TRIP780高强钢动态变形行为的宏微观研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变诱发塑性(TRIP,Transform Induced Plasticity)钢板是一种新型钢板,其室温下的显微组织主要由铁素体、贝氏体和残余奥氏体构成。这种残余奥氏体稳定性较差,在一定的塑性变形量下,会向较稳定的马氏体转变。生成的马氏体的硬化性能比相变前的奥氏体有较大的提高,提高了材料的均匀变形能力,从而改善了材料塑性。
     本文以宝钢生产的TRIP780高强钢板为研究对象,通过准静态及动态单向拉伸试验、微观金相实验和X射线衍射实验,研究了TRIP780高强钢板的动态变形力学性能,构建了其率相关材料本构模型,并应用于高强钢结构件冲击碰撞过程的数值模拟。
     通过准静态单向拉伸试验和拉伸条件分别为0.15 m/s,4 m/s,10 m/s,15 m/s四种速度下的动态拉伸试验,得到了不同拉伸速度条件下的材料应力-应变曲线。通过断口形貌和金相组织的观测,分析了TRIP780动态变形过程中相变的情况,并利用X射线衍射实验,对残余奥氏体相变对拉伸性能的影响进行了定量分析。根据对TRIP780的变形行为宏微观的研究,基于Johnson-Cook简化型本构模型,建立了描述其动态力学行为的率相关本构方程,并通过商用软件ABAQUS模拟单向拉伸过程验证了本构方程的正确性。基于所建立的本构方程对高强钢冲击碰撞过程进行了模拟,并和其他两种钢板进行了对比,考察高强钢在碰撞过程中的力学行为和吸能特性,评估材料的使用特性。
     研究结果表明:TRIP780高强钢是一种兼有高强度和高塑性的应变率强化特性的汽车用钢,具有良好的碰撞吸能潜力;所建立的率相关本构模型实现了对TRIP780钢力学行为的准确描述。
TRIP steel is a new type steel, and is characterized by its Transform Induced Plasticity property. Usually, TRIP steel has a multi-phase micro structure under room temperature,which consists of ferrite(F), bainite(B) and retained austenite(Ar). The retained austenite is unstable, and will transform into martensite under certain plastic deformation conditions. The new-born martenite has a better hardening property comparing to the former austenite, which increases the deformation capability and contributes to plasticity property of the material.
     This thesis focused on mechanical properties of the TRIP780 steel produced by Baoshan Steel Company. Experiments were carried out based on both macroscopic and microscopic methods. The dynamic mechanical properties of TRIP780 steel were studied through the study on tensile tests, metallographic microstructure observation, and XRD measurement. A strain rate dependent material constitutive equation was developed and introduced into the numerical simulation of dynamic deformation during impact processes of high strength steel components.
     Firstly, the static uni-axial tensile experiment and the dynamic uni-axial tensile experiment under four different tensile speeds (0.15m/s,4m/s,10m/s and 15m/s) were carried out, then the stress-strain curves under various strain rates were obtained. Through the analysis on the microstructure near to the fracture surface, the Transform Induced Plasticity effect was investigated. Then, through the XRD experiment, the major factors which have impacts on the transformation of retained austenite were discussed. Johnson-Cook model was employed to describe the rate-dependent deformation behavior of the TRIP steel. Based on the macroscopic and microscopic research of dynamic deformation of TRIP780, a strain rate dependent material constitutive model was developed. The constitutive model was verified by simulation of the uni-axial tensile experiment. Finally, the crash process of a column and B-pillar made of high strength steel were carried out by introducing the developed constitutive model into ABAQUS. The mechanical behavior of TRIP steel during the crash processes was studied and compared with other two steels, especially the capability of crash energy absorbtion.
     The research results show that, TRIP steel exhibits both high strength and high plasticity deformation properties. The rate-dependent hardening property and energy absorbtion potential enable TRIP steel a good choice in vehicle manufacturing. The developed strain rate dependent constitutive model can predict the dynamic deformation of the TRIP steel well.
引文
[1]龚正,王国荣.汽车轻量化的现状与趋势[J].环球漫游–汽车维修. 1998(2):42-43
    [2]郑晖,李国峰.汽车用钢板的现状和发展趋势[J].沈阳航空工业学院学报. 2006, 23(2)
    [3] Wohlecker, R; Johannaber, M; Espig, M (2007) Weight/Fuel Consumption Elasticity by Forschungsgesellschaft Kraftfahrwesen mbH Aachen (fka). (Report available at www.worldautosteel.org).
