. The results show that the chem-ical composition of the alloy matrix, the initial status of the model alloy and the an-nealing dew point influenced the oxidation behavior. The oxidation of Mn and Sifollows the Mn-Si rule. In the annealing interval of120s, Si up to1.5wt.%in the ma-trix contributed a lot to the surface oxidation, and Cr failed to combine Mn to formthe Mn-Cr-O mixed oxide. Moreover, Cr segregated to the surface after annealed atboth dew points. As the dew point increases, the morphology of the surface oxidechanged from film/network shape to granular/island shape, and the surface coverage of oxide tends to decrease. Since the cast alloy has large grain size and small amountof grain bourdaries, the amout of surface segregation is low, and is not influenced bythe dew point. While for hot rolled samples, the amount of surface segregation ishigher than cast alloy, and is influenced by the dew point. However, the initial statushas no influence on the type of oxides on the surface.
     Dew point significantly influenced the surface segregation and oxidation behav-ior of alloy elements in TRIP steel. The increase of the dew point leads to the internaloxidation of Al and Cr. When at low dew point-30℃, P does not take part in the sur-face segregation and selective oxidation, while increasing the dew point to+10℃leads to the surface segregation of this element.
     Meanwhile, increase the dew point change the oxide from film shape to island orgranular shape, decreased the surface coverage. The selective oxidation behavior onthe surface of DP steels is similar with that of TRIP steel. The addition of Cr and Moto DP steel changed the segregation and oxidation behavior of Mn and Si. It shouldbe noted that due to the consumption of alloy elements by internal oxidation and de-carburization, increasing the dew point to+10℃led to the formation of a ferriteband in the subsurface area in TRIP steel, also made the subsurface of DP steel easierto be etched by1vol.%nital solution. Furthermore, the addition of Cr and Mo to DPsteel changed the morphology of the internal oxide.
     The wetting experiment results on the oxidized surface of model alloys show thatthe morphology of the surface oxide determined the wetting property. Surface withsmall oxide particles is well wetted by zinc with a fast wetting kinetics, while surfacewith film-shape oxide or large size oxide particle is not wetted by the zinc with aslow wetting kinetics. The high content of Si up to1.5wt.%significantly deterioratethe wetting property of the alloy surface with zinc. The result of the reactive interfaceanalysis shows that all the bare spot are located at areas with thick oxide, such asgrain boundary. Although there are some intermetallic compounds on the interface,these compounds are not compact and with considerabe conent of oxygen. XPS anal- ysis on the interface shows that the metallic iron and Mn were present due to the re-duction effect of Al from the zinc drop.
     The galvanisability of the industrial steels is also related to the morphology ofthe surface oxide. Film shape oxide deteriorated the galvanisability significantly,while small oxide particle showed less influence on the galvanisability. Variation ofthe dew point can change the morphology of the oxide and improve the galvanisabil-ity; however, this improvement is very limited. The effective Al in from the zinc bathcan reduce some oxide on the steel surface; however, the local depletion of Al influ-enced the size and compactness of the intermetallic compounds. Due to the thick ox-ide present on the grain boundary or some spot within steel grains, the Al can not re-duce all the oxides in a short dipping time. Therefore, those spots can not be wettedby zinc and become the bare spot after galvanizing.
     The present work also found that the thermal route of continuous hot-dip galva-nizing has an impact on the mechanical properties of the industrial steels. For TRIPsteel, it is very important to employ appropriate parameters of heat treatment to pro-duce hot-dip galvanized products with promising mechanical properties. For DP steel,an increase of the cooling rate after inter-critical annealing and a decrease of dippingtime is benefit for the mechanical properties. Further, the addition of Cr and Mo canincrease the compactibility of DP steel with the continuous hot-dip galvanizing.
引文
1. Advanced high strength steel (AHSS) application guidelines, International Iron&SteelInstitute Committee on Automotive Applications,2009, Available from:http://www.worldautosteel.org/Projects/AHSS-Guidelines.aspx.
