微电源并网同步检测与定功率输出控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为可再生能源与分布式发电的有效组织方式,微电网既可并入大电网运行,也可自成体系而独立运行。独立运行的微电网必须满足功率平衡以支撑其电压与频率的稳定性,这就对并入微电网的各种微电源以及储能装置提出了较高要求.
     与传统的大型发电机不同,微电源的输出特性各异,且具有典型的间歇性和随机性特征,多数基于电力电子逆变拓扑并入微电网。因逆变拓扑控制与微电网参数的交互耦合影响,将给微电源并网带来一些亟待解决的新问题,包括并网逆变器的同步相位检测方法、三相逆变桥路的暂态保护技术等,这些问题的有效解决可提高微电源并网运行的可靠性。同时,为实现微电网内的功率平衡以及电压与频率稳定,要求各个微电源及储能装置必须按照调度分配的指定功率进行发电,这迫切需要针对各种微电源和储能装置的输出特性,研究相应的定功率输出控制策略。探索这些关键技术问题的解决方案,即构成了本文研究的主要内容。
     多数微电源采用电流控制型电压源逆变器并入微电网。因线路电感与功率器件开关过程的交互作用,将在并网接入点电压上叠加一定幅值的开关纹波电压,导致实际过零点时刻的多过零点现象,造成较大的电压相位跟踪误差。基于动态特性分析和实验,本文系统研究了线路电感对接入点电压波形的影响机制,证明采样电压的多过零点区域关于实际微电网电压的过零点具有严格的左右对称特征,并藉此提出一种改进的电压过零点相位检测算法,适用于单开关周期内的多个过零点情形。针对开关电压纹波较大的工况,将锁相环技术和傅立叶级数计算相结合,提出一种准确跟踪微电源并网接入点电压相位的新方法,并针对滞环电流控制方法,论证了基于傅立叶级数法计算电压幅值和相位的准确度,并不受逆变器直流侧电压、线路电感及开关电压的影响。为进一步提高相位跟踪的实时性,并有效抑制外来干扰以及开关电压纹波的影响,研究提出了基于“过采样”技术的改进型三相软件锁相环算法,利用工频周期的8k分解和加权均值处理,可有效抑制不利因素的影响,特别适用于三相三线制系统。仿真分析和物理实验都表明上述相位检测与跟踪方法的有效性。
     针对三相逆变桥路的暂态保护问题,通过建立基于器件杂散参数的等效电路模型,对微电源并网逆变桥的桥臂直通现象进行了深入分析,揭示了瞬间冲击尖峰电流的产生机理,推导出尖峰电流幅值与瞬时变化率的计算公式。在理论分析和实验研究的基础上,基于LCRD组合网络,提出一种微电源并网逆变桥的瞬态冲击保护新拓扑,详细分析了其工作机理,并藉此给出了拓扑参数的有效选择准则。实验研究表明,提出的冲击保护拓扑可抑制功率器件开关瞬态过中的冲击电流幅值以及瞬时电流与瞬时电压变化率,有效防止开关器件出现误触发和损坏,实现三相逆变器的正常工作和微电源的可靠并网。
     微电网正常运行的前提条件是保证发电和用电设备之间的有功与无功功率平衡,以实现微电网内的电压与频率稳定,这要求对微电源及储能实施定功率控制。本文基于理论分析和实验,以太阳能光伏发电阵列、蓄电池储能装置和风力发电装置为主要受控对象,系统研究了微电源及储能装置的定功率输出控制问题。
     基于光伏电池单元的基本参数关系,导出了光伏电池阵列输出特性的单调函数关系,这为研究相应的定功率输出快速跟踪控制方法奠定了理论基础。提出了基于高阶构造函数的光伏电池阵列定功率输出控制方法,所构造的函数在光伏阵列给定输出功率点的导数为零,且二阶导数小于零,使得光伏电池阵列由当前输出功率向给定功率自适应逼近,可大幅度提高功率跟踪的响应速度。基于参考短路电流法和开路电压法,推导出高阶构造函数中各参数的计算公式。进一步建立了基于上述方法的非线性控制系统模型,基于小电压扰动和线性化方法分析了影响系统稳定性的关键因素,并给出控制参数的取值准则与范围。针对所提出的定功率输出跟踪控制方法,开展了仿真和实验研究,验证了该方法的有效性和快速性。
     针对微电网独立运行时储能蓄电池的定功率充放电拓扑结构,基于坐标变换推导出三相交流侧指令电流的计算方法,并将滑模变结构控制理论引入到输出电流的跟踪控制中,基于离散趋近率函数参数的自适应变化,提出一种自适应的离散滑模变结构电流控制方法,可有效实现蓄电池充放电电流的实时跟踪与柔性控制。通过对控制系统的深入分析,获得了控制参数应满足的临界条件与定量关系式,可用于控制参数的优化设计。构建了储能蓄电池的定功率充放电系统仿真模型与实验样机,仿真与实验结果都表明该控制方案可较好地实现蓄电池的定功率充放电功能,且系统对外界干扰和参数摄动具有较强的鲁棒性。
     针对微电网内的定桨距双馈风力发电单元,通过改变风轮机叶尖速比,建立电磁输出功率的有效控制方法。进一步研究了双馈风力发电机在风速突变时输出功率的波动现象,提出一种基于超级电容器缓冲的实时功率补偿方法,可将功率波动控制在较小范围内。通过仿真分析佐证了补偿方法的有效性。
     基于光伏发电单元、风电模拟单元、蓄电池储能单元以及控制单元,本文研制了微电网的实验平台系统,并开展了物理模拟实验研究,验证了前述理论分析结果与控制方法的有效性。
     本文工作结果进一步丰富了微电源并网与定功率输出控制方面的理论基础和分析方法,对发展微电网技术具有参考价值。
As an effective way to organize renewable sources and distributed generation, microgrid can be connected to large power system or run as an independent power system. While operating independently, microgrid should keep power balance so as to ensure voltage and frequency stability, resulting in high technical requirements for micro sources and energy storage devices connected to the microgrid.
