医学图像分割与虚拟手术几个关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学影像在现代医疗诊断过程中具有极其重要的作用,许多外科手术的实施、病症的诊断都需要医学影像技术的参与。现代的医疗中对影像技术的应用已经不再仅限于单纯的阅读影像图片等一般性的操作了。人们开始以所获得的图像为基础,融合各种先进技术,从更广泛的角度分析和处理图像,力求挖掘更深层次的信息,为诊断和治疗提供详实可靠依据。在处理和分析医学图像的各种技术中,既包含图像分割、特征提取、三维重建等基础性内容,也包含了计算机辅助诊断,虚拟外科手术,手术导航等实际的应用内容。本论文选取了分割技术中的脑皮层分割、脑肿瘤分割、三维重建中的目标体虚拟移动以及术前设计系统的构建作为研究重点,以构建实用的外科手术术前设计系统作为最终目的。
     脑皮层具有非常复杂的结构,它的每一个部分都与人体的一部分的功能相对应。脑皮层分割与表示是进行脑皮层分析、揭示这些功能映射的重要环节。同时脑皮质层分割与表示也是是医学影像领域中的一个难点。本文提出了一种基于水平集的自适应分割模型来实现脑皮质层的分割与表示。该模型是一种自适应混合水平集带状模型。它结合了基于区域分割和基于边界分割算法的优点,以基于区域的水平集模型来描述区域信息,并以此作为水平集模型演化动力;以统计双边缘检测算法来描述边缘信息,并以此促使水平集的演化能停止在合理的位置上。这样整个模型既保持了区域模型的稳健性又保持了边界模型的准确性。由于实际的皮质层具有近似相同厚度,本文中将脑皮层的这一特点作为先验知识融合到分割模型中,使得该模型在表征脑皮层分割上更加合理。此外,模型中还充分考虑了MR图像中可能存在的偏移场因素,在模型中增加了对偏移场的描述,有效的克服了偏移场问题。本文分别选用仿真脑图像数据和真实脑图像数据进行实验,并与其它方法进行比较。实验结果证明,自适应带状模型具有稳健、精确的分割效果。与其它方法相比,具有很大的优势。
Medical Imaging has played an important role in modern medical treatment and diagnosis, many surgical operations and disease diagnosis procedure need the participant of medical imaging technology. The application of medical imaging technology in modern medical treatment has no more limited in common operations like reading the picture and reconstructing the 3D image. In order to dig out deep-seated infomation and provide accurate and reliable foundation for diagnose and curation, people begin to analysis and understand the obtained images more comprehensively by incoorporating many advance technology. The medical image process and analysis technology not only involves many basic contents like the image segmentation, image feature extraction, 3D reconstruction etc, but also include some practical contents like the computer aided diagnose, virtual surgery, surgery guidance etc. This dissertation selects the cortex segmentation, objects motion in 3d reconstruction and presurgery design system as the key research contents, and takes the construction of practical presurgery design system as the ultimate goal.
    The cortex has very complex structures, each part of them are correponding to part of human body functions. The cortex segmentation and representation are the important phase to analysis the cortex and unveil the function mappings, meanwhile the cortex segmentation and representation are also the nut to the medical imaging field. In this dissertation, a adaptive ribbon model based on levelsets is proposed to tackle the cortex segmentation and representation problem. This model is naturely a hybrid adaptive levelset model combining both the merits of region and boundary segmentation. The regionbased levelsets are used to represent the region information, and region information act as levelset evolving motivition term. The statistical coupled edges detector is used to describe the boundary information, and the boudary information acts as a stopping term to the evolving process. This model is provided with both the robustness of region model and the preciseness of boundary model. According to the fact that the cortex has the similiar thickness, the model takes this fact as a prior knowledge and shapes into adaptive ribbon model. Besides, the bias field description is added to overcome the influence of the possible bias field in MR image. To demonstrate the proposed model, the simulated brain images and real brain images are used for testing, and comparation to other methods are made. the experiment results show that adaptive ribbon model is more robust and accurate than other models.
    Image intensity overlapping between brain tumor and other normal tissues make the brain tumor segmentation a tough thing. For the sake of overcoming this brain tumor segmentation difficulty, a framework based on viscous fluid model registration for brain tumor segmentation is proposed.This framework consists of registration building on viscous fluid
引文
[1] Amit Chakraborty, Lawrence H. Staib, and James S. Duncan. Deformable boundary finding in medical images by integrating gradient and region informmation. IEEE Trans. on Medical Imaging, 15(6), 1996.
