硅基光电子器件的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硅材料的光电子技术虽然发展历程不长,但近年来已经成为备受关注的新兴领域,被认为是未来实现光互连、光通信的重要发展方向。作为光电转换的关键器件硅基电光调制器是主要的研究器件之一,其啁啾、传输特性与速度等性能都是主要的系统表征参数。随着硅基光电子应用领域的不断扩展,向波长更长的红外波段延伸也成为了方兴未艾的探索领域。
     本文结合硅基光电器件的特点对硅基调制器的信号传输啁啾特性、系统测试表征以及红外波段的应用进行了研究,具体如下:
     1.提出了采用载流子色散效应的硅基调制器啁啾参数,从调制频率、调制幅度、吸收效应等方面对硅基MZI结构的调制器的啁啾特性做了较为详细的分析,阐述了调制过程中啁啾参数变化的规律。通过仿真证明在小信号和大信号两种调制方式下硅基MZI调制器与其他类型调制器的不同——其啁啾参数值为负,这正可以有效抵消传输时色散效应所引起的脉冲展宽、降低激光器直接调制带来的正啁啾效应。
     2.分析了微环和微环辅助MZI硅基光调制器的啁啾特性,指出啁啾同初始工作点相关,并总结了啁啾值的正负变化规律,提出了可以通过调整工作点实现“零啁啾”的方案。
     3.给出了调制器啁啾参数测量的方案,并结合实验室具体情况对调制器强度测试系统的高频测试能力进行了改善。利用两次CMOS工艺流片设计了行波电极,通过改进后高速测试的系统对器件的电学特性如S参数、眼图等进行了初步测量,总结了之后用于硅基器件电极设计、高速测量的关键问题。
     4.研究了在10.6μm长波红外波段的硅基undercut型波导器件,制定其工艺流程、分析光场特征、制备undercut型的1×2MMI功分器器件,通过搭建的红外测试平台进行了损耗测试和表征。
     本文的工作主要集中在硅基光电子器件性能的传输特性分析、系统测试改进、发展应用三个方面,希望能够为今后硅基光子学的研究做出有价值的贡献。
Silicon photonics has raised intensive interests in recent years, as well as silicon based optical interconnection. Silicon photonics can benefit from sophisticated integrated circuit industry since it is compatible with complementary metal-oxide-semiconductor technology. As an important building block, ultra-speed silicon based modulators are essential due to the demand of optical integration. Thus its chirp characteristics, transmission and speed become main consideration. Along with the development of silicon photonics, application under long-wave infrared wavelength has attached much more attention, either.
     Combining the theory of silicon photonics, we have analyzed the chirp characteristics, performance of the experimental system, long-wave infrared undercut waveguide application in the following four aspects:
     1Chirp characteristics of silicon Mach-Zehnder Interferometer modulators with forward-biased PIN and reverse-biased PN structures are investigated by performing small-signal and large-signal simulation, respectively. Simulation result shows that chirp parameter is negative and influenced by the carrier absorption effect, the amplitude, and the frequency of applied signal. Negative chirp is essential to facilitate long-haul and high data rate transmission and able to achieve high quality modulation fro silicon photonic networks on chip.
     2Chirp characteristics of micro-ring based silicon modulators and ring-assisted MZI modulators are also fully analyzed. The chirp parameter can be tuned by choosing different operation point. A way to achieve zero-chirp is also proposed.
     3Due to the complexity of coherent detection, experiment setup associated with high-speed silicon modulators are proposed and built. In order to realize ultra-speed modulator, traveling-wave electrodes are designed and utilized during the silicon chip tapeout.
     4The undercut long-wave infrared waveguide components with air-gap beneath are analyzed and fabricated on the silicon wafer with simple manufacturing process. A1×2MMI splitter based on this structure is presented and measured under the10.6μm wavelength experimental setup. Applications of wireless sensor networks utilizing silicon infrared photonics are put forward at last.
     The work of this thesis mostly focuses on the device performance analysis, experiment improvement and applications of silicon photonics. The thesis is intended to provide a guidance and reference for the following research of photonics technology.
引文
[1]Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[.T]. Optoelectronics, IEE Proceedings J,1986,133(3):191-198.