    [4]彭晓东,刘江.轻合金在汽车工业中的应用[J].汽车工艺与材料. 1999(1): 1-6
    [5] H. Friedrich, S. Schumann. Research for a“new age of magnesium”in the automotive industry[J]. Journal of Materials Processing Technology. Volume 117, Issue 3, 2001, P 276-281
    [6]敖炳秋.轻量化汽车材料技术的最新动态[J].汽车工艺与材料, 2002年第8/9期: 1-21
    [7]史文.含钒低碳低硅相变诱发塑性钢的组织和性能的研究[D]上海大学博士学位论文. 2006.上海.上海大学
    [8]陆匠心,王利.高强度汽车钢板的生产与使用[J].汽车工艺与材料,2004(2):1-6
    [9]王利,朱晓东,张匹军,陆匠心.汽车轻量化与先进的高强度钢板[J].宝钢技术,2003(5):53-59
    [10]王瑞珍,罗海文,董瀚.汽车用高强度钢板的最新研究进展[J].中国冶金,2006,16(9):1-9
    [11]康永林.国内外汽车板的现状需求和发展趋势[J].中国冶金. 2003年6月,第6期(总第67期): 18-23
    [12]徐宏伟.国外汽车用先进高强度钢板及其标准综述[J].冶金标准化与质量. 2008年第二期第44卷: 8-13
    [13]唐荻,米振莉,陈雨来.国外新型汽车用钢的技术要求及研究开发现状[J] 533-548
    [14]张学辉,毛卫民,朱国辉,张先贵.汽车用冷轧超高强度双相钢的研发和生产[J].武钢技术. 2008年6月.第46卷第3期:54-58
    [15]马鸣图.先进的高强度钢及其在汽车工业中的应用[J].钢铁. 2004年7月,第39卷第7期:68-72
    [16]闫翠,李麟,符仁钰,史文. TRIP钢的研究进展[J].上海金属.第30卷第4期2008年7月: 40-44
    [17] Zackay V.F.,Parker E.R.,Fahr D. et al. The Enhancement of Ductility on High-strength Steel[J]Trans.of ASM,1967,60(2): 252-258
    [18] Hayami S, Tunikawa T. Microalloying 75, Union Carbide Corp, New York, 1975:311
    [19] Sakuma Y, et al. Nippon Steel Technical Report, 1995, 64:20
    [20] AlexanderElsner. Advanced Hot Rolling Strategies for IF and TRIP Steels[D]. DelftUniversity, 2005.
    [21] Pascal,Jacques,PhiliPPe Harlet,Francis Delannay. Critical Assessment of the Phase Transformations Occurring During the Heat-treatment of TRIP-assisted MultiPhase Steels[J].Int.Conf.On TRIP-Aided High Strength Ferrous Alloys:129-134
    [22]景财年,王作成. TRIP相变诱发塑性钢的研究进展[J].特殊钢. 2004,25(4):1-5
    [23]江利,沈寒领,陈涛.高碳硅锰系TRIP钢控制冷却热处理的研究[J].金属热处理. 1999, 3:17-20
    [24]王四根,花礼先,王绪.硅锰系相变诱发塑性钢的热处理工艺研究[J].金属热处理. 1995,6:14-17
    [25]居殿春,竺培显,颜慧成,刘家琪.残余奥氏体对TRIP钢机械性能的影响[J].冶金丛刊.第2期总第174期2008年4月:41-45
    [26] Hayashi H ,Nakagawa T. Journal of Material Processing Tech,1994,48:455
    [27]韦习成.高强度低合金Si-Mn系TRIP钢的动态拉伸性能[D].上海大学博士学位论文. 2006.上海.上海大学
    [28]孙鹏.低硅TRIP钢的动态拉伸性能研究[D].上海大学硕士学位论文. 2004.上海.上海大学
    [29]谢群.TRIP钢的应变率相关性变形行为研究[D].上海大学硕士学位论文. 2006.上海.上海大学
    [30]张梅.高强度和超高强度相变塑性钢的开发和研究[D].上海大学博士学位论文. 2006.上海.上海大学
    [31]韦习成,符仁钰,李麟等.不同应变率下TRIP钢的拉伸性能[J].《上海金属》, 2002年第24卷第4期,32-36.
    [32] Hoon Huh, Seok-Bong Kim. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body [J]. International Journal of Mechanical Sciences 50 (2008) 918-931
    [33] Cooman De, SamekB.C., MahieuL.J.,et al. Quasi-adiabatic Effects During the High Strain Rrate Deformation of Dispersed-phase Systems with Strain-induced Martensitic Ttransformation[C]. Materials Science and Technology 2003 Meeting,2003: 537-548.