    2. Speer, J., De Moor, E., Findley, K., Matlock, D., De Cooman, B.C., and Edmonds, D.,Analysis of Microstructure Evolution in Quenching and Partitioning Automotive SheetSteel[J]. Metallurgical and Materials Transactions A, Vol.42, No.12,2011, pp.3591-3601
    3. Oren, E.C. and Goodwin, F.E., Hot-dip galvanizing of advanced high-strength steelgrades[C]. Galvatech '04:6th International Conference on Zinc and Zinc Alloy Coated SteelSheet.2004. Chicago, IL, United states, pp.737-749
    4. Mintz, B., Hot dip galvanising of transformation induced plasticity and other intercriticallyannealed steels[J]. International Materials Reviews, Vol.46, No.4,2001, pp.169-197
    5. Jacques, P., Delannay, F., Cornet, X., Harlet, P., and Ladriere, J., Enhancement of themechanical properties of a low-carbon, low-silicon steel by formation of a multiphasedmicrostructure containing retained Austenite[J]. Metallurgical and Materials Transactions A,Vol.29, No.9,1998, pp.2383-2393
    6. Ellingham, H.J.T., Reducibility of oxides and sulfides in metallurgical processes[J]. Journalof the Society of Chemical Industry, Vol.63, No.5,1944, pp.125-133
    7. Machlin, E.S., An Introduction to Aspects of Thermodynamics and Kinetics Relevant toMaterials Science[M].3rd ed,Oxford: Elsevier Science Ltd.2007
    8.李美栓,金属的高温腐蚀[M].北京:冶金工业出版社.2001
    9. Birks, N., Meier, G.H., and Pettit, F.S., Introduction to the High-temperature Oxidation ofMetals[M].2nd ed,Cambridge: Cambridge university press.2006
    10. Grabke, H.J., Leroy, V., and Viefhaus, H., Segregation on the Surface of Steels in HeatTreatment and Oxidation[J]. ISIJ International, Vol.35, No.2,1995, pp.95-113
    11. Mataigne, J.M., Lamberigts, M., and Leroy, V., Selective Oxidation of Cold-Rolled SteelDuring Recrystallization Annealing[C]. TMS Fall Meeting.1992. Warrendale, PA, UnitedStates, pp.511-528
    12. Khondker, R., Mertens, A., and McDermid, J.R., Effect of annealing atmosphere on thegalvanizing behavior of a dual-phase steel[J]. Materials Science and Engineering A, Vol.463,2007, pp.157–165
    13. Fujine, M., Expectation for Steel Sheet in View of Future Automotive Application[C].Galvatech '07:7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet2007.Osaka, Japan, pp.374-379
    14. Shibli, S.M.A. and Manu, R., Improvement of hot-dip zinc coating by enriching the innerlayers with iron oxide[J]. Applied Surface Science, Vol.252, No.8,2006, pp.3058-3064
    15. Mahieu, J., De Cooman, B.C., Maki, J., and Claessens, S., Hot-dip galvanizing of Al alloyedTRIP steels[J]. Iron and Steelmaker (I and SM), Vol.29, No.6,2002, pp.29-34
    16. Song, G., Sloof, W.G., Vystave, T., and Hosson, J.T.M.D., Interface microstructure andadhesion of coating on TRIP steels[J]. Materials Science Forum, Vol.539-543,2007, pp.1104-1109
    17. Meyer, M.D., Vanderschueren, D., and De Cooman, B.C., The Influence of the Substitutionof Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels[J]. ISIJ International,Vol.39, No.8,1999, pp.813-822
    18. Lin, L., De Cooman, B.C., and Wollants, P., Effect of Aluminum and Silicon onTransformation Induced Plasticity of the TRIP Steel[J]. Journal of Materials Science andTechnology, Vol.20, No.2,2004, pp.135-138
    19. Eynde, X.V., Servais, J.P., and Lamberigts, M., Surface oxide maturation andself-reduction:a new process to ensure TRIP steel hot dip galvanizing[C]. Galvatech '04:6thInternational Conference on Zinc and Zinc Alloy Coated Steel Sheet.2004. Chicago, IL,pp.361-372