    [2] B. Johnston, M. S. Atkins, and B. Mackiewich. Segmentation of multiple sclerosis lesions in intensity corrected multispectral mri. IEEE Trans on Medical Imaging, 15(2), 1996.
    [3] W. M. Wells, W. E. L. Grimson, R. Kikins, and et al. Adaptive segmentation of mri data. IEEE Trans on Medical Imaging, 15(4), 1996.
    [4] Barry Haskell Arun Netravali. Digital Pictures Representation and Compression. Plenum Press: New York, 1988.
    [5] 王合.医学图像边缘检测技术的研究.PhD thesis,上海交通大学,1996.
    [6] 杨晖,曲秀杰.图像分割方法概述.电脑开发与应用,18(3):21-23,2005.
    [7] Rafael C.Gonzalez and Richard E.Woods. Digital Image Processing, pages 567-643. Pearson Education Inc., 2002.
    [8] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine Vision, pages 123-227. Brooks/Cole, a division of Thomson Asia Pte Led, 2 edition, 2000.
    [9] Kenneth R. and Castleman. Digital Image Processing, pages 447-486. Prentice-Hall, 1979.
    [10] S.Z.Li. Markov Random Field Modeling in Computer Vision. Springer, 1995.
    [11] Stuart Geman and Donald Geman. Stochastic relaxation gibbs distribution, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 1984.
    [12] Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, 36: 192-236, 1974.
    [13] Hammersley J. M. and Clifford P. Markov field on finite graphs and lattices, unpublished, 1971.
    [14] www.cbsr.ia.ac.cn/users/szli/MRF_Book/.
    [15] Sridhar Lakshmanan and Haluk Derin. Simultaneous paramer estimation and segmentation of gibbs random fields using simulated annealing. IEEE Trans On Pattern Analysis and Machine Intelligence, 11(8):799-813, 1989.
    [16] C.F. J Wu. On the convergence properties of the em algorithm. The Annals of Statistics, 11:95-103, 1983.
    [17] D Chandler. Introduction to modern statistical mechanics. Oxford University Press, 1987.
    [18] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snake: Active contour models. In First International Conferenece of Computer Vision, pages 259-268, London, 1987.
    [19] Laurent D.Cohen. On active contour models and ballons. Computer Vision Graphics Image Processing: Image Understanding, 53:211-218, 1991.
    [20] Frederic Leymarie and Martin D.Levine. Tracking deformable objects in the plane using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6):617-634, 1993.
    [21] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press, second edition, 1999.
    [22] 杨新.图像偏微分方程的原理与应用.上海交通出版社,2003.
    [23] J. A. Sethian. An Analysis of Flame Propagation. PhD thesis, University of California, Berkeley, 1982.
    [24] J. A. Sethian. Curvature and evolution of fronts. Communications in Mathematical Physics, 101:487-499, 1985.
    [25] G. I. Chiou and J. N. Hwang. A neural network-based stochastic active contour model for contour finding of distinct features. IEEE Transactions on Medical Imaging, 4: 1407-1416, 1995.
    [26] S. R. Gunn and M. S. Noon. A robust snake implementation: A dual active contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):63-68, 1997.
    [27] D. J. Williams and M. Shah. A fast algorithm for active contours and curvature estimation. Computer Vision, Graphics and Image Processing, 55(1): 14-26, 1992.
    [28] K.M. Lam and H. Yan. Fast greedy algorithm for active contours. Electronic Letters, 30(1):21-22, 1994.
    [29] 刘剑函,梁德群,王红光,田原.一种具有形状约束的快速snake类算法.中国图像图形学报,4A(8):644-648,1999.
    [30] Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on lmage Processing, 7(3): 359-369, 1998.
    [31] C. S. Poon, M. Braun, and R. A. Fahrig et al. Segmentation of medical images using an active contour model incorporating region-based image features. SPIE Proceedings, 2359:90-97, 1994.
    [32] T. Mclnerney and D. Terzopouloz. Topologically adaptive snakes. In In Proceedings of Fifth International Conference on Computer Vision, pages 840-845, Cambridge, 1995.
    [33] Osher S. and Sethian J. Fronts propagating with curvature dependent speed: algorithms based on the hamilton-jacobi formulation. Journal of Computational Physics, 79:12-49, 1988.