    [34] IIdong Choi,Dongmin Son,Sung-joon Kim,David K. Matlock ,John G. Speer. Strain Rate Effects on Mechanical Stability of Retained Austenite in TRIP SheetSteels[J]. SAE TECHNICAL PAPER SERIES, 2006-01-1434
    [35] L. Tosal-Mart¨anez, L. Cretteur, O. Moriau and A. Ihsan Koru. Characterization of Cold Rolled TRIP Steels for Structural Crash-Relevant Applications in the Automotive Industry [J]. SAE TECHNICAL PAPER SERIES, 2002-01-2068
    [36] S.Oliver ,T.B.Jones ,G.Fourlaris. Dual phase versus TRIP strip steels: Microstructural changes as a consequence of quasi-static and dynamic tensile testing[J]. Materials Characterization 58(2007)390400
    [37] Sugimoto Koh-ichi,Usui Noboru,Kobayashi Mitsuyuki, et al., Effects of volumefraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J].ISIJ Intern. 1992,32(12):1311-1318
    [38] Jeong W.C., MatlockD.K.,Krauss G. Observation of deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenite structure [J]. materials Science and Engineering A , 1993, 165A:1-8
    [39] Jeong W.C.,Kim C.H. Effect of transformation ferrite growth on t he tensile fracture characteristics of a dual-phase steel[J]. Metallurgical Transactions A , 1988,19A (2):309-317
    [40] Zhao L, Dijk N H V, Bruck E, et al.Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels [J].Materials Science and Engineer-ing,2001,A(313):145-152.
    [41]余海燕.复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究[D].上海交通大学博士学位论文. 2005.上海.上海交通大学
    [42] Sakuma Y,Matlock D K,Krauss G. Intercritically annealed and isothermally transformed 0·15Pct C steel containing 1·2Pct Si-1.5Pct Mn and 4Pct Ni: PartⅡ.Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation [J]. Metallurgical transactions, 1992, (42):1233-1241
    [43]孙鹏,李麟,韦习成等.温度对TRIP钢动态拉伸性能的影响[J].金属热处理. 2003年第28卷第10期: 11-14
    [44] Ki Yeol Lee,II Hwan Bang, SeongHee Lee, Shi Hoon Choi. Effect of Chemical Composition on Tensile Property in TRIP-assisted Multiphase Steel Composed of Fe-Mn-Si-C [J]. SAE TECHNICAL PAPER SERIES, 2007-01-3728
    [45] D. Cornette, T. Hourman, O. Hudin, J. P Laurent, A. Reynaert. High Strength Steels for Automotive Safety Parts [J]. SAE TECHNICAL PAPER SERIES, 2001-01-0078
    [46] Todd M. Link , Brandon M. Hance. Effects of Strain Rate and Temperature on the Work Hardening Behavior of High Strength Sheet Steels[J]. SAE TECHNICAL PAPER SERIES, 2003-01-0516
    [47] Takahiro Tanae, James Dykeman. Application of 590/780MPa Grade TRIP Steel to Body-in-White[J]. SAE TECHNICAL PAPER SERIES, 2006-01-1585
    [48] V. Tarigopula, M. Langseth, O.S. Hopperstad, A.H. Clausen. Axial Crushing of Thin-walled High-strength Steel Sections[J]. International Journal of Impact Engineering 32 (2006) 847–882
    [49] Kounosuke Hirai Shinji Tanimura and Koji Mimura. Formability and Dynamic Energy Absorption of Tailored Blank with High Strength Steel Sheets[J]. SAE TECHNICAL PAPER SERIES, 2000-01-2662
    [50]余海燕,陈关龙,李淑慧等.不同应变方式下TRIP钢中残余奥氏体的体积分数随应变量的变化[J]《.钢铁研究学报》, 2005年4月,第17卷第2期, 48-51
    [51] Srdan Simunovic,Jody Shaw and Gustavo A.Aramayo.Material Modeling Effects on Impact Deformation of Ultralight Steel Auto Body[J].SAE Technical Paper Series. January 2000
    [52] Srdan Simunovic and Phani Kumar V.V.Nukala:Modeling of Strain Rate Effects in Automotive Impact[J].SAE Technical Papers.2003-01-1383
    [53]李玉璇等.材料模型参数设置对碰撞仿真结果的影响[J].汽车工艺与材料,2002(10):26-28
    [54] Alan C.Thompson.High strain rate characterization of advanced high strength steels[D].University of Waterloo.2006
    [55]李东宇. TRIP钢的工艺控制与性能研究[D].鞍山科技大学硕士学位论文. 2008.辽宁鞍山.鞍山科技大学
    [56]谢群,韦习成,张梅等. TRIP钢动态拉伸行为的残余奥氏体转变相关性研究[J].上海大学学报(自然科学版).第12卷第6期2006年12月:635-640
    [57] Michael Borsutzki, Dominique Cornette, Yukihisa Kuriyama, Benda Yan. Recommendations for Dynamic Tensile Testing of Sheet Steels[M]. Report of International Iron and Steel Institute. High Strain Rate Experts Group. August.2005
    [58] H. Oiu, M. Enoki, H. Mori, N. Takeda, T. Kishi. Effect of strain rate and plastic pre-strain on the ductility of structural steels[J]. ISIJ international. 1999, 39: 955~960
    [59]张继诚,符仁钰,张梅等.相同成分DP钢和TRIP钢部分力学性能的比较[J].热加工工艺.2006年第35卷第22期:13-16.