    20. Bleck, W., Beste, D., Staudte, J., and Lorraine, S., Surface conditioning of high strengthsteels by gas-metal reactions prior to hot-dip galvanizing[C]. Galvatech '04:6th InternationalConference on Zinc and Zinc Alloy Coated Steel Sheet.2004. Chicago, IL, United States,pp.349-360
    21. Luther, F., Dimyati, A., beste, D., Bleck, W., and Mayer, J., Surface conditioning of acold-rolled dual-phase steel by annealing in nitriding atmosphere prior to hot-dipgalvanizing[J]. Advanced Engineering Materials, Vol.9, No.4,2007, pp.274-279
    22. Schuhmacher, B., Claessens, S., and Staudte, J., Surface conditioning for improved hot-dipcoating behaviour of modern high-strength steels[J]. EUR No.214212005, pp.1-155
    23. Bordignon, L. and Crahay, J., Dynamic effects in galvanizing of high strength steels[C].5thInternational Conference on Zinc and Zinc Alloy Coated Steel Sheet.2001. Brussels,Belgium, pp.573-580
    24. Huin, D., Lanteri, V., Loison, D., Autesserre, P., and Gaye, H., Modelling of InternalOxidation of Several Elements [C]. The third international conference on the microscopy ofoxidation.1996. The University of Cambridge, pp.573-586
    25. Huin, D., Flauder, P., and Leblond, J.B., Numerical simulation of internal oxidation of steelsduring annealing treatments[J]. Oxidation of Metals, Vol.64,2005, pp.131-167
    26. Parezanovic, I. and Spiegel, M., Influence of dew point on the selective oxidation of coldrolled DP and IF-steels[J]. The Journal of Corrosion Science and Engineering, Vol.6,No.Ho32,2003, pp.1-16
    27. Mahieu, J., Claessens, S., and De Cooman, B.C., Galvanizability of High-Strength forAutomotive Applications[J]. Metallurgical and Materials Transactions A, Vol.32A,2001, pp.2905-2908
    28. Loison, D., Huin, D., Lanteri, V., Servais, J.P., and Cremer, R., Selective oxidation of Fe-Mnalloys:surface characterization and modelling[C]. Galvatech'01:5th International Conferenceon Zinc and Zinc Alloy Coated Steel Sheet.2001. Brussel, Belgium, pp.203-209
    29. Jeon, S.H., Shin, K.S., Sohn, H.S., and Kim, D.R., Effect of dewpoints on annealingbehavior and coating characteristics in IF high strength steels containing Si and Mn[J].Journal of Korean Institute of Metals and Materials, Vol.46, No.7,2008, pp.427-436
    30. De Bruycker, E., De Cooman, B.C., and De Meyer, M., Galvanizability of complex phasehigh strength steel[J]. Steel Research International, Vol.75, No.2,2004, pp.147-152
    31. Hashimoto, I., Saito, K., Nomura, M., Yamamoto, T., and Takeda, H., Effects of partialpressure of water vapor in annealing atmosphere on wettability of Mn, Si containing steelwith molten zinc[J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, Vol.89,No.1,2003, pp.31-37
    32. Hertveldt, I., De Cooman, B.C., and Claessens, S., Influence of Annealing Conditions on theGalvanizability and Galvannealing Properties of TiNb Interstitial-Free Steels,Strengthenedwith Phosphorous and Manganese[J]. Metallurgical and Materials Transactions A, Vol.31A,2000, pp.1225-1232
    33. Spiegel, M. and Parezanovic, I., Selective oxidation and segregation during annealing ofsteels at low oxygen partial pressures[J]. Materials at High Temperatures, Vol.22, No.3-4,2005, pp.343-349
    34. Swaminathan, S. and Spiegel, M., Thermodynamic and kinetic aspects on the selectivesurface oxidation of binary, ternary and quarternary model alloys[J]. Applied SurfaceScience, Vol.253,2007, pp.4607-4619