    [2]Kao K C, Davies T W. SPECTROPHOTOMETRIC STUDIES OF ULTRA LOW LOSS OPTICAL GLASSES.Ⅰ. SINGLE BEAM METHOD[J]. Journal of Physics E-Scientific Instruments,1968,1(11):1063-&.
    [3]Kao C K.1012 bit/s optoelectronics technology [J]. Optoelectronics, IEE Proceedings J, 1986,133(3):230-236.
    [4] http:/www.coming.com/opticalfiber/news and events/news_releases/2007/200703200 1.aspx
    [5]www.intel.com/go/sp
    [6]Jalali B, Yegnanarayanan S, Yoon T, et al. Advances in silicon-on-insulator optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics,1998,4(6): 938-947.
    [7]Bruel M. SILICON-ON-INSULATOR MATERIAL TECHNOLOGY[J]. Electronics Letters,1995,31(14):1201-1202.
    [8]Yang P Y, Stankovic S, Crnjanski J, et al. Silicon photonic waveguides for mid-and long-wave infrared region[J]. Journal of Materials Science-Materials in Electronics,2009, 20:159-163.
    [9]http://www.ibm.com
    [10]Rogers C E, Carini J L, Pechkis J A, et al. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator[J]. Optics Express,2010,18(2):1166-1176.
    [11]Lloret J, Sancho J, Pu M, et al. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator[J]. Opt. Express,2011, 19(13):12402-12407.
    [12]Chow C W, Yeh C H, Lo S M G, et al. Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon-modulator[J]. Opt. Express,2011, 19(12):11312-11317.
    [13]Integrating silicon photonics[J]. Nat Photon,2010,4(8):498-499.
    [14]Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nat Photon,2010,4(8): 492-494.
    [15]Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics,2010, 4(8):495-497.
    [16]Tian Y, Zhang L, Ji R, et al. Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators[J]. Opt. Lett.,2011,36(9): 1650-1652.
    [17]Chen Y, Li Z, Yi H, et al. Microring resonator for glucose sensing applications[J]. Frontiers of Optoelectronics in China,2009,2(3):304-307.
    [18]Zhu S, Liow T Y, Lo G Q, et al. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration[J]. Opt. Express,2011,19(9):8888-8902.
    [19]Koyama F, Iga K. FREQUENCY CHIRPING IN EXTERNAL MODULATORS [J]. Journal of Lightwave Technology,1988,6(1):87-93.
    [20]Kawanishi T, Kogo K, Oikawa S, et al. Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators[J]. Optics Communications,2001, 195(5-6):399-404.
    [21]Courjal N, Dudley J, Porte H. Extinction-ratio-independent method for chirp measurements of Mach-Zehnder modulators[J]. Opt. Express,2004,12(3):442-448.
    [22]Enokihara A, Kawanishi T, Murata H, et al. Measurement of small chirp-parameter for Mach-Zehnder-type optical modulator[J]. Optics Communications,2009,282(21): 4229-4232.
    [23]Kim H, Gnauck a H. Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio[J]. Ieee Photonics Technology Letters,2002,14(3):298-300.
    [24]Courjal N, Porte H. Method for measuring frequency chirping in external Mach-Zehnder modulators[J].11th European Conference on Integrated Optics. Proceedings,2003:127-30 vol.1|2 vol.
    [25]Lian-Shan Y, Qian Y, Willner a E, et al. Measurement of the chirp parameter of electro-optic modulators by comparison of the phase between two sidebands [J]. Optics Letters,2003,28(13):1114-16.
    [26]Bakos J S, Djotyan G P, Ignacz P N, et al. Generation of frequency-chirped laser pulses by an electro-optic amplitude modulator[J]. Optics and Lasers in Engineering,2009,47(1): 19-23.
    [27]Ling L, Samara-Rubio D, Morse M, et al. High speed silicon Mach-Zehnder modulator[J]. Optics Express,2005,13(8).
    [28]Green W M, Rooks M J, Sekaric L, et al. Ultra-compact, low RF power,10 Gb/s siliconMach-Zehnder modulator[J]. Opt. Express,2007,15(25):17106-17113.