    [60]田成达. DP780高强钢动态力学行为研究[D].上海交通大学硕士学位论文. 2008.上海.上海交通大学
    [61] Choi I D,Bruce D M,Kim S J,et al.Deformation behavior oflow carbon TRIP sheet steels at high strain states [J].ISIJ In-ternational,2002,(42): 1483-1489.
    [62] Uenishi, A. Et al., High-strength Steel Sheets Offering High Impact Energy-absorbing Capability[M] (in Japanese with English summary), Nippon Steel Technical Report, No. 317, p. 18-22 (1999)
    [63] K. Miura, S. Takagi, T. Hira, O. Furukimi, S. Tanimura. High Strain Rate Deformation of High Strength Sheet Steels for Automotive Parts[J]. SAETECHNICAL PAPER SERIES, 980952
    [64]叶平,张梅,苏钰等. TRIP钢在汽车底盘结构件中的应用[J].汽车工艺与材料. 2006年第9期: 23-26
    [65] Girault E, Jacqued P, Harletetal. Metallographic methods for revealing the multiphase microstructure of TRIP assisted steels[J]. Mater Charact, 1998, 40: 111
    [66]孙鹏,李麟,符仁钰等.高速冲击拉伸条件下低硅TRIP钢的延伸率特性[J].上海金属.第26卷第3期, 2004年5月:13-18
    [67] Bleck W,Schael I.Determination ofCrash-Relevant Material Parameters by Dynamic Tensile testing[J].Steel Research 2000,71(5):173~178.
    [68]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社, 1999. 8.
    [69]居殿春,竺培显,颜慧成.残余奥氏体对TRIP钢机械性能的影响[J].冶金丛刊.第2期总第174期, 2008年4月:41-45
    [70] TSUCHIDAN,TOMOTAY. A micromechanic modeling for transformation induced plasticity in steels[J]. Materials Science and Engineering, 2000, A285:345-352
    [71] Johnson G.R,Cook W.H. A constitutive model and data for metals subjected to large strain,high strain rates and high temperatures[A].In: Proc.7th Int.SymP. Ballisties[C].the Netherlands:the Hague,1983
    [72] LS-DYNA Anwenderforum. Michael Dietenherger. Development of a High Strain-Rate Dependent vehicle model[C].2005
    [73] Khan A S, Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5s-1~104s-1[J]. International Journal of Plasticity, 1992, 8: 397-424.
    [74]余海东,郭永进.基于Khan-Huang模型高强度钢DP600率相关特性实验与本构模型研究[J].固体力学学报.第29卷第2期2008年6月:200-204
    [75] H. Zhao. Mater. Sci. Eng., A, 1997, vol. 230, pp. 95-99.
    [76] J. VAN SLYCKEN, P. VERLEYSEN, J. DEGRIECK, L. SAMEK, and B.C. DE COOMAN. High-Strain-Rate Behavior of Low-Alloy Multiphase Aluminum- and Silicon-Based Transformation-Induced Plasticity Steels[J] METALLURGICAL AND MATERIALS TRANSACTIONS . COLUME 37A, 2006
    [77] Benda Yan. High Strain Rate Behavior of Advanced High Strength Steels for Automotive Applications [C]. Great Designs in Steel Seminar. American Iron and Steel Institute. Feb, 2003
    [78] INTERNATIONAL IRON & STEEL INSTITUTE Committee on Automotive Applications[M] Engineering Report ADVANCED HIGH STRENGTH STEEL (AHSS) APPLICATION GUIDELINES. September 2006(Report available at www.worldautosteel.org).
    [79]徐海涛.马氏体基体TRIP钢的热处理工艺与性能分析[D].辽宁科技大学硕士学位论文. 2008.辽宁.辽宁科技大学
    [80]景财年. CMnAl_TRIP钢组织性能的研究[D].山东大学博士学位论文. 2007.山东.山东大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700