局域表面等离子体增强的氮化硅器件电致发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基光互连技术是指利用现行成熟的互补金属氧化物半导体(CMOS)工艺研制硅基光子器件,代替电子器件实现信息的高速传输。而高效硅基光源的制备是硅基光互连应用中的难点之一,其中,氮化硅薄膜由于其优异的发光性能,成为了制备硅基光源的备选材料之一。然而,氮化硅薄膜基器件的电致发光效率依然较低,为此,人们在改善氮化硅薄膜基电致发光器件效率上做了大量的努力。
     本文通过在氮化硅薄膜基器件中引入银纳米颗粒实现了器件电致发光效率的提升,同时对器件电致发光的来源问题进行了详细的研讨,并在此基础上实现了器件电致发光波长的调制。本文的主要创新结果如下:
     (1)解决了氮化硅薄膜基器件电致发光的来源问题。通过对氮化硅薄膜基器件电致发光峰位以及不同注入电流/电压下器件的载流子输运机制的变化的详细研究,解决了氮化硅薄膜基器件两个电致发光峰的来源问题。其中,短波长的峰(P1峰)来源于陷阱在K中心的电子和位于=N-带尾态上的空穴之间的复合,而长波长的峰(P2峰)则来源于位于导带带尾态的电子和局域在≡SiO中心的空穴之间的复合。
     (2)提出了氮化硅薄膜基质中激子与局域表面等离子体(LSPs)之间的耦合模型,并详细研究了Purcell因子与银纳米颗粒尺寸、氮化硅薄膜基质中激子的能量以及激子与LSPs之间的距离等参数之间的关系。并且在确定这些参数之间关系的基础下,进一步通过上述耦合模型计算获得了氮化硅薄膜中激子的平均位置。
     (3)通过银纳米颗粒尺寸的优化,实现了氮化硅薄膜基器件电致发光效率近一个数量级的提升。通过对影响器件外量子效率的因素的分析,确定其电致发光效率的提升主要源自器件光抽取效率的提升。对于银纳米颗粒置于氮化硅薄膜上面的结构器件,光抽取效率的提升主要源自器件ITO电极的表面粗糙化。而对于银纳米颗粒置于氮化硅薄膜下面的结构器件,由局域表面等离子体共振引起的背散射的增强对光抽取效率的提升也有一定贡献。同时,内量子效率的提高和载流子注入效率的改善也对器件电致发光效率的提升有一定的贡献。
     (4)提出了一种研究引起器件效率衰减现象主要原因的方法。在参比样器件中我们观察到了电致发光效率衰减的现象,而对氮化硅薄膜进行高温长时间热处理或加入银纳米颗粒的器件中,这一效率衰减现象得到了有效较小。我们通过对产生光功率主导过程的分析(Z因子的确定),确定了引起这一效率衰减现象的主要原因是Auger非辐射复合过程,而载流子过注入对这一效率衰减作用甚微。
     (5)通过银纳米颗粒尺寸以及注入电流/电压的调节实现了氮化硅薄膜基器件电致发光波长的调制,并确定了引起器件电致发光波长移动以及P1、P2峰相对强度变化的主要原因。通过对银纳米颗粒周围增强的局域电场强度进行计算,确定了引起P1峰和P2峰峰位和强度随银纳米颗粒尺寸变化的主要原因为银纳米颗粒周围增强的局域电场强度随银纳米颗粒尺寸的变化。此外,注入电流对电致发光波长也有一定的调制作用,但效果没有银纳米颗粒尺寸的调节显著。
Silicon opto-interconnection referred to the replacement of electronic devices by silicon photonic devices using existing complementary metal-oxide semiconductor (CMOS) techniques can achieve the higher transmission of information. One of the application difficulties of the silicon opto-interconnection is the fabrication of silicon-based light source with high efficiency, which is also the hotspot of the current research. Silicon nitride film is one of the candidate materials for the silicon-based light source due to its promising luminescence properties, and has attracted an extensive research interest in recent years. However, the external quantum efficiency of silicon nitride based light-emitting devices (SiNx-based LEDs) is still low, which prevent it from being used as the silicon-based light sources. Consequently, much effort have been made on improving the electroluminescence (EL) performance of SiNx-based LEDs.
     In this thesis, the EL efficiency of SiNx-based LEDs is improved by introducing a silver nanostructures layer into the device structure. Meanwhile, the origin of the EL of SiNx-based LEDs is discussed systematically, from which the tailoring of its EL wavelength is achieved. The primary achievement of this work is described as follow:
     (1) The origin of the EL of SiNx-based LEDs is discussed systematically by the evolution of the EL peaks and carrier transport mechanism on the injected current/voltage, and the band diagram is also provided. Two EL peaks (P1and P2) together with their blue-shift have been observed in our SiNx-based LEDs. We attribute the peak with shorter wavelength to the recombination of the electrons confined at the K center and the holes located at the band tail formed by=N-. While, the one with longer wavelength is originated from the recombination of the electrons located at conduction band tail and the holes confined in the center of-Si0.
     (2) A possible coupling mechanism between the localized surface plasmons and excitons in silicon nitride is provided. And the relationship between the Purcell factor and the deposition parameters is investigated in detail, including the average diameter of silver nanostructures, the distance between the metal nanostructures, and the emission wavelength of the luminescence matrix. Finally, the average position of excitons in the silicon nitride is estimated based on the determination of the above relationships.
     (3) An almost one order of magnitude enhancement of EL efficiency is achieved by the optimization of the sizes of silver nanostrutcures, which is mainly originated from the improvement of the light extraction efficiency (LEE) by the addition of silver nanostructures. For the devices with silver nanostructures onto the silicon nitride, this improved LEE is originated from the surface roughening of ITO electrode by the addition of silver nanostrutcuers. And for the devices with silver nanostructures underneath the silicon nitride, the increased back-scattering by localized surface plasmon resonance also contributes to the improved LEE. Meanwhile, the improvements of internal quantum efficiency and carrier injection efficiency also have an instructive contribution to the improved external quantum efficiency.
     (4) A possible method on the determination of the main origin of the efficiency droop phenomenon is provided. This phenomenon can be observed in our reference devices, which can be reduced significantly by high-temperature thermal annealing process and/or the addition of silver nanostructures. From the identification of the dominant process contributing to the output power of light as well as the carrier injection conditions for the devices with and without Ag nanostructures, we attributed this phenomenon mainly to the nonradiative Auger recombination. And the overflow of carriers has a negligible contribution on this phenomenon.
     (5) The tailoring of the EL wavelength of SiNx-based LEDs is achieved by the modulation of the silver nanostructure sizes and/or the injected current/applied voltage. Meanwhile, the wavelength shift of EL peaks and the relative intensity changes of P1peak and P2peak is originated from the weakned localized electrical fields surrounding silver nanostrutuctrues with the increase of silver nanostrutcures. Moreover, the modulation of EL peaks by the size of silver nanoparticles is much more significant than that by injected current.
引文
[1]http://www.columbia.edu/cu/computinghistory/eniac.html
    [2]http://www.aps.org/programs/outreach/history/historicsites/transistor.cfm
    [3]http://en.wikipedia.org/wiki/Integrated_circuit
    [4]http://en.wikipedia.org/wiki/Jack_Kilby
    [5]http://www.nobelprize.org/nobel_prizes/physics/laureates/2000/
    [6]http://en.wikipedia.org/wiki/Robert_Noyce
    [7]http://en.wikipedia.org/wiki/Moore%27s_law
    [8]http://commons.wikimedia.org/wiki/File:Moores_law_(1970-2010).PNG
    [9]http://www.theregister.co.uk/2012/09/13/mark_bohr_at_idf/print.html
    [10]http://www.itrs.net/Links/2012ITRS/2012Chapters/20120verview.pdf
    [11]J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R.A. Athale. Optical interconnections for VLSI systems. Proc. IEEE,1984,72(7):850-866.