     Unlike traditional large generators, micro sources have various output characteristics and present typical intermittence and randomness. The majority of micro sources are connected to microgrid through power electronic inverters. Due to the coupling effects between the inverter topology control and the parameters of microgrid, new issues are raised with grid-connection of the micro sources, such as phase detection method of the grid voltage as the CCVSI (Current Controlled Voltage Source Inverter) is connected to microgrid, as well as transient protection technology for three-phase inverter bridge. Preferable solutions to these problems can improve the reliability of grid-connection of the micro sources. Meanwhile, in order to realize power balance as well as voltage and frequency stability, each micro source and energy storage device should generate electricity according to designated quota by the power dispatcher. Therefore, corresponding designated power output control strategy is indispensable and should be analyzed based on the output characteristics of the micro sources and energy storage devices. Exploration of possible solutions to these crucial technical problems forms the basis of this thesis.
     Most micro sources are connected to microgrid through current controlled type voltage source inverters (CCVSI). Due to the interaction of the line inductances and the power device switching process, switched voltage ripples will superimpose onto the voltage waveform at the grid-connection point, leading to the appearance of multiple zero-crossing phenomenon at the actual zero-crossing moment, resulting in large deviation in phase detection of the grid voltage. Based on theoretical analysis and experiment study of the dynamic behaviors, the impact of line inductances on the voltage waveform at the grid-connection point is analyzed, which proves the multiple zero-crossings area of the sampled voltage presents strict symmetrical feature regarding to the actual zero-crossing of the microgrid voltage waveform. Based on the above analysis, an improved zero-crossing based phase detection method is proposed, which can be applied to the situation with multiple zero crossing points in a single switching cycle. To deal with large switching voltage ripples, a novel method that combines PLL technology and Fourier series analysis is further developed, so as to accurately track the phase of the grid voltage at the connection site. Based on the hysteresis current control, the calculation accuracy of the voltage amplitude and phase by Fourier series is validated, which is not influenced by the voltage on DC side of the inverter, the grid inductance and the switching voltage. In order to improve the real-time performance of phase tracking and restrain the extraneous interference as well as the influence of switching ripple voltage, a method based on improved three-phase software PLL algorithm is brought forward, which adopts 8k decomposition and weighted mean technique in a primitive period, and thereby can restrain negative effects while especially applicable for three-phase three-wire system. Both simulation analysis and experimental results have verified the method.