    [34] R. Malladi, J.Sethian, and B. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Trans. On PAMI, 17(2), 1995.
    [35] Masouri A-R. and J. Konrad. Multiple motion segmentation with level sets. IEEE transactions on image processing, 3974, 2000.
    [36] Paragios N. and Deriche R. Geodesic active countours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:266-280, 2000.
    [37] X. Zeng. Volumetric Layer Segmentation Using a Generic Shape Constraint with Application to Cortical Shape Analysis. PhD thesis, Yale University, 2000.
    [38] A. Chakraborty, L. Staib, and J. Duncan. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, 15(6):659-670, 1996.
    [39] H. Hedden and J. Boyce. Image segmentation by unifying region and boundary information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12: 929-948, 1990.
    [40] A. Yezzi, A. Tsai, and A. Willsky. A statistical approach to snakes for bimodal and trimodal imagery. In International Conference in Computer Vision, pages 898-903, 1999.
    [41] J. F. Haddon and J. F. Boyce. Simultaneous image segmentation and edge detection. In IEE 3rd Int. Conf on Image Proc. and its Applications, pages 411-415, University of Warwick, U. K, 1989.
    [42] D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detection by constrained optimisation. IEEE Trans. PAMI, 12, 1990.
    [43] S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region growing and bayes/mdl for multiband image segmentation. IEEE Trans. PAMI, 18:884-900, 1996.
    [44] C. Bonnie Feldman. Brain tumor facts and figures. Technical report, The Brain Tumor Society, 7 1997.
    [45] Michael Kaus. Contributions to the automated segmentation of brain tumor in magnetic resonance images. Technical report, Universitat Erlangen Nurnberg, 1999.
    [46] S. K. Warfield, M. Kaus, and F. A. Jolesz et al. Adaptive template moderated, spatially varying statistical classification. Medical Image Analysis, 4(1): 43-45, 2000.
    [47] N. Moon, K. van Leemput, and E. Bullitt et al. Automatic brain and tumor segmentation. Medical Image Computing and Computer-Assisted Intervention, pages 372-379, 2002.
    [48] Marcel Prastawa, Elizabeth Bullitt, and Sean Ho et al. Robust estimation for brain tumor segmentation. Medical Image Computing and Computer Assisted Intervention, 2003.
    [49] D. T. Gering. Recognizing Deviations from Normalcy for Brain Tumor Segmentation. PhD thesis, Massachusetts Institute of Technology, 2003.
    [50] Kaufman A. Voxels as a computational representation of geometry. The Computational Representation of Geometry. SIGGRAPH94 Course Notes, 1994.
    [51] Novins K. Towards Accurate and Efficient Volume Rendering. PhD thesis, Cornell University, 1994
    [52] 唐泽圣.三维数据场可视化.清华大学出版社,1999.
    [53] Girod B. Greiner G. Niemann H. Principles of 3D Image Analysis and Synthesis. Kluwer Academic Publishers, 2000.
    [54] Engel K. Hastreiter P. Tomandl B. Eberhardt K. Ertl T. Combining local and remote visualization techniques for interactive volume rendering in medical applications. Proc. IEEE Visualization, 2000.
    [55] Lorensen W. Cline H. Marching cubes: A high resolution 3d surface construction algorithm. Comp. Graphics, pages 163-169, 1987.
    [56] Moore D. Warren J. Mesh displacement: An improved contouring method for trivariate data. Technical report, Dept. of Computer Science, 1991.
    [57] http://www.comp.leeds.ac.uk/vis/kwb/eg2000/star.ppt.
    [58] Hastreiter P. Registrierung und Visualisierung medizinischer Bilddaten unterschiedlicher Modalitiaten. PhD thesis, University of Erlangen-Nuremberg, 1999.
    [59] Upson C. Keeler M. V-buffer: Visible volume rendering. Proc. SIGGRAPH, 1988.
    [60] Westover L. Footprint evaluation for volume rendering. Proc. SIGGRAPH, 1990.
    [61] Wilhelms J. Van Gelder A. A coherent projection approach for direct volume rendering. Proc. SIGGRAPH, 1991.
    [62] Malzbender T. Fourier volume rendering. ACM Transactions on Graphics, 12(3): 233-250, 1993.
    [63] Kajiya J. Von Herzen B. Ray tracing volume densities. Proc. SIGGRAPH, 1984.