    [12]M. Paniccia. Integrating silicon photonics. Nature Photon.,2010,4(8):498-499.
    [13]http://optics.org/indepth/3/2/4
    [14] http://downloadsquad.switched.com/2010/05/05/intels-light-peak-interconnect-brings-10-gig abits-per-second-to/
    [15]H.-S. Han, S.-Y. Seo, J.H. Shin. Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide. J. Appl. Phys.,2001,79(27):4568-4570.
    [16]M. H. Nayfeh, N. Barry, J. Therrien, O. Akcakir, E. Gratton, G. Belomoin. Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl. Phys. Lett.,2001, 78(8):1131-1133.
    [17]O. Boyraz, B. Jalali. Demonstration of a silicon Raman laser. Opt. Express,2004, 12(21):5269-5273.
    [18]K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Express,2001,26(23):1888-1890.
    [19]Y. A. Vlasov, S. J. McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express,2004,12(8):1622-1631.
    [20]M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater.,2011,11(2): 148-154.
    [21]A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature,2004,427:615-618.
    [22]Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature,2005,435:325-327.
    [23]G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nature Photon.,2010,4(8):518-526.
    [24]T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett.,2005,87(15): 151112.
    [25]J. Yao, Z. Sun, L. Zhong, D. Natelson, J. M. Tour. Resistive switches and memories from silicon oxide. Nano Lett.,2010,10(10):4105-4110.
    [26]M. Oehme, J. Werner, E. Kasper, M. Jutzi, M. Berroth. High bandwidth Ge p-i-n photodetector integrated on Si. Appl. Phys. Lett.,2006,89(7):071117.
    [27]Z. Yu, M. Aceves-Mijares. A ultraviolet-visible-near infrared photodetector using nanocrystalline Si superlattice. Appl. Phys. Lett.,2009,95(8):081101.
    [28]J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photon., 2010,4(8):527-534.
    [29]S. Guhal, N. A. Bojarczuk. Ultraviolet and violet GaN light emitting diodes on silicon. Appl. Phys. Lett.,1998,72(4),415-417.
    [30]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater.,2004, 3(9):601-605.
    [31]M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, S.-J. Park. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater.,2008,20(7):1253-1257.
    [32]Editorial. Simply silicon. Nature Photon.,2010,4(8):491.
    [33]D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nature Photon.,2010,4(8): 511-517.
    [34]刘恩科.《半导体物理》.北京:国防工业出版社,1994。
    [35]L. Pavesi. Routes toward silicon-based lasers. Materials Today,2005,8(1):18-25.
    [36]L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett.,1990,57(10):1046-1048.
    [37]A. Loni, A.J. Simons,T. I. Cox, P. D. J. Calcott, L.T. Canham. Electroluminescent porous silicon device with an external quantum efficiency greater than 0.1% under CW operation. Electron. Lett.,1995,31(15):1288-1289.
    [38]P. M. Fauchet. Photoluminescence and electroluminescence from porous silicon. J. Lumin., 1996,70(1-6):294-309.
    [39]E. J. Teo, M. B. H. Breese, A. A. Bettiol, M. Dharmalingam, F. Champeaux, F. Watt, D. J. Blackwood. Multicolor photoluminescence from porous silicon using focused high-energy helium ions. Adv. Mater.,2006,18(1):51-55.
    [40]Z. Xie, D. J. Blackwood. White electroluminescence from ITO/porous silicon junctions. J. Lumin.,2013,134:67-70.
    [41]W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood. An efficient room-temperature silicon-based light-emitting diode. Nature,2001,410:192-194.
    [42]K. P. Homewood, M. A. Lourenco. Light from Si via dislocation loops. Mater. Today, 2005,8:34-39.
    [43]M. Milosavljevic, G. Shao, M. Lourenco, R. Gwilliam, K. Homewood. Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes. J. Appl. Phys.,2005,97(7):073512-073517.
    [44]M. Lourenco, K. Homewood. Crystalline-silicon-based infra-red LEDs and routes to laser diodes. Thin Solid Films,2011,519(24):8441-8445.
    [45]L. Xiang, D. Li, L. Jin, S. Wang, D. Yang. Enhancement of room temperature dislocation-related photoluminescence of electron irradiated silicon. J. Appl. Phys.,2013, 113(3):033518.
    [46]N. A. Drozdov, A. A. Patrin, V. D. Tkachev. Recombination Radiation on Dislocations in Silicon. JETP Lett.,1976,23(11):597-599.
    [47]T. Kawazoe, MA. Mueed, M. Ohtsu. Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process. Appl. Phys. B:Lasers and Optics,2011,104:747-754.
    [48]T. Kawazoe, M. Ohtsu, K. Akahane, N. Yamamoto. Si homojunction structured near-infrared laser based on a phonon-assisted process. Appl. Phys. B:Lasers and Optics, 2012,107:659-663.
    [49]T. Yatsui, T. Imoto, T. Mochizuki, K. Kitamura, T. Kawazoe. Dressed-photon-phonon (DPP)-assisted visible- and infrared-light water splitting. NPG Scientific Reports,2014,4: 4561.
    [50]R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express,2005,13(11):4341-4349.
    [51]C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photon.,2009,3(4): 216-219.
    [52]M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta. Silicon-chip-based ultrafast optical oscilloscope. Nature,2008,456(7218):81-85.
    [53]J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nature Photon.,2010,4(8): 535-544.
    [54]P. Koonath, D. R. Solli, B. Jalali. Continuum generation and carving on a silicon chip. Appl. Phys. Lett.,2007,91(6):061111.
    [55]B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides. Nature Photon.,2009,3(4):206-210.
    [56]B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O'Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt. Express,2010,18(8):7770-7781.
    [57]H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nature Photon.,2007,1(4):232-237.
    [58]A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers. Electrically pumped hybrid AlGainAs-silicon evanescent laser. Opt. Express,2006,14(20):9203-9210.
    [59]A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers. Integrated AlGaInAs-silicon evanescent race track laser and photodetector. Opt. Express,2007,15(5): 2315-2322.
    [60]J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, R. Baets. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express,2007,15(11):6744-6749.
    [61]A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, J. E. Bowers. A distributed feedback silicon evanescent laser. Opt. Express,2008,16(7):4413-4419.
    [62]D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, J. E. Bowers. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt. Express,2009,17(22):20355-20364.
    [63]Physics of Group IV Elements and Ⅲ-Ⅴ Compounds, edited by O. Madelung, Landolt-Bornstein:Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin,1982), vol.17a.
    [64]J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express,2007, 15(18):11272-11277.
    [65]Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, L. C. Kimerling. Strain-induced direct bandgap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett,2003,82(13): 2044-2046.
    [66]J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, L. C. Kimerling. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications. Appl. Phys. Lett.,2005,87(1):011110.
    [67]C. G. Van de Walle. Band lineups and deformation potentials in model-solid theory. Phys. Rev. B,1989,39(3):1871-1883.
    [68]S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi. Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Opt. Express,2009,17(12):10019-10024.