    [29]Doerr C R, Raybon G, Zhang L M, et al. Low-Chirp 85-Gb/s Duobinary Modulator in InP Using Electroabsorption Modulators[J]. Ieee Photonics Technology Letters,2009,21(17): 1199-1201.
    [30]Ding J, Chen H, Yang L, et al. Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration[J]. Opt. Express,2012,20(3): 3209-3218.
    [31]Thomson D J, Gardes F Y, Fedeli J M, et al.50-Gb/s Silicon Optical Modulator[J]. Photonics Technology Letters, IEEE,2012,24(4):234-236.
    [32]Akiyama S, Baba T, Imai M, et al.12.5-Gb/s operation with 0.29-V-cm V?L using silicon Mach-Zehnder modulator based-on forward-biased pin diode[J]. Opt. Express,2012,20(3): 2911-2923.
    [33]Li G, Zheng X, Yao J, et al.25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning[J]. Opt. Express,2011,19(21):20435-20443.
    [34]Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators[J]. Nat Photon, 2010,4(8):518-526.
    [35]Zhang L, Li Y C, Yang J Y, et al. Silicon-Based Microring Resonator Modulators for Intensity Modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics,2010, 16(1):149-158.
    [36]Chen L, Doerr C R, Dong P, et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing[J]. Optics Express,2011,19(26):B946-51.
    [37]Ramachandran A, Wang S, Clarke J, et al. A universal biosensing platform based on optical micro-ring resonators[J]. Biosensors& Bioelectronics,2008,23(7):939-944.
    [38]Holst G C, Mchugh S W. Review of thermal imaging system performance[C]. Orlando, FL, USA:SPIE,1992:78-84.
    [39]Labadie L, Wallner O. Mid-infrared guided optics:a perspective for astronomical instruments[J]. Opt. Express,2009,17(3):1947-1962.
    [40]Soref R A, Emelett S J, Buchwald a R. Silicon waveguided components for the long-wave infrared region[J]. Journal of Optics a-Pure and Applied Optics,2006,8(10):840-848.
    [41]Zlatanovic S, Park J S, Moro S, et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[J]. Nat Photon,2010, 4(8):561-564.
    [42]Jalali B. SILICON PHOTONICS Nonlinear optics in the mid-infrared[J]. Nature Photonics,2010,4(8):506-508.
    [43]Raghunathan V, Borlaug D, Rice R R, et al. Demonstration of a mid-infrared silicon Raman amplifier[J]. Optics Express,2007,15(22):14355-14362.
    [44]Liu X, Osgood R M, Vlasov Y A, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides[J]. Nat Photon,2010,4(8):557-560.
    [45]http://www.iguide-irphotonics.com/zh/products/multi-mode-infrared-fiber.html
    [46]www.irphotonics.com
    [47]Spott A, Liu Y, Baehr-Jones T, et al. Silicon waveguides and ring resonators at 5.5 mu m[J]. Applied Physics Letters,2010,97(21):213501-3.
    [48]Spott A, Liu Y, Baehr-Jones T W, et al. Mid-infrared photonics in silicon [M]//VODOPYANOV K L. Nonlinear Frequency Generation and Conversion:Materials, Devices, and Applications X. Bellingham; Spie-Int Soc Optical Engineering.2011.
    [49]Li F, Jackson S D, Grillet C, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared[J]. Optics Express,2011,19(16):15212-15220.
    [50]Shankar R, Leijssen R, Bulu I, et al. Mid-infrared photonic crystal cavities in silicon[J]. Opt. Express,2011,19(6):5579-5586.
    [51]Cheng Z, Chen X, Wong C Y, et al. Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides[J]. Ieee Photonics Journal,2012,4(1):104-113.
    [52]Soref R. Towards silicon-based longwave integrated optoelectronics (LIO)-art. no. 689809 [M]//KUBBY J A R G T. Silicon Photonics Iii.2008:89809-89809.
    [53]Mashanovich G Z, Headley W R, Milosevic M M, et al. Waveguides for mid-infrared group IV photonics[C]. Group IV Photonics (GFP),2010 7th IEEE International Conference on,2010:374-376.