     To solve the transient protection problem of typical CCVSI bridge, an equivalent circuit model is established based on stray parameters of the devices. Short through phenomenon of CCVSI bridge arm is thoroughly studied and the mechanism for surge current generation is elucidated, in addition, quantitative formula to determine the current amplitude and rate of change is also deduced. Through theoretical analysis and experimental research, a novel transient protection topology for CCVSI bridge arm is presented based on a LCRD combinational network. The operating principle of the protection topology is analyzed in details and the effective criterion to choose the typology parameters is also given. Experiments indicate that the new protection typology can effectively limit amplitude of the surge current and rate of change of the instantaneous current and voltage during power device switching process, hence, false trigging and damage of power devices can be avoided effectively, and normal operation of the three-phase inverter and reliable connection of micro sources to microgrid can be achieved.
     The balance of both active and reactive power with a microgrid among the generating devices and the utilization equipment is the precondition for reliable operation of the microgrid. In order to maintain voltage and frequency stability of the microgrid, designated power control over micro sources and energy storage devices is indispensable. Based on theoretical analysis and experimental study, designated power output control strategies for micro sources and energy storage devices are investigated in the thesis, specifically with photovoltaic array, battery energy storage device and wind power generation device as the controllable objects.
     Based on the fundamental relationship between parameters of a photovoltaic battery cell, the monotony characteristics of theⅠ-Ⅴcurve and dP/dV curve of the photovoltaic arrays are deduced, which lays theoretical foundation for further development of tracking control method at designated power output. A new method based a high order constructed function to implement designated power tracking control is presented, where the first derivative of the operation voltage-based function at the designated reference point is zero while the second derivative is less than zero. This method guarantees that the photovoltaic battery array can self-adaptively approach the designated power point from the present status, and the response speed of the designated power tracking is significantly raised as well. Based on short-circuit current method and open-circuit voltage method, calculation formulas for key parameters in the constructed function are deduced. A nonlinear control system model based on the above proposed method is established and key factors influencing the system stability are analyzed based on small voltage perturbation and linear smoothing, then selection criterion and reliable range of the control parameters are also given. Simulation and experimental results validate effectiveness and speediness of the control method.
     For designated power control strategy of battery storage devices within a independent microgrid, the calculation method for instruction current on the three-phase AC side is deduced based on coordinates transformation, while slide-mode variable structure control theory is used in the output current tracking and control. Based on adaptive changes of the parameters in the discrete reaching law function, an adaptive discrete slide-mode variable structure current control method is brought forward, which can effectively achieve real-time tracking and flexible control of both charging and discharging currents of the batteries. Critical condition and quantitative formula are deduced, which can be used in the optimization design of the control parameters. Simulation model and experimental prototype of the battery storage device for designated power charging/discharging are established. Simulation and experimental results demonstrates effectiveness of the proposed method, with preferable robustness to exterior interference and parameter perturbation.
     With regard to the double-feed wind power generation unit in the microgrid, an effective method to control the output power by changing the tip speed ratio of the wind turbine is proposed. Further studies are carried out specifically on power fluctuation phenomenon while a sudden step change of the wind speed happens, and a real-time compensation method based on controllable supercapacitor buffer is presented. Simulations are also given to verify effectiveness of the proposed method.
     Based on photovoltaic arrays unit, wind power generation unit, battery storage unit and central control unit, an experimental platform for microgrid study is constructed, and multipurpose experiments for physical simulation are implemented to verify the theoretical analysis and the proposed control methodologies.
     This proposed research enriches the theoretical foundation and analytical methods for systematic study on grid-connection and designated power output control of micro sources, which provides referential basis for further development of the microgrid technologies.
