DP590双相钢电阻点焊过程的数值模拟及实验分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双相钢是兼有高强度和良好成型性的理想汽车用钢,已成为未来发展轻质量高安全性汽车的主要材料。在汽车制造中,电阻点焊是主要的连接技术。与普通低碳钢相比,双相钢中加入了较多的Si、Mn等合金元素,在焊接时可能会出现成份偏析、淬硬脆化、易产生焊接缺陷等问题,因此通过实验确定合适的点焊工艺参数,制定合理的点焊规范将对双相钢在今后的广泛使用产生重要影响。而由于点焊熔核形成过程的不可见性,计算机模拟技术已经成为电阻点焊研究的主要方法。
     本文介绍了近年来国内外学者对双相钢电阻点焊的研究现状,以及计算机数值模拟技术用于点焊技术的发展。此外,还简单介绍了针对电阻焊特点开发的专业有限元软件SORPAS的特点和理论基础。基于SORPAS软件,针对DP590双相钢建立了描述点焊熔核形
     成过程的轴对称有限元模型,并实测了DP590双相钢的多项热物理性能参数。通过数值模拟定量揭示了双相钢点焊中温度场、电场、接触电阻等过程量的变化规律,并计算出双相钢点焊熔核直径、接头区域硬度、冷却速度及焊后组织的分布。
     对DP590双相钢板采用不同焊接规范进行多组点焊实验,测出不同规范下熔核直径大小、硬度分布,并通过拉剪、正拉实验得出焊点的力学性能,研究了焊接电流、焊接时间、电极压力对焊点熔核直径以及力学性能的影响规律,并对熔核进行宏观及微观金相分析,最后实测了DP590双相钢的焊接CCT曲线。将计算结果与实测结果进行了比较,验证了本文所建模型和计算结果的可靠性。
     应用SORPAS软件模拟各种参数组合下缓冷及回火过程,将计算所得到的最佳参数应用到实际中。通过拉伸实验、显微硬度实验以及断口扫描分析结果表明:对DP590双相钢附加恰当的缓冷或回火脉冲规范会使点焊接头的韧性有较大程度的提高。
The dual-phase steel is the ideal automotive steel for its combination of high strength and excellent formability. It has being the main steel used in the automobiles of light weighting and high safety in the future. Resistance spot welding is the main jointing technique in the automobile manufacturing. Compared with normal low-carbon steel, the dual-phase steel is added to more alloying elements such as Si and Mn, so it is possible for the welding joint zone to result in problems like segregation, quench hardening embrittlement and prone to welding defects. Therefore, to be able to widely use the steel, it is very important to confirm suitable welding parameters and establish optimum spot welding specification. Numerical simulation has been the main research method in resistance spot welding since the forming process of nugget is hard to observe.
     The recent development of the research on the spot welding of dual phase steel and the application of numerical simulation on spot welding are introduced in this paper. Furthermore, characteristic and theoretical background of finite element software SORPAS which is specially designed for resistance welding are also briefly introduced.
     Based on the environment of software SORPAS, an axial symmetric finite element model for the spot welding process of DP590 dual-phase steel is established. Thermophysical properties parameters of DP590 are tested for this simulation. By researching numerical simulation, the variation rules of temperature field, electrical field and contact resistance are discovered quantitatively, and nugget diameter, distribution of hardness, cooling rate and microstructure of weld joint zone are calculated.
     Many groups of spot welding experiments of DP590 dual-phase steel with different welding specification are carried out. Nugget diameters and hardness distribution are measured under different combination of welding parameters, and mechanical properties of weld joint are gained by cross-tensile test and tensile-shear test. The effect rule of welding time, welding current and electrode force to nugget diameter and mechanical properties are researched. The SH-CCT curve of DP590 dual-phase steel is determined by practical experiment. Finally, the simulative results with the experimental results are compared, and the computational nugget diameter, shape and penetration agree well with those from experiments, which show that the models and simulation results in this paper are reliable.