    35. Eynde, X.V., Servais, J.P., Bordignon, L., and Lamberigts, M., Application of SurfaceAnalysis Techniques in the Investigation of Coating Metallurgical Problems[C].Galvatech'01:5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet.2001.Brussel, belgium, pp.187-194
    36. Sauerhammer, B., Senk, D., Schmidt, E., Sridhar, S., Spiegel, M., and Safi, M., Effect ofliquid phase on scale formation during high-temperature oxidation ofAlSi-transformation-induced plasticity steel surfaces[J]. Metallurgical and MaterialsTransactions B, Vol.36, No.4,2005, pp.503-512
    37. Trindade, V.B., Krupp, U., Wagenhuber, P.E.G., and Christ, H.J., Oxidation mechanisms ofCr-containing steels and Ni-base alloys at high-temperatures-. Part I: The different role ofalloy grain boundaries[J]. Materials and Corrosion, Vol.56, No.11,2005, pp.785-790
    38. Li, X.S., Baek, S.-I., Oh, C.-S., Kim, S.-J., and Kim, Y.-W., Dew-point controlled oxidationof Fe-C-Mn-Al-Si-Cu transformation-induced plasticity-aided steels[J]. Scripta Materialia,Vol.59, No.3,2008, pp.290-293
    39. Bordignon, L., Angeli, G., Bolt, H., Hekkens, R., Maschek, W., Paavilainen, J., and Eynde,X.V., Enhanced hot dip galvanizing by controlled oxidation in the annealing furnace[C].44th MWSP conference.2002. Orlando, United States, pp.833-844
    40. Lamberigts, M. and Servais, J.-P., Use of XPS to investigate surface problems in ULC deepdrawing steels[J]. Applied Surface Science, Vol.144-145,1999, pp.334-338
    41. Cvijovic, I., Parezanovic, I., and Spiegel, M., Influence of H2-N2atmosphere compositionand annealing duration on the selective surface oxidation of low-carbon steels[J]. CorrosionScience, Vol.48, No.4,2006, pp.980-993
    42. Drillet, P., Zermout, Z., Bouleau, D., and Mataigne, J.M., Selective Oxidation of IFTiStabilized Steels During Recrystallization Annealing, and Steel/Zn Reactivity[C].Galvatech'01:5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet.2001.Brussel, pp.195-202
    43. Park, E., Huning, B., Grabke, H.J., and Spiegel, M., Annealing of Fe-15at.%Cr alloy inN2-H2gas mixtures: Effect of hydrogen[J]. Defect and Diffusion Forum, Vol.237-240,2005,pp.928-933
    44. Bellhouse, E.M., Mertens, A.I.M., and McDermid, J.R., Development of the surfacestructure of TRIP steels prior to hot-dip galvanizing[J]. Materials Science and Engineering A,Vol.463,2007, pp.147–156
    45. Putte, T.V.D., Zermout, Z., Loison, D., Claessens, S., and Penning, J., Selective Oxidationduring the Austenitic Annealing of a CMnSi Steel[J]. Advanced Materials Research,Vol.15-172007, pp.129-134
    46. Mahieu, J., Ciaessens, S., De Cooman, B.C., and Goodwin, F., Galvanizing of AHSS:Influence of the surface and sub-surface of Si-, Al-and P-alloyed TRIP-aided steel afterintercritical annealing[C]. Materials Science and Technology (MS&T).2004. New Orleans,LA, pp.847-857
    47. Isobe, M., Kato, C., and Mochizuki, K., Effect of additional annealing on hot-dipgalvanizability of Si and Mn added IF-steel[C].39th MWSP Conference.1998. Warrendale,PA, pp.121-125
    48. Putte, T.V.D., Loison, D., Penning, J., and Claessens, S., Selective Oxidation of a CMnSiSteel during Heating to1000°C: Reversible SiO2Oxidation[J]. Metallurgical and MaterialsTransactions A, Vol.39, No.12,2008, pp.2875-2884
    49. Oliver, S., Jones, T.B., and Fourlaris, G., Dual phase versus TRIP strip steels:Microstructural changes as a consequence of quasi-static and dynamic tensile testing[J].Materials Characterization, Vol.58, No.4,2007, pp.390-400
    50. Li, L., De Cooman, B.C., Liu, R.D., Vleugels, J., Zhang, M., and Shi, W., Design of TRIPsteel with high welding and galvanizing performance in light of thermodynamics andkinetics[J]. Journal of Iron and Steel Research International, Vol.14, No.6,2007, pp.37-41