引文
[1]危师让.我国电力工业和发电技术未来发展趋势[J].中国电力,2006,39(10):1-5
    [2]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71~75,88
    [3]盛鹃,孔力,齐智平,等.新型电网—微电网(Micro-grid)研究综述[J].继电器,2007,35(12):75~81
    [4]鲁宗相,王彩霞,闵勇.微电网研究综述[J].电力系统自动化,2007,31(19):100~107
    [5]田浩.PEMFC分布式发电的适用性仿真分析[J].电源技术,2006,30(10):806~809
    [6]王飞,余世杰,苏建徽,等.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72~74,91
    [7]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计[J].电力系统自动化,2004,28(24):61-66,70
    [8]余世杰,何慧若,曹仁贤,等.光伏水泵系统中CVT及MPPT的控制比较[J].太阳能学报,1998,19(4):394~398
    [9]El-shibini M. A., Rakha H. H.. Maximum power point tracking technique[C]. Electrotechnical Conference,1989. Proceedings. 'Integrating Research, Industry and Education in Energy and Communication Engineering', MELECON '89., Mediterranean, Lisbon, Portugal, April 11~13,1989:21~24
    [10]Hart G W, Branz H M, Cox C H. Expeimental tests of open-loop maximum power point tracking techniques for photovoltaic arrays[J]. Solar cells,1984,13(2):913-917
    [11]Masoum M A S, Dehbonei H, Fuchs E F. Theoretical and experimental analyses of photovoltaic systems with voltage and current based maximum power point tracking [J]. IEEE transactions on emergy conversion,2002,17(4):514-522
    [12]Abou El Ela M, Roger J. Optimizition of the function of a photovoltaic array using a feedback control system[J]. Solar cells:their science, technology, applications and economics,1984,13(2):185-195
    [13]Femia A, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE transactions on power electronics,2005,20(4): 963-973
    [14]Altas I H, Sharaf A M. A novel online MPP search algorithm for PV arrays[J]. IEEE transactions on emergy conversion.1996.11(4):748-754
    [15]孙务本,曾奕,江秀臣.等.户外在线监测装置电源系统的设计及实现[J].高电压技术,2007,33(8):178~182
    [16]Hussein K H, Muta I Hoshino T, Osakata M. Maximum photovoltaic power tracking:a algorithm for rapidly changing atmospheric conditions[J]. IEE proceedings:generation, tansmission and distribution,1995,142(1):59-64
    [17]Harada K, Zhao G. Controlled power interface between solar cells and AC source [J]. IEEE transctions on power electronics,1993,8(4):654-662
    [18]Esram T, Kimball J W, Krein P T, et al. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control[J]. IEEE transctions on power electronics,2006,21(5):1282-1291
    [19]Mummadi Veerachary, Katsumi Uezato. Feed forward maximum power point tracking of PV system using fuzzy controller[J]. IEEE transactions on aerospace and electronic systems,2002,38(3):969-980
    [20]Hiyama T, Kouzuma S, Imakubo T, et al. Evaluation of neural network based real time maximum power tracking controller for PV system[J]. IEEE transactions on emergy conversion,1995,10(3):543-548
    [21]Hiyama T, Kitabayashi K. Neural network based Evaluation of maximum power generation from PV module using environmental information[J]. IEEE transactions on emergy conversion,1997,12(3):241-247
    [22]Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller[J]. IEEE transactions on industrial electronics,2003,50(4):749-758
    [23]Hiyama T, Kouzuma S, Imakubo T. Identification of optimal operating point of PV modules using neural network for real time maximum power point tracking control [J]. IEEE transactions on emergy conversion,1995,10(2):360-367
    [24]Yang Chen, Smedly K M. A cost-effective single stage inverter with maximum power point tracking[J]. IEEE transctions on power electronics,2004,19(5):1289-1294
    [25]Shmilovitz D. On the control of photovoltaic maximum power point tracker via output parameters[J]. IEE proceedings:electric power applications,2005,152(2):239-248