    [54]MiloEvi M M, Matavulj P S, Yang P Y, et al. Rib waveguides for mid-infrared silicon photonics[J]. J. Opt. Soc. Am. B,2009,26(9):1760-1766.
    [55]Maker a J, Armani a M. Low-loss silica-on-silicon waveguides [J]. Optics Letters,2011, 36(19):3729-3731.
    [1]Henry C H. THEORY OF THE LINEWIDTH OF SEMICONDUCTOR-LASERS[J]. Ieee Journal of Quantum Electronics,1982,18(2):259-264.
    [2]M. Lax, "Classical noise V. Noise in self-sustained oscillators" Phys. Rev., vol.160, p.290,1967
    [3]-',"Quantum noise X. Densitmatrix treatment of field and population-difference fluctuations," Phys. Rev., vol.157, p.213,1967.
    [4]Koyama F, Iga K. FREQUENCY CHIRPING IN EXTERNAL MODULATORS[J]. Journal of Lightwave Technology,1988,6(1):87-93.
    [5]Cheng Y, Pan J, Wang Y, et al.40-Gb/s Low Chirp Electroabsorption Modulator Integrated With DFB Laser[J]. Ieee Photonics Technology Letters,2009,21(6):356-358.
    [6]Ido T, Tanaka S, Suzuki M, et al. Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides[J]. Journal of Lightwave Technology,1996,14(9):2026-2034.
    [7]M. Al-Mumayiz, "Microwave interactions of laser diodes and modulators," presented at the London Communications Symp.,2002, LCS062.
    [8]Aoki M, Takashima S, Fujiwara Y, et al. New transmission simulation of EA-modulator integrated DFB-lasers considering the facet reflection-induced chirp[J]. Photonics Technology Letters, IEEE,1997,9(3):380-382.
    [9]Chen R, Cartledge J C. Measurement-based model for the modulation properties of an integrated laser modulator and its application to systems with tight optical filtering[J]. Lightwave Technology, Journal of,2005,23(4):1683-1691.
    [10]M. Al-Mumayiz,"Microwave interactions of laser diodes and modulators," presented at the London Communications Symp.,2002, LCS062.
    [11]Salvatore R A, Sahara R T, Bock M A, et al. Electroabsorption modulated laser for long transmission spans[J]. Ieee Journal of Quantum Electronics,2002,38(5):464-476.
    [12]Devaux F, Sorel Y, Kerdiles J F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter[J]. Lightwave Technology, Journal of,1993, 11(12):1937-1940.
    [13]GAN Xiao-yong,LIU Yong-zhi,ZHANG Xiao-xia,ZHANG Chang-ming "Chirp Investigation for Electrooptic Waveguide Modulators with Mach-Zehnder structure"J.Applied Optics',March 2004',25(2):11-14
    [14]Walklin S, Conradi J. Effect of Mach-Zehnder modulator DC extinction ratio on residual chirp-induced dispersion in 10-Gb/s binary and AM-PSK duobinary lightwave systems[J]. Ieee Photonics Technology Letters,1997,9(10):1400-1402.
    [15]Kawanishi T, Kogo K, Oikawa S, et al. Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators[J]. Optics Communications,2001, 195(5-6):399-404.
    [16]Kim H, Gnauck a H. Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio[J]. Ieee Photonics Technology Letters,2002,14(3):298-300.
    [17]Lian-Shan Y, Qian Y, Willner a E, et al. Measurement of the chirp parameter of electro-optic modulators by comparison of the phase between two sidebands[J]. Optics Letters,2003,28(13):1114-16.
    [18]Courjal N, Dudley J, Porte H. Extinction-ratio-independent method for chirp measurements of Mach-Zehnder modulators [J]. Opt. Express,2004,12(3):442-448.
    [19]Enokihara A, Kawanishi T, Murata H, et al. Measurement of small chirp-parameter for Mach-Zehnder-type optical modulator[J]. Optics Communications,2009,282(21): 4229-4232.
    [20]Bakos J S, Djotyan G P, Ignacz P N, et al. Generation of frequency-chirped laser pulses by an electro-optic amplitude modulator[J]. Optics and Lasers in Engineering,2009,47(1): 19-23.
    [21]Rogers C E, Carini J L, Pechkis J A, et al. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator[J]. Optics Express,2010,18(2):1166-1176.