    51. Swaminathan, S., Selective surface oxidation and segregation upon short term annealing ofmodel alloys and industrial steel grades[D]. Ruhr-Universitat Bochum,2007
    52. Marder, A.R., The metallurgy of zinc-coated steel[J]. Progress in Materials Science, Vol.45,2000, pp.191-271
    53. Shinozaki, N., Suenaga, M., and Mukai, K., Wettability of zirconia and alumina ceramics bymolten zinc[J]. Materials Transactions JIM, Vol.40, No.1,1999, pp.52-56
    54. Frenznick, S., Stratmann, M., and Rohwerder, M., Galvanizing of defined model samples:On the road to a fundamental physical understanding of hot-dip galvanizing[C]. Galvatech'04:6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet.2004. Chicago,IL, United states, pp.411-417
    55. Bellhouse, E.M. and McDermid, J.R., Analysis of the Fe-Zn interface of galvanized highAl-low Si TRIP steels[J]. Materials Science and Engineering A, Vol.491, No.1-2,2008, pp.39-46
    56. Hironaka, S., Hosomi, K., Tanaka, H., and Matsumoto, T., Development of Si bearing highstrength galvannealed steel sheets with superior formability[C]. Galvatech'07-7thInternational Conference on Zinc and Zinc Alloy Coated Steel Sheet.2007. Osaka, Japan,pp.357-362
    57. Patil, R., Girina, O., and Bhattacharya, D., Development of a Dual-Phase High StrengthGalvanized Steel Using Zinquench Technology[C]. Galvatech '04:6th InternationalConference on Zinc and Zinc Alloy Coated Steel Sheet.2004. Chicago, IL, United States,pp.439-447
    58. Messien, P., Herman, J.-C., and Greday, T., Phase transformation and microstructures ofintercritically annealed dual-phase steels[C]. Fundamentals of dual-phase steels.1981.Chicago,Illinois, pp.161-180
    59. Tanaka, T., Nishida, M., Hashiguchi, K., and kato, T., Formation and properties of ferriteplus martensite dual-phase structures[C]. Structure and properties of dual-phase steels.1979.New Orleans, La., pp.221-241
    60. Pichler, A., Hribernig, G., Tragl, E., Angerer, R., Radlmayr, K., Szinyur, J., Traint, S.,Werner, E., and Stiaszny, P., Aspects of the production of dual-phase and multiphase steelstrips[C].41st Mechanical working and steel processing conference.1999. Baltimore, MD,pp.37-60
    61. Crawley, A.F. and Shehata, M.T., Ductility, strength and microstructural effects of simulatedin-line galvanizing of continuous-annealed dual-phase steels [C]. Metallurgy ofcontinuous-annealed sheet steel.1982. Dallas,Texas, pp.347-364
    62. Pichler, A., Traint, S., Arnoldner, G., Werner, E., Pippan, R., and Stiaszny, P., Phasetransformation during annealing of a cold-rolled dual phase steel grade[C].42nd MechanicalWorking and Steel Processing Conference2000. Toronto, Ontario, Canada, pp.573-593
    63. Gupta, I. and Chang, P.-H., Effect of compositional and processing parameters on thevariability of the tensile strength of continuously annealed water quenched dual phasesteels[C]. Technology of continuously annealed cold-rolled sheet steel.1984. Detroit,Michigan, pp.263-276
    64. Tobiyama, Y., Osawa, K., and Hirata, M., Development of590Mpa grade galvannealed sheetsteels with dual-phase structure[J]. Kawasaki steel Giho, Vol.31, No.3,1999, pp.181-184
    65. Krepski, R.P., Influence of hot-dip galvanizing on the properties of HSLA structuralsteels[C]. Microstructure and properties of HSLA steels.1988. Pittsburgh, PA, pp.497-506