    [26]傅诚,陈鸣,沈玉樑.等.基于输出参数的光伏电池最大功率点控制[J].电工技术学报,2007,22(2):148~152
    [27]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报,2006,26(20):98~102
    [28]Cardena S R, Pena R. Sensorless vector control of induction machines for variable speed wind energy applications[J]. IEEE transactions on emergy conversion,2004,19(1): 196-205
    [29]Ermism, Ertan H B, Akpinar E, et al. Automonous wind energy conversion system with a simple controller for maximum power transfer[J]. IEE proceedings of electric power applications,1992,139(5):421-428
    [30]Datta R, Ranganathan V T. A method of tracking the peak power points for a variable speed wind energy conversion system[J]. IEEE transactions on energy conversion,2003, 18(1):163-168
    [31]陈益广,王志强,沈勇环.直驱式方波永磁同步风力发电机控制系统仿真[J].系统仿真学报,2009.21(18):5849~5853
    [32]佘峰.永磁直驱式风力发电系统中最大功率控制的仿真研究[D].长沙:湖南大学,2009
    [33]Marcelo G S, Bimal K B, Ronald J S. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system[J]. IEEE transactions on power electronics, 1997,12(1):234-239
    [34]Mormoto S, Nakayama H, Sanada M, et al. Sensorless output maximization control for variable speed wind generation system using IPMSG[J]. IEEE transactions on industrial applications,2005,41(1):60-67
    [35]Wang Q, Chang L. An intelligent maximum power extraction algorithm for inverter based variable speed wind turbine systems[J]. IEEE transactions on power electronics,2004, 19(5):1242-1249
    [36]Jia Y, Yang Z, Cao B. A new maximum power point tracking control scheme for wind generation[J]. IEEE transactions on new energy,2002,2(2):144-148
    [37]纪志成,朱芸,孟涛.风能转换系统的MPPT变增益极值搜索控制[J].电机与控制学报,2009,13(3):414~418
    [38]李辉,韩力,何蓓.双馈发电机最大网通捕获和转换策略的仿真[J].系统仿真 学报.2007,19(15):3591~3594
    [39]杨金明.吴捷,董萍.等.基于无源性理论的风力机最大风能捕获控制[J].太阳能学报,2003,24(5):724~728
    [40]Li H, Shi K L. Neural network based sensorless maximum wind energy capture with compensated power coefficient[J]. IEEE transactions on industrial applications,2005, 41(6):1548-1556
    [41]谢小荣,韩英铎.电力系统频率测量综述[J].电力系统自动化,1999,23(3):54~58
    [42]Nguyen C T, Srinivasan K. A new technique for rapid tracking of frequency deviations based on level crossings[J]. IEEE transactions on power apparatus and systems,1984, 103(8):2230-2236
    [43]胡艳婷,李本藩.一种供安全自动装置用的新的频率测量算法[J].电力系统自动化,1987,11(6):24~29,11
    [44]Begovic M M, Djuric P M, Dunlap S, et al. Frequency tracking in power networks in the presence of harmnics[J]. IEEE transactions on power delivery,1993,8(2):480-486
    [45]索南加乐,葛耀中,王安定,等.一种不受电压过零点影响的新型频率测量方法[J].西安交通大学学报,1995,29(3):84~87,102
    [46]何奔腾,李菊.电力系统频率的自适应测量[J].电力系统及其自动化学报,1991,3(2):22~28,55
    [47]李振然.利用递推最小二乘算法和自适应采样实现微机电量变送器[J].电力系统自动化[J].1995,19(3):48~52
    [48]Giray M M, Sachdev M S. Off-nominal frequency measurements in electric power systems [J]. IEEE transactions on power delivery,1989,4(3):1573-1578
    [49]Sachdev M S, Giray M M. A least error squres technique for determining power system frequency[J]. IEEE transactions on power apparatus and systems,1985,104(2):437-444
    [50]Terzija V, Djuric M, Kovacevic B. A new self-tuning algorithm for the frequency estimation of distorted signals[J]. IEEE transactions on power delivery,1995,10(4): 1779-1785
    [51]Terzija V V, Djuric M B, Kovacevic B D. Voltage phasor and local system frequency estimation using Newton type algorithm[J]. IEEE transactions on power delivery,1994, 9(3):1368-1374
    [52]Girgis A A, Peterson W L. Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads[J]. IEEE transactions on power delivery,1990,5(2):585-594
    [53]Wood H C, Johnson N G, Sachdev M S. Kalman filtering applied to power system measurement for relaying[J]. IEEE transactions on power apparatus and systems,1985, 104(12):3565-3573