    [64] Sabella P. A rendering algorithm for visualizing 3d scalar fields. Proc. SIGGRAPH, 1988.
    [65] Drebin R. A. Carpenter L. Hanrahan R Volume rendering. Proc. SIGGRAPH, 1988.
    [66] Bartz D. Meiβner M. Voxels versus polygons: A comparative approach for volume graphics. In Volume Graphics, 1999.
    [67] Lacroute P. and Levoy M. Fast volume rendering using a share-warp factorization of the viewing transformation. Computer Graphics, Proceedings, pages 451-458, July 1994.
    [68] Brian Cabral Nancy Cam Jim Foran. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. ACM SIGGRAPH, ISBN 0-89791-741-3:pages 91-98, October 1994.
    [69] Whitted T Levoy M. The use of points as display primitives. Technical report, CS department, University of North Carolina, Chapel Hill, 1985.
    [70] Pfister H, Zwicker M, Van Baar J, and et al. Surfels: Surface elements as rendering primitives. In Siggraph 2000 Conference, pages 335-342, New Oleans, Louisiana, 2000.
    [71] Rusinkiewics S. and Levoy M. Qsplat: A multiresolution point rendering system for large meshes. In Siggraph 2000 Conference, pages 343-352, New Oleans, Louisiana, 2000.
    [72] Stamminger M Dachsbacher C, Vogelgsang C. Sequential point trees. In Siggraph 2003 Conference, San Diego, California, 2003.
    [73] www.cs.utk.edu/huangj/cs594s02/qsplat.ppt.
    [74] Grimson R et al Wells Ⅲ, Kikinis W. Adaptive segmentation of mri data. IEEE Transactions on Medical Imaging, 15(4): 429-442, 1996.
    [75] Kapur T. Model Based Three Dimensional Medical Image segmentation. PhD thesis, Massachusetts Institute of Technology, 1999.
    [76] Dirk vandermeulen et al Koen Van Leemput, Frederik Maes. Automated model-based bias field corretion of mr images of the brain. IEEE Transactions on Medical Imaging, 18(10):885-896, 1999.
    [77] M. Brady R. Guillemaud. Estimating the bias field of mr images. IEEE Transaction on Medical Imaging, 16(3): 238-251, 1997.
    [78] X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan. Segmentation and measurement of cortex for 3d mr images using coupled surface propagation. IEEE Transactions on Medical Imaging, 1999.
    [79] X. Zeng. Volumetric Layer Segmentation Using a Generic Shape Constraint with Application to Cortical Shape Analysis. PhD thesis, Yale University, 2000.
    [80] C. Xu, D. L Pham, and M. E. Rettmann. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Transactions on Medical Imaging, 18(6): 467-480, 1999.
    [81] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variantional problems. Communications on Pure and Applied Mathematics, 42:577-685, 1989.
    [82] Tony F. Chan and Luminita A. Vese. A level set algorithm for minimizing the mumford-shah functional in image processing. IEEE Workshop on Variantional and Level Set Methods', pages 161-168, July 2001.
    [83] Tony F. Chan and Luminita A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2), 2001.
    [84] Nikos Paragios and Rachid Deriche. Geodesic active regions for texture segmentation. Technical report, INRIA France, 1998.
    [85] Rafael C.Gonzalez and Richard E.Woods. Digital Image Processing, pages 567-643. Pearson Education Inc., 2002.
    [86] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine Vision, pages 123-227. Brooks/Cole, a division of Thomson Asia Pte Led, second edition edition, 1998.
    [87] Chenyang Xu and Jerry L.Prince. Generalized gradient vector flow external forces for active contours. Signal Processing, 71:131-139, 1998.
    [88] http://www.bic.mni.mcgill.ca/brainweb/;.
    [89] R. K. S. Kwan, A. C. Evans, and G. B. Pike. Mri simulator-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging, 18(11): 1085-1097, 1999.
    [90] G. B. Pike R. K. S. Kwan, A. C. Evans. An extensive mri simulator for post-processing evaluation. Visualization in Biomedical Computing (VBC'96) Lecture Notes in computer Science Springer-Verlag, 1131:135-140, 1996.
    [91] http://neuro-www.mgh.harvard.edu/cma/ibsr;.
    [92] JC Rajapakse and Kruggel F. Segmentation of mr images with intensity inhomogeneities. Image and Vision Computing, 1998.