    [22]Zhang L, Li Y C, Yang J Y, et al. Silicon-Based Microring Resonator Modulators for Intensity Modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics,2010, 16(1):149-158.
    [23]Tsuzuki K, Ishibashi T, Ito T, et al. A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V[J]. Ieee Photonics Technology Letters,2005,17(1):46-48.
    [24]Noguchi K, Mitomi O, Miyazawa H. Millimeter-wave Ti:LiNbO3 optical modulators [J]. Journal of Lightwave Technology,1998,16(4):615-619.
    [25]Soref R A, Bennett B R. ELECTROOPTICAL EFFECTS IN SILICON[J]. IEEE Journal of Quantum Electronics,1987,23(1):123-129.
    [26]Soref R A, Lorenzo J P. ALL-SILICON ACTIVE AND PASSIVE GUIDED-WAVE COMPONENTS FOR LAMBDA=1.3 AND 1.6 MU-M[J]. Ieee Journal of Quantum Electronics,1986,22(6):873-879.
    [27]Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material[J]. Nature,2006,441(7090):199-202.
    [28]Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature,2005,437(7063):1334-1336.
    [29]G.T.Reed and A.P.Knights, silicon Photonics:An introduction, John Wiley& Sons, Chichester, UK,2004.
    [30]Marris D, Cordat A, Pascal D, et al. Design of a SiGe-Si quantum-well optical modulator[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2003,9(3): 747-754.
    [31]Marris D, Cassan E, Vivien L. Response time analysis of SiGe/Si modulation-doped multiple-quantum-well structures for optical modulation[J]. Journal of Applied Physics, 2004,96:6109.
    [32]Feng N-N, Liao S, Feng D, et al. High speed carrier-depletion modulators with 1.4V-cm V-L integrated on 0.25?m silicon-on-insulator waveguides[J]. Opt. Express,2010,18(8): 7994-7999.
    [33]Giguere S R, Friedman L, Soref R A, et al. SIMULATION STUDIES OF SILICON ELECTROOPTIC WAVE-GUIDE DEVICES[J]. Journal of Applied Physics,1990,68(10): 4964-4970.
    [34]Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators[J]. Nat Photon, 2010,4(8):518-526.
    [35]Green W M, Rooks M J, Sekaric L, et al. Ultra-compact, low RF power,10 Gb/s siliconMach-Zehnder modulator[J]. Opt. Express,2007,15(25):17106-17113.
    [36]Spector S, Grein M E, Schulein R T, et al. Compact carrier injection based Mach-Zehnder modulator in silicon[C]. Optical Society of America,2007.
    [37]Akiyama S, Baba T, Imai M, et al.12.5-Gb/s operation of efficient silicon modulator using side-wall grating waveguide[C]. IEEE,2011:14-16.
    [38]Lee K H, Shin D J, Ji H C, et al. 10Gb/s silicon modulator based on bulk-silicon platform for DRAM optical interface[C]. IEEE,2011:1-3.
    [39]Nguyen H C, Sakai Y, Shinkawa M, et al.10 Gb/s operation of photonic crystal silicon optical modulators[J]. Optics Express,2011,19(14):13000-13007.
    [40]Rosenberg J, Green W, Rylyakov A, et al. Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver[C]. IEEE,2011:1-3.
    [41]Akiyama S, Baba T, Imai M, et al.12.5-Gb/s operation with 0.29-V·cm V·L using silicon Mach-Zehnder modulator based-on forward-biased pin diode[J]. Opt. Express,2012,20(3): 2911-2923.
    [42]Thomson D J, Gardes F Y, Hu Y, et al. High contrast 40Gbit/s optical modulation in silicon[J]. Optics Express,2011,19(12):11507-11516.
    [43]Brimont A, Thomson D J, Sanchis P, et al. High speed silicon electro-optical modulators enhanced via slow light propagation[J]. Opt. Express,2011,19(21):20876-20885.
    [44]Watts M R, Zortman W A, Trotter D C, et al. Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator[J]. IEEE Journal of Selected Topics in Quantum Electronics,2010:159-64.