    [54]Thorp J S, Phadke A G, Karimi K J. Real time voltage-phasor measurement for static state estimation[J]. IEEE transactions on power apparatus and systems,1985,104(11): 3098-3106
    [55]Girgis A A, Ham F M. A new FFT-based digital frequency relay for load shedding [J]. IEEE transactions on power apparatus and systems,1982.101(2):433-439
    [56]Phadke A G, Thorp J S, Adamiak M G. A new measurement technique for tracking voltage phasors, local voltage frequency, and rate of change of frequency[J]. IEEE transactions on power apparatus and systems,1983,102(5):1025-1038
    [57]Benmouyal G. An adaptive sampling-interval generator for digital relaying[J]. IEEE transactions on power delivery,1989,4(3):1602-1609
    [58]Hart D, Novosel D, Yi Hu, et al. A new frequency tracking and phasor estimation algorithm for generator protection[J]. IEEE transactions on power delivery,1997,12(3): 1064-1073
    [59]胡为兵,李开成.电力系统实时相位同步方法的研究与比较[J].电测与仪表,2007,44(500):1-4
    [60]Moore P J, Carranza R D, Johns A T. Model system tests on a new numeric method of power system frequency measurement[J]. IEEE transactions on power delivery,1996, 11(2):696-701
    [61]Moore P J, Allmeling J H, Johns A T. Frequency relaying based on instantaneous frequency measurement[J]. IEEE transactions on power delivery,1996,11(4):1737-1742
    [62]Akke M. Frequency estimation by demodulation of two complex signals[J]. IEEE transactions on power delivery,1997.12(1):157-163
    [63]Denys P, Counan C, Hossenlopp L, et al. Measurement of voltage phase for the French future defense plan against losses of synchronism[J]. IEEE transactions on power delivery, 1992,7(1):62-69
    [64]Ecthardt V, Hippe P, Hoseman G. Dynamic measuring of frequency and frequency osilations in multiphase power systems[J]. IEEE transactions on power delivery,1989, 4(1):95-102
    [65]冯志华,刘强,刘永斌.基于锁相环的变频器同步跟踪实验[J].电工技术学报,2006,21(11):96~100
    [66]龚宇雷.王辉.李庆民.锁相环动态频相跟踪特性分析[J].山东大学学报(工学版),2008,38(4):107~111,122
    [67]Kaura V, Blasko V. Operation of a phase-locked loop system under distorted utility conditions[J]. IEEE transactions on industry applications,1997,33(1):58-63
    [68]刘翔,张爱玲.一种基于TMS320F2812的软件锁相环实现方法[J].电力电子技术,2010,44(8):60~61
    [69]杨海柱,金新民.基于正反馈频率漂移的光伏并网逆变器反孤岛控制[J].太阳能学报.2005,26(3):409~412
    [70]薄涛,杨滔,吕征宇.一种新的三相光伏并网系统孤岛检测方法[J].机电工程.2008,25(9):34~36
    [71]任碧莹,钟彦儒,孙向东,等.基于周期交替电流扰动的孤岛检测方法[J].电力系统自动化.2008,32(19):81~84
    [72]肖巧景,张宇翔,郭敏.一种新的频率偏移技术在光伏并网发电系统孤岛检测中的应用[J].现代电子技术,2007,1:107~108
    [73]张纯江,郭忠南,孟慧英,等.主动电流扰动法在并网发电系统孤岛检测中的应用[J].电工技术学报,2007,22(7):176~179
    [74]周林,沈小莉,周雒维,等.单周控制技术在有源电力滤波器中的应用[J].电力电子技术,2004,38(4):11~13
    [75]郭小强.赵清林,邬伟扬.光伏并网发电系统孤岛检测技术[J].电工技术学报,2007,22(4):157~161
    [76]刘方锐,康勇,张宇,等.带正反馈的主动移频孤岛检测法的参数优化[J].电工电能新技术.2008,27(3):22~25
    [77]刘芙蓉,康勇,段善旭,等.主动移频式孤岛检测方法的参数优化[J].中国电机工程学报,2008,28(1):95~99
    [78]张纯江,伞国成,孟慧英,等.一种新的自适应相位偏移并网孤岛检测方法[J].燕山大学学报,2008,32(4):356~360
    [79]赵国鹏,刘进军.静止无功发生器直流侧电压对无功补偿特性的影响研究[J].西安交 通大学学报,2010,44(4):66-70
    [80]马俊兴,孙汉卿.IGBT短路保护的驱动电路的设计[J].通信技术.2009,42(11):235~237
    [81]胡宇,吕征宇.IGBT驱动保护电路的设计与测试[J].机电工程,2008.25(7):58~60,71
    [82]邱进,陈轩恕.刘飞,等.基于有源电力滤波器的1GBT驱动及保护研究[J].通信电源技术.2008,25(5):4-6
    [83]Etxeberria-Otadui I, San-Sebastian J, Viscarret U, et al. Analysis of IGCT current clamp design for single phase H-bridge converters[C]. Power electronics specialists conference, 2008,PESC 2008, IEEE:4343-4348
    [84]Shivkumar V. Iyer, Madhu N. Belur, Mukul C. Chandorkar. A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE transactions on power electronics,2010,25(9):2420-2432