    [93] Simon K. Warfield, Michael Kaus, and et al. Adaptive template moderated spatially varying statistical classification. Medical Image Analysis, 2000.
    [94] 周伟,易丹波.加权knn分类器及其应用.自动化学报,1989.
    [95] E. D' Agostino, F. Maes, D. Vandermeulen, and P. Suetens. A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical image analysis., 7:565-75, 2003.
    [96] M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical image. Proc. Visualization in Biomedical Computing, 1131: 267-276, 1996.
    [97] Gerber J. D. Ney D. R. Magid D. Fishman E. K. Simulated femorai repositioning with threedimensional ct. J. Comput. Assist. Tomogr., 15: 121-125, (1991).
    [98] Drebin R. A. Carpenter L. Hanrahan P. Volume rendering. Comput. Graphics, 22:65-74, (1988).
    [99] Sarah F. Frisken Gibson. Beyond volume rendering: Visualization, haptic exploration, and physical modeling of voxel-based objects. Technical report, Mitsubishi Electric Research Laboratories, Cambridge Research Center, 1995.
    [100] Hohne K. H. Bomans M. Pommert A. et al. 3d visualization of tomographic volume data using the generalized voxel-model. Visual Computer, 6: 28-36, 1990.
    [101] Gerber J. D. Ney D. R. Magid D. Fishman E. K. Simulated femorai repositioning with threedimensional ct. J. Comput. Assist. Tomogr., 15:121-125, 1 (1991).
    [102] Cohen D. Kaufman A. Yagel R. Intermixing Surface and Volume Rendering, pages 217-227. Springer-Verlag, Berlin, 1990.
    [103] Pflesser B. Simulating motion of anatomical objects with volume-based 3d-visualization. SPIE Proceedings, 2359, 1994.
    [104] Tiede U. Hohne K. H. Bomans M. Pommert A. et al. Investigation of medical 3d-rendering algorithms. IEEE Comput. Graphics Appl., 10: 41-53, 1990.
    [105] M. Levoy. Display of surfaces from volume data. IEEE Comput. Graphics Appl., 8:29-37, 3 (1988).
    [106] Simon Stegmaier, Magnus Strengert, Thomas Klein, and Thomas Ertl. A simple and flkexible volume rendering framework for graphics-hardware-based raycasting. Volume Graphics, 2005.
    [107] Microsoft corporation. Directx 9 sdk. Technical report, http://www.microsoft.com/directx, 2004.2.
    [108] oss.sgi.com/projects/ogl-sample/registry/ARB/wgl_pbuffer.txt.
    [109] oss.sgi.com/projects/ogl-sample/registry/EXT/pixel_buffer_object.txt.
    [110] William V. Baxter Ⅲ Mark J. Harris. Simulation of cloud dynamics on graphics hardware. Graphics Hardware, 2003.
    [111] J. Flaquer N. Garica-Alonso, N. Serrano. Solving the collision detection problem. IEEE Computer Graphics and Applications, pages 36-43, 5 1994.
    [112] J. Cohen, M. Lin, D. Manchoma, and M. Pongami. I-collide. An interactive and exact collision detection system for large-scale environments. In Symposium on Interactive 3D Graphics, pages 196-198, 1995.
    [113] P.M. Hubbard. Interactive collision detection. In IEEE Symposium on Research Frontiers in Virtual Reality, 1993.
    [114] T. He and A. Kaufman. Collision detection for volumetric objects. In Proceedings of the 8th conference on Visualization, pages 27-34, 1997.
    [115] J. Foran, Cabral B., and Cam N. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. Workshop on Volume Visualization, 1994.
    [116] Thomas Porter and Duff. Compositing digital images. In Proceedings of SIGGRAPH 84, volume 18, pages 253-259, Minneapolis, Minnesota, 1984.
    [117] Mu Xiongzheng, Dong Jiansheng, and Chang Tisheng. Surgical reconstruction of the contracted eye socket and orbitozygomatic hypoplasia in a one-stage operation. Plastic and Reconstruction Surgery, 1999.
    [118] 张如鸿.三维图像在颅颌面外科中的应用进展.上海第二医科大学学报,2003.
    [119] Aaron Lefohn and Ross Whitaker. A gpu-based,three-dimensional level set solver with curvature flow. Technical report, University of Utah, School of Computing, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700