    [45]Liao L, Liu A, Rubin D, et al.40 Gbit/s silicon optical modulator for highspeed applications[J]. Electronics Letters,2007,43(22):1196-1197.
    [46]Dong P, Liao S, Liang H, et al. High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage[J]. Optics Letters,2010,35(19):3246-3248.
    [47]www.silvaco.com
    [48]Zhou H F, Zhao Y, Wang W J, et al. Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches[J]. Optics Express,2009,17(9): 7043-7051.
    [49]http://www.silvaco.com
    [50]Gardes F Y, Reed G T, Emerson N G, et al. A sub-micron depletion-type photonic modulator in Silicon On Insulator[J]. Optics Express,2005,13(22):8845-8854.
    [51]Joseph C. Palais《光纤通信》(第五版),电子工业出版社2011年1月
    [52]Joseph C. Palais《光纤通信》(第五版),电子工业出版社2011年1月
    [53]Joseph C.Palais《光纤通信》(第五版),电子工业出版社2011年1月
    [54]Gnauck a H, Korotky S K, Veselka J J, et al. DISPERSION PENALTY REDUCTION USING AN OPTICAL MODULATOR WITH ADJUSTABLE CHIRP[J]. Ieee Photonics Technology Letters,1991,3(10):916-918.
    [55]Ogawa K, Goi K, Tan Y T, et al. Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps[J]. Optics Express,2011,19(26):B26-31.
    [56]Chen H-W, Peters J D, Bowers J E. Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp[J]. Opt. Express,2011,19(2):1455-1460.
    [57]Chen L, Doerr C R, Dong P, et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing[J]. Optics Express,2011,19(26):B946-51.
    [58]Jain S R, Sysak M N, Kurczveil G, et al. Integration of Hybrid Silicon DFB Laser and Electro-Absorption Modulator using Quantum Well Intermixing[M].2010.
    [1]Kobrinsky M J. On-chip optical interconnects[J]. Intel Technology Journal,2004,8(2): 129-142.
    [2]Barwicz T, Byun H, Gan F, et al. Silicon photonics for compact, energy-efficient interconnects [Invited][J]. Journal of Optical Networking,2007,6(1):63-73.
    [3]Shacham A, Bergman K. Building ultralow-latency interconnection networks using photonic integration[J]. Micro, IEEE,2007,27(4):6-20.
    [4]Beausoleil R, Ahn J, Binkert N, et al. A nanophotonic interconnect for high-performance many-core computation[C]. IEEE,2008:182-189.
    [5]Krishnamoorthy a V, Lexau J, Zheng X, et al. Optical interconnects for present and future high-performance computing systems[C]. IEEE,2008:175-177.
    [6]Li Y C, Zhang L, Song M P, et al. Coupled-ring-resonator-based silicon modulator for enhanced performance[J]. Optics Express,2008,16(17):13342-13348.
    [7]Sacher W D, Poon J K S. Dynamics of microring resonator modulators[J]. Optics Express, 2008,16(20):15741-15753.
    [8]Xu Q F, Manipatruni S, Schmidt B, et al.12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Optics Express,2007,15(2):430-436.
    [9]Zhang L, Yang J Y, Song M, et al. Microring-based modulation and demodulation of DPSK signal[J]. Optics Express,2007,15(18):11564-11569.
    [10]Zhang L, Yang J Y, Li Y, et al. Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings[J]. Optics Letters,2008, 33(13):1428-1430.
    [11]Zhang L, Li Y, Yang J, et al. Performance and design guidelines for silicon-based micro-ring modulators in 10-Gbit/s systems[C]. Optical Society of America,2007.
    [12]Zhang L, Li Y, Yang J Y, et al. Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK[C]. Optical Society of America,2008.
    [13]Marcatili E. Bends in optical dielectric guides[J]. Bell Syst. Tech. J,1969,48(7): 2103-2132.
    [14]Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems[J]. Photonics Technology Letters, IEEE,2002,14(4):483-485.
    [15]Darmawan S, Chin M. Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems[J]. JOSA B,2006,23(5):834-841.
    [16]Yang J, Wang F, Jiang X, et al. Linearization of Mach-Zehnder modulator using microring-based all-pass filter[J]. Chin. Opt. Lett.,2005,3(6):333-335.