    [69]X. Sun, J. Liu, L. C. Kimerling, J. Michel. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett.,2009,34(8):1198-1200.
    [70]J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett.,2010,35(5):679-681.
    [71]J. Valenta, R. Juhasz, J. Linnros. Photoluminescence spectroscopy of single silicon quantum dots. Appl. Phys. Lett.,2002,80(6),1070-1072.
    [72]F. Iori, E. Degoli, R. Magri, I. Marri, G. Cantele, D. Ninno, F. Trani, O. Pulci, S. Ossicini. Engineering silicon nanocrystals:Theoretical study of the effect of codoping with boron and phosphorus. Phys. Rev. B,2007,76(8):085302.
    [73]X. Chen, X. Pi, D. Yang. Critical Role of Dopant Location for P-Doped Si Nanocrystals. J. Phys. Chem. C,2011,115(3):661-666.
    [74]X. Pi, X. Chen, Y. Ma, D. Yang. Optical absorption and emission of nitrogen-doped silicon nanocrystals. Nanoscale,2011,3(11):4584-4588.
    [75]A. Gupta, H. Wiggers. Freestanding silicon quantum dots:origin of red and blue luminescence. Nanotechnology,2011,22(5):055707.
    [76]M. Fukuda, M. Fujii, H. Sugimoto, K. Imakita, S. Hayashi. Surfactant-free solution-dispersible Si nanocrystals surface modification by impurity control. Opt. Lett., 2011,36(20):4026-4028.
    [77]K.-Y. Cheng, R. Anthony, U. R. Kortshagen, R. J. Holmes. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett.,2011,11(5):1952-1956.
    [78]X. Pi. Doping silicon nanocrystals with boron and phosphorus. J. Nanomater.,2012, 2012(2012):912903.
    [79]M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, J. G. C. Veinot. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano,2013,7(3): 2676-2685.
    [80]M. Fujii, H.i Sugimoto, M. Hasegawa, K. Imakita. Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell—Raman scattering and X-ray photoelectron spectroscopic studies. J. Appl. Phys.,2014,115(8):084301.
    [81]F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss. Silicon nanostructures for photonics and photovoltaics. Nature Nanotech.,2014,9(1):19-32.
    [82]M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, S. Hayashi. Below bulk-band-gap photoluminescence at room temperature from heavily P-and B-doped Si nanocrystals. J. Appl. Phys.,2003,94(3):1990-1995.
    [83]M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, S. Hayashi. Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities. Appl. Phys. Lett.,2004,85(7):1158-1160.
    [84]L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, F. Priolo. Optical gain in Si nanocrystals. Nature,2000,408(23):440-444.
    [85]M.-S. Yang, K.-S. Cho, J.-H. Jhe, S.-Y. Seo, J. H. Shin, K. J. Kim, D. W. Moon. Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals. Appl. Phys. Lett., 2004,85(16):3408-3410.
    [86]P. M. Fauchet. Light emission from Si quantum dots. Mater. Today,2005,8(1):26-33.
    [87]G.-R. Lin, C.-J. Lin, C.-K. Lin. Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids. Opt. Express,2007,15(5): 2555-2563.
    [88]G.-R. Lin, C.-J. Lin, H.-C. Kuo. Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array. Appl. Phys. Lett.,2007,91(9):093122.
    [89]G.-R. Lin, Y.-H. Pai, C.-T. Lin, C.-C. Chen. Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes. Appl. Phys. Lett.,2010,96(26):263514.
    [90]B.-H. Lai, C.-H. Cheng, Y.-H. Pai, G.-R. Lin. Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring. Opt. Express,2010,18(5):4449-4456.
    [91]Y.-B. Chen, Y. Ren, R.-L. Xiong, Y.-Y. Zhao, M. Lu. Modulation of the photoluminescence of Si quantum dots by means of CO2 laser pre-annealing. Appl. Surf. Sci.,2010,256(16): 5116-5119.
    [92]W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, T. Gregorkiewicz. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech.,2010,5(12):879-884.
    [93]A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, L. Pavesi. Graded-size Si quantum dot ensembles for efficient light-emitting diodes. Appl. Phys. Lett.,2011,99(18): 181108.
    [94]S. Hu, J. Zhang, J. Yang, J. Liu, S. Cao. Theoretical analysis of the formation of face-centered cubic Si nanocrystals by magnetron sputtering. Appl. Phys. Lett.,2011,99(15): 151901.
    [95]K. W. Chan, M. Mottonen, A. Kemppinen, N. S. Lai, K. Y. Tan, W. H. Lim, A. S. Dzurak. Single-electron shuttle based on a silicon quantum dot. Appl. Phys. Lett.,2011,98(21): 212103.
    [96]W. Mustafeez, D. Lee, C. Grigoropoulos, A. Salleo. Precipitation of silicon nanoclusters by laser direct-write. Opt. Express,2011,19(16):15452-15458.
    [97]I. Balberg. Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J. Appl. Phys.,2011,110(6):061301.
    [98]T. Nakamura, S. Adachi, M. Fujii, K. Miura, S. Yamamoto. Phosphorus and boron codoping of silicon nanocrystals by ion implantation:Photoluminescence properties. Phys. Rev. B, 2012,85(4),045441.
    [99]M. Fujii, H. Sugimoto, M. Hasegawa, K. Imakita. Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell—Raman scattering and X-ray photoelectron spectroscopic studies. J. Appl. Phys.,2014,115(8),084301.
    [100]V. A. Volodin, M. D. Efremov, V. A. Gritsenko, S. A. Kochubei. Raman study of silicon nanocrystals formed in SiNx films by excimer laser or thermal annealing. Appl. Phys. Lett., 1998,73(9):1212-1214.
    [101]N.-M. Park, C.-J. Choi, T.-Y. Seong, S.-J. Park. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys. Rev. Lett.,2001,86(7):1355-1357.
    [102]N.-M. Park, T.-S. Kim, S.-J. Park. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett.,2001,78(17):2575-2577.
    [103]N.-M. Park, S.-H. Kim, G. Y. Sung, S.-J. Park. Growth and size control of amorphous silicon quantum dots using SiH4/N2 plasma. Chem. Vapor Dep.,2002,8(6):254-256.
    [104]Y. Q. Wang, Y. G. Wang, L. Cao, Z. X. Cao. High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride. Appl. Phys. Lett.,2003, 83(17):3474-3476.
    [105]T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, C.-J. Choi. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett.,2004,85(22):5355-5357.
    [106]Z. Pei, A. Y. K. Su, H. L. Hwang, H. L. Hsiao. Room temperature tunneling transport through Si nanodots in silicon rich silicon nitride. Appl. Phys. Lett.,2005,86(6):063503.
    [107]B.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, S.-J. Park. Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4,. Appl. Phys. Lett.,2005, 86(9):091908.
    [108]L.-Y. Chen, W.-H. Chen, F. C.-N. Hong. Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix. Appl. Phys. Lett.,2005,86(19): 193506.
    [109]L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli. Light-emitting silicon nanocrystals and photonic structures in silicon nitride. IEEE Sel. Topics Quan. Electron.,2006,12(6):1628-1635.
    [110]G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, C. Huh. Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes. IEEE Sel. Topics Quan. Electron.,2006,12(6):1545-1555.
    [111]T.-W. Kim, C.-H. Cho, B.-H. Kim, S.-J. Park. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using S1H4 and NH3. Appl. Phys. Lett.,2006, 88(12):123102.