    [85]E. Rokrok, M. E. H. Golshan. Adaptive voltage droop scheme for voltage source converters in an islanded multi-bus microgrid[J].IET generation, transmission & distribution,2010,4(5):562-578
    [86]Jong-yul Kim, Jin-hong Joen, Seul-ki Kim, et al. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation [J]. IEEE transactions on power electronics,2010,25(12):3037-3048
    [87]E. Barklund, Nagaraju Pogaku, Milan Prodanovic, et al. Energy management in autonomous microgrid using stability-constrained droop control of inverters[J]. IEEE transactions on power electronics,2008,23(5):2346-2352
    [88]Ritwik Mujamder, Balarku Chaudhuri, Arindam Ghosh, et al. Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop[J]. IEEE transactions on power systems,2010,25(2):796-808
    [89]Aris L. Dimeas, Nikos D. Hatziargyriou. Operation of a multiagent system for microgrid control[J]. IEEE transactions on power systems,2005,20(3):1447-1455
    [90]Ali Mehrizi-sani, Reza Iravani. Potential-function based control of a microgrid in islanded and grid-connected modes[J]. IEEE transactions on power systems,2010,25(4): 1883-1891
    [91]F. Katiraei, M. R. Iravani. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE transactions on power systems,2006,21(4): 1821-1831
    [92]Seon-ju Ahn, Jin-woo Park,Ⅱ-yop Chung, et al. Power-sharing method of multiple distributed generators considering control modes and configurations of a microgrid [J]. IEEE transactions on power delivery,2010,25(3):2007-2016
    [93]Manoj Datta, Tomonobu Senjyu, Atsushi Yona, et al. A coordinated control method for leveling PV output power fluctuations of PV-diesel hybrid systems connected to isolated power utility[J]. IEEE transactions on energy conversion,2009,24(1):153-162
    [94]Jungmin Kwon, Kwanghee Nam, Bonghwan Kwon. Photovoltaic power conditioning system with line connection[J]. IEEE transactions on industrial electronics,2006,53(4): 1048-1054
    [95]Reinaldo Tonkoski, Luiz A. C. Lopes, Tarek H. M El-Fouly. Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention[J]. IEEE Transactions on sustainable energy,2011,2(2):139-147
    [96]禹华军.光伏并网发电与电网无功功率补偿一体化技术的研究[D].上海:上海交通大学:2005.4
    [97]Ziyad M. Salameh, Margaret A. Cassaca, William A. Lynch. A mathematical model for lead-acid battery[J]. IEEE transactions on energy conversion,1992,7(1):93-98
    [98]Malhah Bhatt, William Gerard Hurley, Werner Hugo Wolfle. A new approach to intermittent charging of valve-regulated lead-acid batteries in standby applications [J]. IEEE transactions on industrial electronics,2005,52(5):1337-1342
    [99]Huang-jen Chin. Li-wei Lin. Ping-lung Pan, et al. Anovel rapid charger for lead-acid batteies with energy recovery[J]. IEEE transactions on power electronics,2006,21(3): 640-647
    [100]Gerhard P. Hancke. A fibre optic density sensor for monitoring the state-of-charge of a lead acid battery[J]. IEEE transactions on instrumentation and measurement,1990,39(1): 247-250
    [101]Igor papic. Simulation model for discharging a lead-acid battery energy storage system for load leveling[J]. IEEE transactions on energy conversion,2006,21(2):608-615
    [102]Margaret A. Casacca, Ziyad M. Salameh. Determination of lead-acid battery capacity via mathematical modeling techniques[J]. IEEE transactions on energy conversion,1992,7(3): 442-446
    [103]Koray Kutluay, Yigit Cadirci, Yakup S. Ozkazanc, et al. A new online state-of-charge estimation and monitoring system for sealed lead-acid batteries in telecommunication power supplies[J]. IEEE transactions on industrial electronics,2005,52(5):1315-1327
    [104]Yu-hua Sun. Hurng-liahng Jou, Jinn-chang Wu. Aging estimation method for lead-acid battery [J]. IEEE transactions on energy conversion,2011,26(1):264-271