    [1]Devaux F, Sorel Y, Kerdiles J F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter[J]. Lightwave Technology, Journal of,1993, 11(12):1937-1940.
    [2]Kotaki Y, Soda H. Time-resolved chirp measurement of modulator-integrated DFB LD by using a fiber interferometer[C]. Optical Society of America,1995.
    [3]Dorrer C, Kang I. Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms[J]. Optics Letters,2002,27(15): 1315-1317.
    [4]Kawanishi T, Kogo K, Oikawa S, et al. Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators[J]. Optics Communications,2001, 195(5-6):399-404.
    [5]Courjal N, Dudley J, Porte H. Extinction-ratio-independent method for chirp measurements of Mach-Zehnder modulators[J]. Opt. Express,2004,12(3):442-448.
    [6]Oikawa S, Kawanishi T, Izutsu M. Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation[J]. Photonics Technology Letters, IEEE,2003,15(5):682-684.
    [7]Lian-Shan Y, Qian Y, Willner a E, et al. Measurement of the chirp parameter of electro-optic modulators by comparison of the phase between two sidebands[J]. Optics Letters,2003,28(13):1114-16.
    [8]Enokihara A, Kawanishi T, Murata H, et al. Measurement of small chirp-parameter for Mach-Zehnder-type optical modulator[J]. Optics Communications,2009,282(21): 4229-4232.
    [9]Chen L, Doerr C R, Dong P, et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing[J]. Optics Express,2011,19(26):B946-51.
    [10]Doerr C R, Buhl L L, Baeyens Y, et al. Packaged Monolithic Silicon 112-Gb/s Coherent Receiver[J]. Photonics Technology Letters, IEEE,2011,23(12):762-764.
    [11]T.Okoshi and K.Kikuchi, Cohenrent Optical Fiber Communications. BOSTON, ma: Kluwer,1988.
    [12]Derr F. COHERENT OPTICAL QPSK INTRADYNE SYSTEM-CONCEPT AND DIGITAL RECEIVER REALIZATION[J]. Journal of Lightwave Technology,1992,10(9): 1290-1296.
    [13]Leven A, Kaneda N, Koch U V, et al. Coherent receivers for practical optical communication systems[C]. Optical Society of America,2007.
    [14]Sun H, Wu K-T, Roberts K. Real-time measurements of a 40 Gb/s coherent system[J]. Optics Express,2008,16(2):873-879.
    [15]Doerr C R, Winzer P J, Chen Y-K, et al. Monolithic Polarization and Phase Diversity Coherent Receiver in Silicon[J]. Journal of Lightwave Technology,2010,28(4):520-525.
    [16]Yamashita S, Okoshi T. SUPPRESSION OF COMMON-MODE BEAT NOISE FROM OPTICAL AMPLIFIERS USING A BALANCED RECEIVER[J]. Electronics Letters, 1992,28(21):1970-1972.
    [17]Ryu S, Horiuchi Y. USE OF AN OPTICAL AMPLIFIER IN A COHERENT RECEIVER[J]. Ieee Photonics Technology Letters,1991,3(7):663-665.
    [18]Carena A, Curri V, Poggiolini P, et al. Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK[J]. Ieee Photonics Technology Letters,2008,20(13-16): 1281-1283.
    [19]Ip E, Lau a P T, Barros D J F, et al. Coherent detection in optical fiber systems (vol 16, pg 753,2008)[J]. Optics Express,2008,16(26):21943-21943.
    [20]Chen H-W, Peters J D, Bowers J E, et al.25GHz Hybrid Silicon Mach-Zehnder Modulator using High-Speed Push-Pull Slotline Design[M].2011.
    [21]Chen H-W, Kuo Y-H, Bowers J E. High speed hybrid silicon evanescent Mach-Zehnder modulator and switch[J]. Optics Express,2008,16(25):20571-20576.
    [22]Chen H-W, Kuo Y-H, Bowers J E. A Hybrid Silicon-AlGaInAs Phase Modulator[J]. Ieee Photonics Technology Letters,2008,20(21-24):1920-1922.