    [112]V. Em. Vamvakas, S. Gardelis. FTIR. characterization of light emitting Si-rich nitride films prepared by low pressure chemical vapor deposition. Suf. Coatings Tech.,2007,201(22-23): 9359-9364.
    [113]J. Warga, R. Li, S. N. Basu, L. Dal Negro. Electroluminescence from silicon-rich nitride/silicon superlattice structures. Appl. Phys. Lett.,2008,93(15):151116.
    [114]Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, M. Yang, J. I. Wong, Z. Liu, Y. C. Liu, S. Fung. Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix. Appl. Phys. Lett.,2008,93(2):023122.
    [115]G. Scardera, T. Puzzer, G. Conibeer, M. A. Green. Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. J. Appl. Phys.,2008,104(10):104310.
    [116]S. M. Kang, S. G. Yoon, S.-W. Kim, D. H. Yoon. Luminescence tuning of amorphous Si quantum dots prepared by plasma-enhanced chemical vapor deposition. J. Nanosci. Nanotech.,2008,8(5):2540-2543.
    [117]L. V. Mercaldo, P. D. Veneri, E. Esposito, E. Massera, I. Usatii, C. Privato. PECVD in-situ growth of silicon quantum dots in silicon nitride from silane and nitrogen. Mater. Sci. Engin. B,2009,159-160:77-79.
    [118]F. Delachat, M. Carrada, G. Ferblantier, J.-J. Grob, A. Slaoui. Properties of silicon nanoparticles embedded in SiNx deposited by microwave-PECVD. Nanotechnology,2009, 20(41):415608.
    [119]Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, S. Fung. Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions. Appl. Phys. Lett.,2009,94(4):041102.
    [120]Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, S. Fung. Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing. J. Appl. Phys.,2009,105(12),123101.
    [121]Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, Z. Liu, M. Yang, J. I. Wong, W. P. Goh, F. R. Zhu, S. Fung. Quenching and reactivation of electroluminescence by charge trapping and detrapping in Si-implanted silicon nitride thin film. IEEE Trans. Electron. Devices,2009, 56(12):3212-3217.
    [122]Z. H. Cen, T. P. Chen, L. Ding, J. D. Ye, Y. Liu, Z. Liu, M. Yang, J. I. Wong, F. R. Zhu, S. Fung. Optical Transmission and photoluminescence of silicon nitride thin films implanted with Si ions. Electrochem. Solid-State Lett.,2009,12(2):H38-H40.
    [123]C.-T. Lin, C. Liu, G.-R. Lin. Luminescent-wavelength tailoring silicon-rich silicon nitride LED. Chinese Opt. Lett.,2009,7(4):277-279.
    [124]B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti, G. Bremond, D. Maestre, O. Palais. Effect of total pressure on the formation and size evolution of silicon quantum dots in silicon nitride films. Appl. Phys. Lett.,2010,96(18):183105.
    [125]Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, W. P. Goh. Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film. Opt. Express,2010,18(19):20439-20444.
    [126]Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, S. Fung. Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films. Appl. Phys. A,2011,104(1):239-245.
    [127]Y.-H. So, S. Huang, G. Conibeer, M. A. Green. Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films,2011,519(16):5408-5412.
    [128]T. A. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu. Bright visible light extraction from amorphous silicon nitride heterojunction pin diode. Electrochem. Solid-State Lett.,2011,14 (8):H330-H332.
    [129]D. Di, I. Perez-Wurfl, L. Wu, Y. Huang, A. Marconi, A. Tengattini, A. Anopchenko, L. Pavesi, G. Conibeer. Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes. Appl. Phys. Lett.,2011,99(25):251113.
    [130]C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, G.-R. Lin. Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films. Appl. Phys. Lett.,2011,99(24):243501.
    [131]B. M. Monroy, O. Cregut, M. Gallart, B. Honerlage, P. Gilliot. Optical gain observation on silicon nanocrystals embedded in silicon nitride under femtosecond pumping. Appl. Phys. Lett.,2011,98(26):261108.
    [132]P. R. J. Wilson, T. Roschuk, K. Dunn, E. N. Normand, E. Chelomentsev, O. H. Y. Zalloum, J. Wojcik, P. Mascher. Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters. Naoscale Res. Lett.,2011,6(1):168.
    [133]R. Huang, J. Song, X. Wang, Y. Q. Guo, C. Song, Z. H. Zheng, X. L. Wu, P. K. Chu. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride. Opt. Lett.,2012,37(4):692-694.
    [134]W. A. Su, W. Z. Shen. A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application. Appl. Phys. Lett.,2012,100(7):071111.
    [135]M.-S. Yang, K.-S. Cho, J.-H. Jhe, S.-Y. Seo, J. H. Shin, K. J. Kim, D. W. Moon. Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals. Appl. Phys. Lett., 2004,85(16):3408-3410.
    [136]Y. Berencen, Josep Carreras, O. Jambois, J. M. Ramirez, J. A. Rodriguez, C. Dominguez, Charles E. Hunt, B. Garrido. Metal-nitride-oxide-semiconductor light-emitting devices for general lighting. Opt. Express,2011,19(S3):A234-A244.
    [137]Y. Berencen, O. Jambois, J. M. Ramirez, J. M. Rebled, S. Estrade, F. Peiro, C. Dominguez, J. A. Rodriguez, B. Garrido. Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures. Opt. Lett.,2011,36(14):2617-2619.
    [138]E. Jacques, L. Pichon, O. Debieu, F. Gourbilleau. Electrical behavior of MIS devices based on Si nanoclusters embedded in SiOxNy and SiO2 films. Naoscale Res. Lett.,2011,6(1):170.
    [139]A. M. Hartel, S. Gutsch, D. Hiller, M. Zacharias. Fundamental temperature-dependent properties of the Si nanocrystal band gap. Phys. Rev. B,2012,85(16),165306.
    [140]S. A. Dyakov, D. M. Zhigunov, A. Hartel, M. Zacharias, T. S. Perova, V. Yu. Timoshenko. Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals. Appl. Phys. Lett.,2012,100(6):061908.
    [141]Y. Rui, S. Li, J. Xu, C. Song, X. Jiang, W. Li, K. Chen, Q. Wang, Y. Zuo. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys.,2011,110(6),064322.
    [142]G.-R. Lin, T.-C. Lo, L.-H. Tsai, Y.-H. Pai, C.-H. Cheng, C.-I. Wu, P.-S. Wang. Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Society,2012,159(2):K35-K41.
    [143]C.-C. Tu, L. Tang, J. Huang, A.Voutsas, L. Y. Lin. Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes. Appl. Phys. Lett.,98(23): 213102.
    [144]C. Delerue, G. Allan, M. Lannoo. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B,1993,48(15):11024-11036.
    [145]S. Chan, P. M. Fauchet. Tunable, narrow, and directional luminescence from porous silicon light emitting devices. Appl. Phys. Lett.,1999,75(2):274-276.
    [146]B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, G. Y. Sung. Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency. Appl. Phys. Lett.,2006,89(6):063509.
    [147]C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, G. Y. Sung. Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures. Adv. Mater.,2010,22(44):5058-5062.
    [148]I. N. Yassievich, L. C. Kimerling. The mechanisms of electronic excitation of rare earth impurities in semiconductors. Semicond. Sci. Tech.,1993,8(5):718-727.
    [149]E. E. Nyein, U. Hommerich, J. Heikenfeld, D. S. Lee, A. J. Steck, J. M. Zavada. Spectral and time-resolved photoluminescence studies of Eu-doped GaN. Appl. Phys. Lett.,2003, 82(11):1655-1657.