    [105]Mikael Kugnet, Jocelyn Sabatier, Stephane Laruelle, et al. On lead-acid-battery resistance and cranking-capability estimation[J]. IEEE transactions on industrial electronics,2010, 57(3):909-917
    [106]D. P. Jenkens, J. Fletcher, D. Kane. Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications[J]. IET renewable power generation,2008,2(3): 191-200
    [107]程时杰,李刚,孙海顺,等.储能技术在电气工程领域中的应用与展望[J].电网与清洁能源,2009,25(20):1-8
    [108]Wei Qiao, Wei Zhou, Jose M. Aller, et al. Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG[J]. IEEE transactions on power electronics,2008,23(3):1156-1169
    [109]曾志勇,冯婧,周宏范.基于功率给定的双馈风力发电最大风能捕获策略[J].电力自动化设备,2010,30(6):25~30
    [110]Baike Shen, Bakari Mwinyiwiwa, Yongzheng zhang, et al. Sensorless maximum power point tracking of wind by DFIG using rotor position phase lock loop (PLL). IEEE transactions on power electronics,2009,24(4):942-951
    [111]Liyan Qu, Wei Qiao. Constant power control of DFIG wind turbines with supercapacitor energy storage[J]. IEEE transactions on industrial applications,2011,47(1):359-367
    [112]Lie Xu, Philip Cartwright. Direct active and reactive power control of DFIG for wind energy generation[J]. IEEE transactions on energy conversion,2006,21(3):750-758
    [113]潘卫明,姚春光,徐殿国.新型直接功率控制算法在双馈风电平台的应用[J].电力电子技术,2010,44(6):10~12
    [114]季仲梅,仵国峰,朱世磊.一种数字锁相环的参数设计方法[J].信息工程大学学报,2010,11(3):287~290
    [115]陈鑫,杨军,胡晨.一种快速锁定数控锁相环[J].东南大学学报(自然科学版), 2010,40(2):258~263
    [116]王晓,何晓颖.基于傅立叶算法和小波分析的电能质量自动监测系统[J].吉林电力,2010.38(1):30~31,35
    [117]王皑.用MATLAB实现傅立叶级数仿真[J].湖南工业职业技术学院学报,2003,3(3):9-10
    [118]朱训生,薛秉源,贝季瑶.离散傅立叶变换和复与实傅立叶级数的相互关系及其应用[J].上海交通大学学报,1993,27(1):41~49
    [119]陈永真.电容器及其应用[M].北京:科学出版社,2005:120-127
    [120]黄文焕,戚佳金,黄南天.低压电力线载波通信传输线参数测试与分析[J].电力自动化设备,2008,28(4):41~44
    [121]禹华军,潘俊民.光伏电池输出特性与最大功率跟踪的仿真分析[J].计算机仿真,2005,22(6):248~252
    [122]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248~1251
    [123]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-412
    [124]吴海涛,孔娟,夏东伟.基于MATLAB/Simulink的光伏电池建模与仿真[J].青岛大学学报,2006,21(4):74-77
    [125]周德佳,赵争呜,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报,2007,47(7):1109-1112,1117
    [126]王章权,张超,何湘宁.基于Pspice模拟行为模型的光伏阵列建模[J].计算机仿真,2007,24(8):225-228,240
    [127]翟长连,吴智铭.一种离散时间系统的变结构控制方法[J].上海交通大学学报,2000,34(5):719~722
    [128]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [129]童梅,项基.一种混合型电力滤波器的变结构控制[J].电工技术学报,2002,17(1):59~63
    [130]邓占锋,朱东起,姜新建.基于滑模控制的混合型电力滤波装置[J].电工技术学报,2002.17(2):92~96
    [131]周卫国,吴正国等.有源电力滤波器变趋近律滑模变结构控制[J].电机工程学报,2005.25(23):91~94
    [132]王儒,方宇,邢岩.三相高功率因数PWM变换器可逆运行研究[J].电工技术学报,2007,22(8):46~51
    [133]方宇.裘迅,邢岩,等.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006,26(20):69~73
    [134]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):61~66
    [135]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995
    [136]刘金琨.滑模变结构控制MATLAB仿真[M],北京:清华大学出版社,2005
    [137]Sarpturk S Z, Istefanopulos Y, Kaynak O. On the Stability of Discrete-time Sliding Mode Control System [J]. IEEE Trans. Automatic Control,1987,32(10):930-932
    [138]S. Heier. Grid integration of wind energy conversion systems[M]. Wiley,1998
    [139]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,2005
    [140]孙涛,王伟胜,戴慧珠,等.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62~66,70
    [141]胡雪松,孙才新,刘刃,等.采用飞轮储能的永磁直驱风电机组有功平滑控制策略[J].电力系统自动化,2010,34(13):79~83
    [142]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报,2001,21(12):63~66
    [143]刘春娜.超级电容器应用展望[J].电源技术,2010,34(9):979~980
    [144]马奎安,陈敏.超级电容器储能系统充电模式控制设计[J].机电工程,2010,27(7):85~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700