     Using the software SORPAS to simulate slow cooling and tempering process under different combination of welding parameters, then put the optimum combination of parameters into practical spot welding experiment. By means of tensile test, hardness test and fracture scanning analysis, the results show that the toughness of spot weld joint of DP590 can be obviously improved by attaching suitable slow cooling impulse or tempering impulse specification.
引文
[1] 王利. 汽车用高强度 IF 薄钢板. 宝钢技术,1997, (1) : 58-61
    [2] 马鸣图,M.F.Shi. 先进的高强度钢及其在汽车工业中的应用. 钢铁,2004, 39(7) : 68-72
    [3] 叶平,沈剑平,王光耀等. 汽车轻量化用高强度钢现状及其发展趋势. 机械工程材料. 2006, 30(3) : 4-7
    [4] 苏凯,余际星,徐建兵. 新型汽车用高强度钢的应用现状与发展趋势. 2006, 27(4) : 53-62
    [5] Innovative Steel Products for Lightweight Car Body Construction, Steel Times, 1996-04, 140~141
    [6] 康永林,邝霜,尹显东等. 汽车用双相钢板的开发与研究进展. 2006, 5 : 1-5
    [7] 王有铭等. 材料的控制轧制和控制冷却. 北京: 冶金工业出版社, 1995
    [8] 马鸣图等. 双相钢-物理和力学冶金. 北京: 冶金工业出版社, 1988
    [9] 江海涛,康永林,王全礼等. 高强度汽车板的烘烤硬化特性. 钢铁研究, 2006, 34(1) : 54-57
    [10] 张梅,符仁钰,许洛萍. 汽车用双相钢钢板的发展. 热处理,2001,1 : 5-7
    [11] 党淑娥. 双相钢的研究现状及应用前景. 金属材料研究. 2002, 28(3) : 9-14
    [12] 黄群飞,何燕霖,李麟. 高性能双相钢的研究进展. 2007, 28(3) : 11-14
    [13] 张久信等. 640MPa 级直接热轧双相钢 SX65 的研制. 鞍钢技术,1994, 4: 1-10
    [14] 徐宏伟. 国外汽车用先进高强度钢板及其标准综述. 2007, 44(2) : 8-13
    [15] 梅蓉俊等. 宝钢热轧汽车用钢生产现状及发展趋势. 轧钢, 2004, (4) :27-29
    [16] 符仁钰等. 轿车减振器盖用钢板的双相处理工艺研究. 热处理, (2) :22-24
    [17] 温东辉. 金相组织对双相钢强度影响的研究. 上海金属, 2005, 27(6) :51-55
    [18] MURALI D. TUMULURU. Resistance Spot Welding of Coated High-Strength Dual-Phase Steels. AWS Detroit Section's Sheet Metal Welding Conference, 2006: 1-7
    [19] Poggio S, Ponte M, Gambaro C, Adamowski J .Resistance Spot Welding of Advanced High Strength Steel DP600.2006
    [20] Nigel Scotchmer. Widening the Welding Lobe of Advanced High Strength Steels in the Resistance Spot Welding Process. 2006
    [21] Xin Long, Sanjeev K. Khanna. Fatigue Properties and Failure Characterization of Spot Welded High Strength Steel Sheet. International Journal of Fatigue. 2006, 1-8
    [22] Yasuharu SAKUMA, Hatsuhiko OIKAWA. Factors to Determine Static Strengths of Spot-weld for High Strength Steel Sheets and Developments of High-strength Steel Sheets With Strong and Stable Welding Characteristics. Nippon Steel Technical Report, 2003, (88): 33-38
    [23] T.B. Hilditch, J.G. Speer, D.K. Matlock. Effect of Susceptibility to Interfacial Fracture on Fatigue Properties of Spot-welded High Strength Sheet Steel. Material and Design, 2006, 1-11
    [24] 李在先,刘颖,李庆娜等. 冷轧 SX55 双相钢点焊性能的研究. 东北大学学报(自然科学版),1995, 16(2) : 160-164
    [25] 傅延安,张红,潘华. 热镀锌双相高强钢电阻点焊焊点力学性能的研究. 宝钢技术, 2005,(1) : 46-49
    [26] 张旭强,罗爱辉,张延松. 点焊热镀锌双相高强度钢的电极磨损规律. 焊接学报, 2006, 27(9) : 108-112