    [150]M. E. Castagna, S. Coffa, M. Monaco, L. Caristina, A. Messina, R. Mangano, C. Bongiorno. Si-based materials and devices for light emission in silicon. Physica E,2003, 16(3-4):547-553.
    [151]F. Gourbilleau, L. Khomenkova, D. Breard, C. Dufour, R. Rizk. Rare-earth (Er, Nd)-doped Si nanostructures for integrated photonics. Physica E,2009,41(6):1034-1039.
    [152]G. Franzo, V. Vinciguerra, F. Priolo. The excitation mechanism of rare-earth ions in silicon nanocrystals. Appl. Phys. A,1999,69(1):3-12.
    [153]X. L. Wu, Y. F. Mei, G. G. Siu, K. L. Wong, K. Moulding, M. J. Stokes, C. L. Fu, X. M. Bao. Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures. Phys. Rev Lett.,2001,86(14):3000-3003.
    [154]A. Kanjilal, L. Rebohle, M. Voelskow, W. Skorupa, M. Helm. Influence of annealing on the Er luminescence in Si-rich SiO2 layers coimplanted with Er ions. J. Appl. Phys.,2008, 104(10):103522.
    [155]A. Anopchenko, A. Tengattini, A. Marconi, N. Prtljaga, J. M. Ramirez, O. Jambois, Y. Berencen, D. Navarro-Urrios, B. Garrido, F. Milesi, J.-P. Colonna, J.-M. Fedeli, L. Pavesi. Bipolar pulsed excitation of erbium-doped nanosilicon light emitting diodes. J. Appl. Phys., 2012,111(6):063102.
    [156]D. Navarro-Urriosa, A. Pitantia, N. Daldossoa, F. Gourbilleaub, L. Khomenkovab, R. Rizkb, L. Pavesia. Assessment of the main material issues for achieving an Er coupled to silicon nanoclusters infrared amplifier. Phys. E,2009,41(6):1029-1033.
    [157]B. Garrido, C. Garcia, S.-Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi. Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters. Phys. Rev. B,2007,76(24):245308.
    [158]M. Wojdak, M. Klik, M. Forcales, O. B. Gusev, T. Gregorkiewicz, D. Pacifici, G. Franzo, F. Priolo, F. Iacona. Sensitization of Er luminescence by Si nanoclusters. Phys. Rev. B,2004, 69(23):233315.
    [159]R. Salh. Defect related luminescence in silicon dioxide network:a review. In Crystalline Silicon-Properties and Uses, Sukumar Basu (ed.),2011, p.135-172. Rijeka:InTech.
    [160]J. H. Stathis, M. A. Kastner. Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B,1987,35(6):2972-2979.
    [161]D. L. Smith. Contromng the plasma chemistry of silicon nitride and oxide deposition from silane. J. Vac. Sci. Technol. A,1993,11(4):1843-1850.
    [162]V. A. Gritsenko, J. B. Xu, R. W. M. Kwok, Y. H. Ng, I. H. Wilson. Short range order and the nature of defects and traps in amorphous silicon oxynitride governed by the Mott rule. Phys. Rev. Lett.,1998,81(5):1054-1057.
    [163]J. W. Keister, J. E. Rowe, J. J. Kolodziej, H. Niimi, T. E. Madey, G. Lucovsky. Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemission spectroscopy. J. Vac. Sci. Technol. B,1999,17(4):1831-1835.
    [164]H. B. Kim, T. G. Kim, J. H. Son, C. N. Whang, K. H. Chae, W. S. Lee, S. Im, J. H. Song. Effects of Si-dose on defect-related photoluminescence in Si-implanted SiO2 layers. J. Appl. Phys.,2000,88(4):1851-1854.
    [165]L. Khomenkova, N. Korsunska, T. Torchynska, V. Yukhimchuk, B. Jumayev, A. Many, Y. Goldstein, E. Savir, J. Jedrzejewski. Defect-related luminescence of Si/SiO2 layers. J. Phys.: Condens. Matter,2002,14(48):13217-13221.
    [166]M. Xu, S. Xu, J. W. Chai, J. D. Long, Y. C. Ee. Enhancement of visible photoluminescence in the SiNx films by SiO2 buffer and annealing. Appl. Phys. Lett.,2006,89(25),251904.
    [167]S. S. Nekrashevich, V. A. Gritsenko. Electronic structure of silicon oxynitride:Ab-initio and experimental study, comparison with silicon nitride. J. Appl. Phys.,2011,110(11): 114103.
    [168]Y. Yonamoto, Y. Inaba, N. Akamatsu. Detection of nitrogen related traps in nitrided/reoxidized silicon dioxide films with thermally stimulated current and maximum entropy method. Appl. Phys. Lett.,2011,98(23):232906.
    [169]L. Vaccaro, A. Morana, V. Radzig, M. Cannas. Bright visible luminescence in silica nanoparticles. J. Phys. Chem. C,2011,115(40):19476-19481.
    [170]S. Minissale, S. Yerci, L. Dal Negro. Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics. Appl. Phys. Lett.,2012,100(2):021109.
    [171]L. Skuja. The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids,1994,179:51-69.
    [172]L. Vaccaro, M. Cannas, V. Radzig, R. Boscaino. Luminescence of the surface nonbridging oxygen hole center in silica:Spectral and decay properties. Phys. Rev. B,2008,78(7): 075421.
    [173]V. N. Bagratashvili, S. I. Tsypina, V. A. Radtsig, A. O. Rybaltovskii, P. V. Chernov, S. S. Alimpiev, Y. O. Simanovskii. Inhomogeneous nature of UV absorption bands of bulk and surface oxygen-deficient centers in silica glasses. J. Non-Cryst. Solids,1995,180(2-3): 221-229.
    [174]L. Skuja. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids,1998,239(1-3):16-48.
    [175]J. Juvert, A. Abelardo G. Fernandez, A. Morales-Sanchez, J. Barreto, M. Aceves, A. Llobera, C. Dominguez. DC electroluminescence efficiency of silicon rich silicon oxide light emitting capacitors. J. Light. Technol.,2013,31(17):2913-2918.
    [176]A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, M. A. Green.22.8% efficient silicon solar cell. Appl. Phys. Lett.,1989,55(13):1363-1365.
    [177]E. Lee, H. Lee, J. Choi, D. Oh, J. Shim, K. Cho, J. Kim, S. Lee, B. Hallam, S.R. Wenham, H. Lee. Improved LDSE processing for the avoidance of overplating yielding 19.2% efficiency on commercial grade crystalline Si solar cell. Sol. Energy Mater. Sol. Cells,2011, 95(12):3592-3595.
    [178]M. H. Kang, K. Ryu, A. Upadhyaya, A. Rohatgi. Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Prog. Photovolt:Res. Appl.,2011,19(8):983-990.
    [179]J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, B. Choi. Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells. Thin Solid Films,2011,519(20):6887-6891.
    [180]S. Jung, D. Gong, J. Yi. The effects of the band gap and defects in silicon nitride on the carrier lifetime and the transmittance in c-Si solar cells. Sol. Energy Mater. Sol. Cells,2011, 95(2):546-550.
    [181]S. Gatz, T. Dullweber, V. Mertens, F. Einsele, R. Brendel. Firing stability of SiNy/SiNx stacks for the surface passivation of crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells,2012,96:180-185.