    [23]Shin J, Ozturk C, Sakamoto S R, et al. Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators[J]. Ieee Transactions on Microwave Theory and Techniques,2005,53(2):636-643.
    [24]Akiyama S, Itoh H, Sekiguchi S, et al. InP-Based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes [J]. Journal of Lightwave Technology,2008, 26(5-8):608-615.
    [25]Witzens J, Baehr-Jones T, Hochberg M. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links[J]. Optics Express, 2010,18(16):16902-16928.
    [26]Hui K W, Chiang K S, Wu B Y, et al. Electrode optimization for high-speed traveling-wave integrated optic modulators[J]. Journal of Lightwave Technology,1998, 16(2):232-238.
    [27]Kawano K, Kitoh T, Jumonji H, et al. SPECTRAL-DOMAIN ANALYSIS OF COPLANAR WAVE-GUIDE TRAVELING-WAVE ELECTRODES AND THEIR APPLICATIONS TO TI-LINBO3 MACH-ZEHNDER OPTICAL MODULATORS [J]. Ieee Transactions on Microwave Theory and Techniques,1991,39(9):1595-1601.
    [28]Ding J, Chen H, Yang L, et al. Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration[J]. Optics Express,2012,20(3): 3209-18.
    [29]Manipatruni S, Preston K, Chen L, et al. Ultra-low voltage, ultra-small mode volume silicon microring modulator[J]. Opt. Express,2010,18(17):18235-18242.
    [30]Ding J, Chen H, Yang L, et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator[J]. Opt. Express,2012,20(7):7081-7087.
    [31]W.Bogaerts, S.K.Selvaraja and P.Dumon, ePIXfab, "The silicon photonics platform," http://www.epixfab.eu
    [32]www.altera.com
    [33]www.altera.com
    [34]http://ggb.com/
    [1]E. D. Palik, Handbook of Optical Constants of Solids.(New York:Academic,1985), Vol.1.
    [2]Soref R A, Emelett S J, Buchwald a R. Silicon waveguided components for the long-wave infrared region[J]. Journal of Optics a-Pure and Applied Optics,2006,8(10):840-848.
    [3]Yang P Y, Stankovic S, Crnjanski J, et al. Silicon photonic waveguides for mid-and long-wave infrared region[J]. Journal of Materials Science-Materials in Electronics,2009, 20:159-163.
    [4]Li F, Jackson S D, Grillet C, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared[J]. Optics Express,2011,19(16):15212-15220.
    [5]Spott A, Liu Y, Baehr-Jones T W, et al. Mid-infrared photonics in silicon [M]//VODOPYANOV K L. Nonlinear Frequency Generation and Conversion:Materials, Devices, and Applications X. Bellingham; Spie-Int Soc Optical Engineering.2011.
    [6]Soref R A, Schmidtchen J, Petermann K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 [J]. Quantum Electronics, IEEE Journal of,1991,27(8):1971-1974.
    [7]Zhou J, Shen H, Jia R, et al. Uneven splitting-ratio 1×2 multimode interference splitters based on silicon wire waveguides[J]. Chin. Opt. Lett.,2011,9(8):082303-082303.
    [8]Soldano L B, Pennings E C M. Optical multi-mode interference devices based on self-imaging:Principles and applications[J]. Lightwave Technology, Journal of,1995, 13(4):615-627.
    [9]N.S.Kapany and J. J. Burke, Optical waveguides, New York:Academic,1972
    [10]Kim G, Kang B, Lee S, et al. A multimode-interferenced electrooptic TE/TM mode splitter[C]. IEEE,1999:565-566 vol.2.
    [11]Leuthold J, Joyner C H. Multimode interference couplers with tunable power splitting ratios[J]. Journal of Lightwave Technology,2001,19(5):700.
    [12]www.rsoftdesign.com
    [13]E.D.Palik,Handbook of Optical Constants of Solids(Academic,1985),Vol.1.
    [14]G.T.Reed, "An introduction to silicon photonics," in Optical Interconnects:the Silicon Approach Springer,2006,pp.161-204.
    [15]Soref R. Towards silicon-based longwave integrated optoelectronics (LIO)-art. no. 689809 [M]//KUBBY J A R G T. Silicon Photonics Iii.2008:89809-89809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700