    66. Hansen, S.S. and Pradhan, R.R., Structure/property relationships and continuous yieldingbehavior in dual-phase steels[C]. Fundamentals of dual-phase steels.1981. Chicago, Illinois,pp.113-141
    67. Chang, L., Chen, T.R., Pan, Y.T., and Yang, K.C., Practical method for producinggalvanised dual-phase steels with superior strength-ductility combination[J]. MaterialsScience and Technology, Vol.25, No.10,2009, pp.1265-1270
    68. Andrews, K.W., Empirical Formulae for the calculation of some transformationtemperatures[J]. Journal of Iron and steel Institute, Vol.203,1965, pp.721-727
    69. Steven, W. and haynes, A.G., The temperature of formation of martensite and bainite in lowalloy steels[J]. Journal of Iron and steel Institute, Vol.183,1956, pp.349-359
    70. Matsumura, O., Sakuma, Y., Ishii, Y., and Zhao, J., Effect of retained austenite onformability of high strength sheet steels[J]. ISIJ International, Vol.32, No.10,1992, pp.1110-1116
    71. Sakuma, Y., Matsumura, O., and Takechi, H., Mechanical properties and retained austenitein intercritically heat-treated bainite-transformed steel and their variation with Si and Mnadditions[J]. Metallurgical and Materials Transactions A, Vol.22, No.2,1991, pp.489-498
    72. Chen, H., Era, H., and Shimizu, M., Effect of phosphorus on the formation of retainedaustenite and mechanical properties in Si-containing low-carbon steel sheet[J]. Metallurgicaland Materials Transactions A, Vol.20, No.3,1989, pp.437-445
    73. Song, T., Kwak, J., and De Cooman, B.C., On the Processing of Martensitic Steels inContinuous Galvanizing Lines: Part1[J]. Metallurgical and Materials Transactions A, Vol.43,No.1,2011, pp.245-262
    74. Nix, R.M., An Introduction to Surface Chemistry,2003, Available from:http://www.chem.qmul.ac.uk/surfaces/scc/scat5_3.htm.
    75. Turkdogan, E.T., Physical chemistry of high temperature technology[M]. New York:Academic Press.1980
    76. Kubaschewski, O. and Alcock, C.B., Metallurgcal thermochemistry[M].5th ed,Oxford, UK:Pergamon press.1979
    77. Holcomb, G. and Alman, D., Effect of manganese addition on reactive evaporation ofchromium in Ni-Cr alloys[J]. Journal of Materials Engineering and Performance, Vol.15,No.4,2006, pp.394-398
    78. HSC Chemistry,1997, Outokumpu Research Oy, Pori, Finland
    79. Suzuki, Y., Yamashita, T., Sugimoto, Y., Fujita, S., and Yamaguchi, S., ThermodynamicAnalysis of Selective Oxidation Behavior of Si and Mn-added Steel during RecrystallizationAnnealing[J]. ISIJ International, Vol.49, No.4,2009, pp.564-573
    80. Zhao, Y., Morita, K., and Sano, N., Thermodynamic properties of the MgAl2O4MnAl2O4spinel solid solution[J]. Metallurgical and Materials Transactions B, Vol.26, No.5,1995, pp.1013-1017
    81. Oikawa, H., Review on Lattice Diffusion of Substitutional Impurities in Iron, TheTechnology Reports of the Tohoku University, Tohoku University,1982, pp.215-224
    82. Mahieu, J., Contribution to the Physical Metallurgy of Crash-Resistant Galvanized TRIP-Assisted Steel for Automotive Structures[D]. Ghent university,2004
    83.上海交通大学,机械工程手册[M].北京:中国机械工业出版社.1978
    84. Swisher, J.H. and Turkdogan, E.T., Solubility, permeability, and diffusivity of oxygen insolid iron[J]. Transactions of the Metallurgical Society of AIME, Vol.239,1967, pp.426-431
    85. Gong, Y.F., Kim, H.S., and De Cooman, B.C., Formation of Surface and Subsurface Oxidesduring Ferritic, Intercritical and Austenitic Annealing of CMnSi TRIP Steel[J]. ISIJInternational, Vol.48, No.12,2008, pp.1745-1751