    [182]C. P. Thomas, A. B. Wedding, S. O. Martin. Theoretical enhancement of solar cell efficiency by the application of an ideal'down-shifting'thin film. Sol. Energy Mater. Sol. Cells,2012,98:455-464.
    [183]M. J. Powell. Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors. Appl. Phys. Lett.,1983,43(6):597-599.
    [184]T. Giingor, H. Tolunay. Drift mobility measurements in a-SiNx:H. J. Non-Cryst. Solids, 2001,282:197-202.
    [185]L. Xiang, L. Hui. Organic thin film transistors with a SiO2/SiNx/SiO2 composite insulator layer. J. Semicond.,2011,32(3):034003.
    [186]B. S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller. Effect of annealing treatments on potoluminescence and charge storage mechanism in silicon-rich SiNx:H films. Nanoscale Res. Lett.,2011,6(1):178.
    [187]A. Padovani, L. Larcher, V. D. Marca, P. Pavan, H. Park, G. Bersuker. Charge trapping in alumina and its impact on the operation of metal-alumina-nitride-oxide-silicon memories: Experiments and simulations. J. Appl. Phys.,2011,110(1):014505.
    [188]M. C. Tien, J. F. Bauters, M. J. Heck, D. J. Blumenthal, J. E. Bowers. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability. Opt. Express,2010, 18(23):23562-23568.
    [189]D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, J. E. Bowers. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express,2011,19(15):14130-14136.
    [190]J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express,2011,19(4):3163-3174.
    [191]J. Robertson, M. J. Powell. Gap states in silicon nitride. Appl. Phys. Lett.,1984,44(4): 415-417.
    [192]J. C. Phillips. Structure of amorphous (Ge,Si)1-xYx alloys.1979,42(17):1151.
    [193]M. Wang, D. Li, Z. Yuan, D. Yang, D. Que. Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters. Appl. Phys. Lett.,2007,90(13):131903.
    [194]M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, L. Pavesi. Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence. J. Appl. Phys.,2008,104(8):083504.
    [195]G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer. The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures. J. Crystal Growth,2008, 310(15):3680-3684.
    [196]J. Kistner, X. Chen, Y. Weng, H. P. Strunk, M. B. Schubert, J. H. Werner. Photoluminescence from silicon nitride—no quantum effect. J. Appl. Phys.,2011,110(2): 023520.
    [197]F. Boulitrop, D. J. Dunstanf. Phonon interactions in the tail states of a-Si:H. Phys. Rev. B, 1983,28(10):5923-5929.
    [198]A. Serpengiizel, S. Tanriseven. Controlled photoluminescence in amorphous-silicon-nitride microcavities. Appl. Phys. Lett.,2001,78(10):1388-1390.
    [199]Z. Pei, Y. R. Chang, H. L. Hwang. White electroluminescence from hydrogenated amorphous-SiNx thin films. Appl. Phys. Lett.,2002,80(16):2839-2841.
    [200]L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent. Light emission efficiency and dynamics in silicon-rich silicon nitride films. Appl. Phys. Lett.,2006,88(23):233109.
    [201]L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli. Light emission from silicon-rich nitride nanostructures. Appl. Phys. Lett.,2006,88(18):183103.
    [202]R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, L. Xu. Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio. Appl. Phys. Lett.,2007,91(11):111104.
    [203]R. Huang, K. Chen, P. Han, H. Dong, X. Wang, D. Chen, W. Li, J. Xu, Z. Ma, X. Huang. Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices. Appl. Phys. Lett.,2007,90(9):093515.
    [204]R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, Z. Ma. Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices. Appl. Phys. Lett.,2008,92(18):181106.
    [205]H. Dong, D. Wang, K. Chen, J. Huang, H. Sun, W. Li, J. Xu, Z. Ma. Field dependent electroluminescence from amorphous Si/SiNx multilayer structure. Appl. Phys. Lett.,2009, 94(16):161101.
    [206]R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, Z. Y. Ma. Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers. Opt. Express,2010,18(2): 1144-1150.
    [207]S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, L. Dal Negro. Visible and 1.54 μm emission from amorphous silicon nitride films by reactive cosputtering. IEEE J. Sel. Topics Quantum Electron.,2010,16(1):114-123.
    [208]L. Kamyab, Rusli, M. B. Yu, L. Ding, G.-Q. Lo. Electroluminescence from amorphous-SiNx:H/SiO2 multilayers using lateral carrier injection. Appl. Phys. Lett.,2011, 98(6):061105.
    [209]M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, L. Pavesi. Light emission properties and mechanism of low-temperature prepared amorphous SiNx films.Ⅱ. Defect states electroluminescence. J. Appl. Phys.,2008,104(8):083505.
    [210]A. I. Zhmakin. Enhancement of light extraction from light emitting diodes. Phys. Rep., 2011,498(4-5):189-241.
    [211]Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, Z. Sun. Refractive indices of textured indium tin oxide and zinc oxide thin films. Thin Solid Films, 2006,510 (1-2):95-101.
    [212]H. Arai, K. Tanaka, S. Kohda. Effect of ammonia plasma treatment on plasma deposited silicon nitride films/silicon interface characteristics. J. Vac. Sci. Technol. B,1988,6(3): 831-834.
    [213]M. Bose, D. K. Basa, D. N. Bose. Effect of ammonia plasma pretreatment on the plasma enhanced chemical vapor deposited silicon nitride films. Mater. Lett.,2001,48(6):336-341.
    [214]C. Ko, J. Joo, M. Han. Annealing effects on the photoluminescence of amorphous silicon-nitride films. J. Korean Phys. Soc.,2006,48(6):1277-1280.
    [215]D. Li, J. Huang, D. Yang. Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E,2009,41(6): 920-922.
    [216]K. D. Lee, M. G. Kang, Y. D. Kim, S. J. Tark, S. Park, D. Kim. Effects of in-situ NH3 post plasma treatment on the surface passivation layer. AIP Conf. Proc.,2011,1399:207-208.
    [217]K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, G. Y. Sung. Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern. Appl. Phys. Lett.,2006,89(19):191120.
    [218]A. K. Panchal, C. S. Solanki. Fabrication of silicon quantum dots in SiNx multilayer using hot-wire CVD. J. Crystal Growth,2009,311(9):2659-2663.
    [219]M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim, C. Sone. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Opt. Express,2011,19(S5):Al 135-A1140.
    [220]H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Springer: Berlin,1988.
    [221]L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball. Subwavelength focusing and guiding of surface plasmons. Nano Lett.,2005,5(7): 1399-1402.
    [222]M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nature Photon.,2011, 5(6):349-356.
    [223]J. C. Ginn, R. L. J. Jr., E. A. Shaner, P. S. Davids. Infrared plasmons on heavily-doped silicon. J. Appl. Phys.,2011,110(4):043110.
    [224]J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Mater.,2011,10(5):361-366.
    [225]B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W.W. Chow, E. A. Shaner. Observation of rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots. Nano Lett.,2011,11(2):338-342.
    [226]D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, U. R. Kortshagen. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett.,2013, 13(3):1317-1322.
    [227]R. Soref, R. E. Peale, W. Buchwald. Longwave plasmonics on doped silicon and silicides. Opt. Express,2008,16(9):6507-6514.
    [228]M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc.,2009,131(49):17736-17737.
    [229]S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, D. E. Aspnes. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett.,2009, 34(18):2867-2869.
    [230]J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, W. R. Buchwald. IR. permittivities for silicides and doped silicon. J. Opt. Soc. Am. B,2010,27(4):730-734.