    [27] 王慧越,张延松,陈关龙等. 双相钢电阻点焊接头断裂形式研究. 焊接,2007, (7):32-34
    [28] 张继诚,符仁钰,张梅等. 焊接及焊后热处理对双相钢组织和性能的影响. 热处理,2005, 20(4) : 17-20
    [29] G.R. Archer, et al. Calculation for Temperature Response in Spot Welds. Welding Journal, 1960(8): 327-330
    [30] J.A. Greenwood, et al. Temperature In Spot Welding. British Welding Journal, 1961(9): 316-322
    [31] P.S. Myers. Fundaments of Heat Flow in Welding. Welding Research Council Bulletin, 1967, 123(7): 1-35
    [32] K P Bentley, J A Greenwood. Temperature Distributions in Spot Welds, Welding Research Abroad, 1964(2): 42-48
    [33] W. Rice, et al. Analytical Investigation of Temperature Distribution during Resistance Spot Welding. Welding Journal, 1967, 46(4): 175-186
    [34] H A Nied. The Finite Element Modeling of The Resistance Spot Welding Process. Welding Journal, 1984(63):123-132
    [35] C L Tasi, O A Jammal, J C Papritan. Modeling of Resistance Spot Weld Nugget Growth. Welding Journal, 1992,16(2):47-54
    [36] V.A. Sundik, et al. Simulation of Resistance Spot Welding Steels Using SPOTSIM Software. Welding International, 1999,13(2):141-146
    [37] Jamil.A.Khan, et al. Numerical Thermal Model of Resistance Spot Welding in Aluminum. Journal of Thermophysics and Heat Transfer, 2000(1):88-95
    [38] 曹彪. 点焊熔核形成过程的有限元模拟及热膨胀法实时控制. 哈尔滨工业大学, 1991
    [39] 曹 彪 , 姜 以 宏 , 王 建 一 . 点 焊 过 程 热 膨 胀 变 形 分 析 . 焊 接 学 报 , 1995,16(2):94-99
    [40] 王春生,赵熹华. 异质金属 Fe-Ni 电阻点焊形成过程三维数值模拟分析. 中国机械工程, 2000,11(4):449-451
    [41] Wang C.S. Electrical-Thermal Interaction Simulation for Resistance Spot Welding Nugget Process of Mild Steel and Stainless Steel. China Welding, 2002,11(1):51-54
    [42] 徐国成,赵熹华. 弹簧钢点焊熔核温度场的有限元模型. 吉林工业大学自然科学学报, 2000,30(10):12-16
    [43] 龙昕,汪建华等. 电阻点焊温度场分布的数值模拟. 上海交通大学学报,2001, 35(3):416-419
    [44] 雷鸣,王敏,殷美庆. 镀锌钢板点焊过程的有限元模拟. 上海交通大学学报, 2005,39(7): 1033-1037
    [45] I.O. Santos, W. Zhang, V.M.Goncalves, et al. Weld Bonding of Stainless Steel. International Journal of Machine Tools & Manufacture, 44(2004): 1431-1439
    [46] M.Mimer, Dr.L-E. Svensson, R. Johansson. Possibilities to Improve Fracture Behaviour in Resistance Spot Welds of EHSS and UHSS by Process Modifications. The 3rd International Seminar on Advances in Resistance Welding. 2004
    [47] Kevin R. Chan, Nigel Scotchmer, John C. Bohr, et al. Effect of Electrode Geometry on Resistance Spot Welding of AHSS. Sheet Metal Welding Conference, Detroit 2006
    [48] Wenqi Zhang. Design and Implementation of Software for Resistance Welding Process Simulations. Society of Automotive Engineers, 2003: 105-113
    [49] 中国机械工程学会焊接学会,电阻焊(Ⅲ)专业委员会,电阻焊理论与实践,北京,机械工业出版社,1994,8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700