    86. Gong, Y.F., Kim, H.S., and De Cooman, B.C., Internal oxidation during intercriticalannealing of CMnSi trip steel[J]. ISIJ International, Vol.49, No.4,2009, pp.557-563
    87. Moulder, J.F., Chastain, J., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook ofX-ray Photoelectron Spectroscopy[M]. Minnesota, United States: Perkin-Elmer Corporation.1992
    88. Eynde, X.V., Servais, J.P., and Lamberigts, M., Investigation into the surface selectiveoxidation of dual-phase steels by XPS,SAM and SIMS[J]. Surface and Interface Analysis,Vol.35,2003, pp.1004-1014
    89. Strohmeier, B.R. and Hercules, D.M., Surface spectroscopic characterization ofmanganese/aluminum oxide catalysts[J]. The Journal of Physical Chemistry, Vol.88, No.21,1984, pp.4922-4929
    90. Swaminathan, S., Koll, T., Pohl, M., Wieck, A.D., and Spiegel, M., Hot dip galvanizingsimulation of interstitial free steel by liquid zinc spin coater: Influence of dew point onsurface chemistry and wettability[J]. Steel Research International, Vol.79, No.1,2008, pp.66-72
    91. Franke, R., Chassé, T., Streubel, P., and Meisel, A., Auger parameters and relaxationenergies of phosphorus in solid compounds[J]. Journal of Electron Spectroscopy and RelatedPhenomena, Vol.56, No.4,1991, pp.381-388
    92. Carver, J.C., Schweitzer, G.K., and Carlson, T.A., Use of X-Ray Photoelectron Spectroscopyto Study Bonding in Cr, Mn, Fe, and Co Compounds[J]. The Journal of Chemical Physics,Vol.57, No.2,1972, pp.973-982
    93. Hirschauer, B., G thelid, M., Davila, M., and Karlsson, U.O., Oxidation of Ce on Si(111)studied by high-resolution photoelectron spectroscopy[J]. Surface Science, Vol.464, No.2-3,2000, pp.117-122
    94. Howng, W.Y. and Thorn, R.J., Investigation of the electronic structure of La1-x(M2+)xCrO3,Cr2O3and La2O3by X-ray photoelectron spectroscopy[J]. Journal of Physics andChemistry of Solids, Vol.41, No.1,1980, pp.75-81
    95. Aarnink, W.A.M., Weishaupt, A., and van Silfhout, A., Angle-resolved X-ray photoelectronspectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure: a newcombination for modeling thin layers[J]. Applied Surface Science, Vol.45, No.1,1990, pp.37-48
    96. Hertveldt, I., Claessens, S., and De Cooman, B.C., Hot dip galvanising and galvannealing ofP and Mn strengthened TiNB IF steels[J]. Materials Science and Technology, Vol.17, No.12,2001, pp.1508-1515
    97. Lins, V.d.F.C., Madeira, L., Vilela, J.M.C., Andrade, M.S., Buono, V.T.L., Guimar es, J.P.,and Alvarenga, E.d.A., Selective oxidation of dual phase steel after annealing at differentdew points[J]. Applied Surface Science, Vol.257, No.13,2011, pp.5871-5878
    98. Norden, M., Paul, G., Blumenau, M., Heller, T., and Peters, K.J., The Impact of SelectiveOxidation on the Phase Transformation in the Sub-Surface of Advanced High StrengthSteels[J]. Steel Research International, Vol.82, No.7,2011, pp.839-846
    99. Leslie, W.C., The Physical metallurgy of Steels[M]. Hemisphere Publishing Corp.1981
    100. An, X., Cawley, J., Rainforth, W.M., and Chen, L., A study of internal oxidation incarburized steels by glow discharge optical emission spectroscopy and scanning electronmicroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, Vol.58, No.4,2003, pp.689-698
    101. Bader, M., MB-Ruler, Available from: http://www.markus-bader.de/MB-Ruler/.
    102. Gong, Y.F., Song, T.J., Kim, H.S., Kwak, J.H., and Cooman, B.C.D., Development ofContinuous Galvanization-compatible Martensitic Steel [C]. The Asia-Pacific GalvanizingConference.2009. Lotte Hotel Jeju, Korea,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700