    [231]E. M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev.,1946, 69(11-12):681.
    [232]C. Noguez. Surface plasmons on metal nanoparticles:The influence of shape and physical environment. J. Phys. Chem. C,2007,111(10):3806-3819.
    [233]B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, S.-J. Park. Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv. Mater.,2008,20(16):3100-3104.
    [234]B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, A. Lagendijk. Active spatial control of plasmonic fields. Nature Photon.,2011,5(6):360-363.
    [235]J. P. Shaffer. Marriage of atoms and plasmons. Nature Photon.,2011,5(6):451-452.
    [236]W. Zhou, T. W. Odom. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech.,2011,6(7):423-427.
    [237]H. Amekura, B. Johannessen, D. J. Sprouster, M. C. Ridgway. Amorphization of Cu nanoparticles:Effects on surface plasmon resonance. Appl. Phys. Lett.,2011,99(4):043102.
    [238]P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, M. Orenstein. Resonances on-demand for plasmonic nano-particle. Nano Lett.,2011,11(6):2329-2333.
    [239]S. Zhang, H. Wei, K. Bao, U. Haokanson, N. J. Halas, P. Nordlander, H. Xu. Chiral surface plasmon polaritons on metallic nanowires. Phys. Rev. Lett.,2011,107(9):096801.
    [240]W. Cai, A. P. Vasudev, M. L. Brongersma. Electrically controlled nonlinear generation of light with plasmonics. Science,2011,333():1720-1723.
    [241]R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, N. F. van Hulst. Long-Tail Statistics of the Purcell Factor in Disordered Media Driven by Near-Field Interactions. Phys. Rev. Lett.,2011,106(16):163902.
    [242]R. B. Dunbar, H. C. Hesse, D. S. Lembke. L. Schmidt-Mende. Light-trapping plasmonic nanovoid arrays. Phys. Rev. B,2012,85(3):035301.
    [243]N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, S.-H. Oh. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys.,2012,75(3):036501.
    [244]D. Yu. Fedyanin. Toward an electrically pumped spaser. Opt. Lett.,2012,37(3):404-406.
    [245]L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B,2005, 71(3):235408.
    [246]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman. Planar metal plasmon waveguides:frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B,2005,72(7):075405.
    [247]R. de Waele, A. F. Koenderink, A. Polman. Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays. Nano Lett.,2007,7(7):2004-2008.
    [248]W. Cai, R. Sainidou, J. Xu, A. Polman, F. J.G. de Abajo. Efficient Generation of Propagating Plasmons by Electron Beams. Nano Lett.,2009,9(3):1176-1181.
    [249]R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, A. Polman. A silicon-based electrical source of surface plasmon polaritons. Nature Mater.,2010,9(1):21-25.
    [250]T. Coenen, E. J. R. Vesseur, A. Polman. Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas. ACS Nano,2012, 6(2):1742-1750.
    [251]D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, U. R. Kortshagen. Phosphorus-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance. Nano Lett., 2013,13(3):1317-1322.
    [252]P. Bharadwaj, A. Bouhelier, L. Novotny. Electrical excitation of surface plasmons. Phys. Rev. Lett.,2011,106(22):226802.
    [253]G. Xu, M. Tazawa, P. Jin, S. Nakao, K. Yoshimura. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett.,2003,82(22): 3811-3813.
    [254]K. R. Catchpole, A. Polman. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett.,2008,93(19):191113.
    [255]E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance. Adv. Mater., 2004,16(19):1685-1706.
    [256]S. Kawata, Yasushi Inouye, P. Verma. Plasmonics for near-field nano-imaging and superlensing. Nature Photon.,2009,3(7):388-394.
    [257]J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, H. Mohseni. Opto-mechanical force mapping of deep subwavelength plasmonic modes. Nano Lett.,2011, 11(8):3378-3382.
    [258]P. E. Batson, A. Reyes-Coronado, R. G. Barrera, A. Rivacoba, P. M. Echenique, J. Aizpurua. Plasmonic Nanobilliards:Controlling Nanoparticle Movement Using Forces Induced by Swift Electrons. Nano Lett.,2011,11(8):3383-3393.
    [259]X. Huang, S. Tang, B. Liu, B. Ren, N. Zheng. Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture. Adv. Mater.,2011,23(30): 3420-3425.
    [260]H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, R. Quidant. On-a-chip surface plasmon tweezers. Appl. Phys. Lett.,2011,99(6):061107.
    [261]N. Fang, H. Lee, C. Sun, X. Zhang. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science,2005,308(5721):534-537.
    [262]R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma. Plamonics:the next chip-scale technology. Mater. Today,2006,9(7-8):20-27.
    [263]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B,2006, 73(3):035407.
    [264]E. Verhagen, L. Kuipers, A. Polman. Enhanced Nonlinear Optical Effects with a Tapered Plasmonic Waveguide. Nano Lett.,2007,7(2):334-337.
    [265]A. F. Koenderink, R. de Waele, J. C. Prangsma, A. Polman. Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides. Phys. Rev. B,2007,76(20):201403(R).
    [266]A. V. Krasavin, A. V. Zayats. Guiding light at the nanoscale:numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett.,2011,36(16): 3127-3129.
    [267]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A.G. Requicha. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater.,2003,2(4):229-232.
    [268]M. G. Nielsen, T. Bernardin, K. Hassan, E. E. Kriezis, J.-C. Weeber. Silicon-loaded surface plasmon polariton waveguides for nanosecond thermo-optical switching. Opt. Lett.,2014, 39(8):2282-2284.
    [269]M. Westphalen, U. Kreibig, J. Rostalski, H. Liith, D. Meissner. Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells,2000,61(1):97-105.
    [270]S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green. Surface plasmon enhanced silicon solar cells. J. Appl. Phys.,2007,101(9):093105.
    [271]A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, J. van de Lagemaat. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett.,2008,92(1):013504.
    [272]M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, G. Bruno. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Sol. Energy Mater. Sol. Cells,2009,93(10):1749-1754.
    [273]R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Adv. Mater.,2009,21(34): 3504-3509.
    [274]J. Chantana, Y. Yang, Y. Sobajima, C. Sada, A. Matsuda, H. Okamoto. Localized surface plasmon enhanced microcrystalline-silicon solar cells. J. Non-Cryst. Solids,2012,358(17): 2319-2323.
    [275]X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, M. Gu. Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles. Nano Lett.,2012,12(5):2187-2192.
    [276]N. Fahim, Z. Ouyang, Y. Zhang, B. Jia, Z. Shi, M. Gu. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Opt. Mater. Express,2013,2(2):190-204.
    [277]D. H. Lee, J. Y. Kwon, S. Maldonado, A. Tuteja, A. Boukai. Extreme Light Absorption by Multiple Plasmonic Layers on Upgraded Metallurgical Grade Silicon Solar Cells. Nano Lett., 2014,14(4):1961-1967.
    [278]C. Tong, J. Yun, H. Song, Q. Gan, W. A. Anderson. Plasmonic-enhanced Si Schottky barrier solar cells. Sol. Energy Mater. Sol. Cells,2014,120(B):591-595.
    [279]X.-Y. Wang, J.-L. Wang, H. Wang. Improvement of the efficiency and power output of solar cells using nanoparticles and annealing. Solar Energy,2014,101:100-104.
    [280]S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, V. K. Komarala. Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl. Phys. Lett.,2014,104(7):073903.
    [281]W. L. Barnes. Light-emitting devices:turning the tables on surface plasmons. Nature Mater.,2004,3(9):588-589.
    [282]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater., 2004,3(9):601-605.
    [283]J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, A. Polman. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Appl. Phys. Lett.,2006,88(13): 131109.
    [284]D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, C. C. Yang. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl. Phys. Lett.,2007, 91(17):171103.
    [285]M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, S.-J. Park. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater.,2008,20(7):1253-1257.
    [286]C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, C.-P. Liu. Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array. Adv. Funct. Mater.,2011,21(24):4719-4723.
    [287]H. Zhao, J. Zhang, G. Liu, N. Tansu. Surface plasmon dispersion engineering via double-metallic Au/Ag layers for Ⅲ-nitride based light-emitting diodes. Appl. Phys. Lett., 2011,98(15):151115.
    [288]L.-W. Jang, D.-W. Jeon, T. Sahoo, D.-S. Jo, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, J.-H. Song, A. Y. Polyakov, I.-H. Lee. Enhanced light output of InGaN/GaN blue light emitting diodes with Ag nano-particles embedded in nano-needle layer. Opt. Express,2012, 20(6):6036-6041.
    [289]C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, G. Y. Sung. Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling. Appl. Phys. Lett.,2012,100(18):181108.
    [290]Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, S. Fan. Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Res. Lett.,2014,9(1):7.
    [291]http://en.wikipedia.org/wiki/Plasma_Enhanced_Chemical_Vapor_Deposition
    [292]G. Falcone. Sputtering theory. La Rivista del Nuovo Cimento,1990,13(1):1-52.
    [293]R. M. A. Azzam, N. M. Bashara. Ellipsometry and Polarized Light.1st edition. Amsterdam: North-Holland Publishing Company,1977.
    [294]W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003,424(6950):824-830.
    [295]P. Cheng, D. Li, D. Yang. Influence of substrates in ZnO devices on the surface plasmon enhanced light emission. Opt. Express,2008,16(12):8896-8901.
    [296]E. Jacques, L. Pichon, O. Debieu, F. Gourbilleau. Electrical behavior of MIS devices based on silicon nanoclusters embedded in SiOxNy and SiO2 films. Nanoscale Res. Lett.,2011,6(1): 170.
    [297]Y. Yonamoto, Y. Inaba, and N. Akamatsu. Compositional dependence of trap density and origin in thin silicon oxynitride film investigated using spin dependent Poole-Frenkel current. Appl. Phys. Lett.,2011,98(23):232905.
    [298]S. M. Sze. Current transport and maximum dielectric strength of silicon nitride. J. Appl. Phys.,1967,38(7):2951-2956.
    [299]D. A. Neamen. Semiconductor Physics and Devices:Basic Principles.3rd ed. (McGraw-Hill,2003).
    [300]A. A. Middleton, N. S. Wingreen. Collective transport in arrays of small metallic dots. Phys. Rev. Lett.,1993,71(19):3198-3201.
    [301]W. Chandra, L. K. Ang. Space charge limited current in a gap combined of free space and solid. Appl. Phys. Lett.,2010,96(18):183501.
    [302]T. Shirasawa, K. Hayashi, S. Mizuno, S. Tanaka, K. Nakatsuji, F. Komori, H. Tochihara. Epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface. Phys. Rev. Lett.,2007,98(13): 136105.
    [303]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater. Plasmonics-a route to nanoscale optical devices. Adv. Mater.2001,13(19):1501-1505.
    [304]E. Ozbay. Plasmonics:merging photonics and electronics at nanoscale dimensions. Science, 2006,311(5758):189-193.
    [305]N. Pleros, E.E. Kriezis, K. Vyrsokinos. Optical interconnects using plasmonics and Si-photonics. IEEE Photon. J.,2011,3(2):296-301.
    [306]V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, A. N. Grigorenko. Cascaded optical field enhancement in composite plasmonic nanostructures. Phys. Rev. Lett.,2010,105(24):246806.
    [307]K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett.,2010,105(22): 227403.
    [308]M. Iwanaga, N. Ikeda, Y. Sugimoto. Enhancement of local electromagnetic fields in plasmonic crystals of coaxial metallic nanostructures. Phys. Rev. B,2012,85(4):045427.
    [309]G. Sun, J. B. Khurgin, R. A. Soref. Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays. J. Opt. Soc. Am. B,2008,25(10):1748-1755.
    [310]K. Q. Le, P. Bienstman. Optical modeling of plasmonic nanoparticles. Plasmonics,2011, 6(1):53-57.
    [311]J. D. Jackson. Classical Electrodynamics.3rd edition. New York:Wiley; 1962.
    [312]K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett.,2005,87(7):071102.
    [313]H. J. Stein. Thermally annealed silicon nitride films:Electrical characteristics and radiation effects. J. Appl. Phys.,1985,57(6):2040-2047.
    [314]G. Aberle. Surface passivation of crystalline silicon solar cells:a review. Prog. Photovolt. Res. Appl.,2000,8(5):473-487.
    [315]P. Doshi, G. E. Jellison, Jr., A. Rohatgi. Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. Appl. Opt.,1997,36(30):7826-7837.
    [316]L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express,2011,19(23):23162-23170.
    [317]R. J. Walters, G. I. Bourianoff, H. A. Atwater. Field-effect electroluminescence in silicon nanocrystals. Nat. Mater.,2005,4(2):143-146.
    [318]Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, K. Chen. Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates. Opt. Express,2011,19(4):3347-3352.
    [319]Marconi, A. Anopchenko, G. Pucker, L. Pevesi. Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime. Appl. Phys. Lett., 2011,98(20):201103.
    [320]T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol. Energy Mater. Sol. Cells,2009,93(11):1978-1985.
    [321]H. R. Stuart, D. G. Hall. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett.,1998,73(26):3815-3817.
    [322]N. C. Dyck, R. C. Denomme, P. M. Nieva. Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer. J. Phys. Chem. C, 2011,115(31):15225-15233.
    [323]M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett.,2007,91(18): 183507.
    [324]H. Zhao, G. Liu, R. A. Arif, N. Tansu. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid State Electron.,2010, 54(10):1119-1124.
    [325]C.-F. Lu, C.-H. Liao, C.-Y. Chen, C. Hsieh, Y.-W. Kiang, C. C. Yang. Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling. Appl. Phys. Lett.,2010,96(26):261104.
    [326]B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, Y. Moon. Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes. Appl. Phys. Lett.,2012,100(3): 031905.
    [327]D. K. Schroder. Semiconductor Material and Device Characterization (Wiley,1990), pp. 147-149.
    [328]E. P. O'Reilly, M. Silver. Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers. Appl. Phys. Lett.,1993,63(24):3318-3320.
    [329]A. J. Bennett, P. N. Stavrinou, C. Roberts, R. Murray, G. Parry, J. S. Roberts. A comparative study of spontaneous emission and carrier recombination processes in InGaAs quantum dots and GaInNAs quantum wells emitting near 1300 nm. J. Appl. Phys.,2002, 92(10):6215-6218.
    [330]Y. Li, X. Ma, L. Jin, D. Yang. A chemical strategy to reinforce electrically pumped ultraviolet random lasing from ZnO films. J. Mater. Chem.,2012,22:16738-16741.
    [331]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2002,107(3):668-677.
    [332]E. D. Palik. Handbook of Optical Constants of Solids (Academic, San Diego,1998) pp. 350-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700