光伏太阳能热泵的动态分布参数模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规能源的日益枯竭和环境问题的日益严峻,太阳能因其清洁、无污染、可再生等显著优点,受到人们的日益重视和青睐。光伏发电技术和太阳能热泵技术作为太阳能利用的两种不同方式,近几十年来得到了迅速发展。
     商用光伏电池组件的光电转换效率约为6~15%,照射到光伏电池表面的太阳能,超过85%的份额被反射或者转换成热能,其中一部分转化成电池内能,导致其工作温度升高、光电转换效率的下降。为了解决这一缺陷,在光伏电池背面铺设流道,利用流体对光伏电池进行降温,改善其光电转换效率,并将流体所吸收的热量加以利用,即光伏光热综合利用(PV/T)技术。现有的相关研究主要是针对以水和空气为冷却介质的PV/T系统进行的,相关研究结果显示,以水为冷却介质能够获得比空气更好的冷却效果,但是水一般要上升到较高温度(40℃以上)才能有效利用,这不可避免会降低对电池的冷却效果。热泵系统的制冷工质在蒸发器中温度较低而且波动较小,如果采用制冷工质对光伏电池进行冷却,既可以使光伏电池维持较低而且稳定的工作温度,提高其光电转换效率,而且可以利用热泵系统优越的热输运性能,得到远高于系统功耗的有效的热能。
     基于上述思想,我们提出了一种新型的光伏太阳能热泵系统(PhotovoltaicSolar Assisted Heat Pump,PV-SAHP)。该系统将光伏发电技术与直膨式太阳能热泵有机结合,在直膨式蒸发器的吸热表面层压光伏电池制成光伏蒸发器,使系统能够同时输出电能和热能,提高了对太阳能的综合利用效率。
     本文采用分布参数法建立光伏蒸发器的动态模型,在模型中考虑由于摩擦所导致的工质的沿程压降及其对气、液两相工质的密度、饱和温度、比焓等物性参数的影响。以此基础,对光伏蒸发器在给定进口参数和外界环境参数下全天的动态性能进行了数值模拟,并通过相应的实验进行验证。研究发现,蒸发器的光电、光热性能和工质的压力、温度等相关参数的变化主要取决于太阳辐照强度:环境温度对蒸发器得热量和光热效率会产生一定的影响,随着环境温度的升高,有效减小了蒸发器的热损,提高了蒸发器的得热量和热效率。数值模拟所给出的蒸发器的光电、光热性能和光伏电池、集热板的温度分布与实验测试结果基本吻合,但是计算得到的制冷工质压降比实测的压降偏小。
     以蒸发器模型为基础,建立PV-SAHP系统的动态分布参数模型,为了提高压力的模拟计算精度,在蒸发器模型中引入制冷工质摩擦压降校正系数。对PV-SAHP系统在恒定冷凝水温和变冷凝水温工况下的动态性能进行理论和实验研究。研究结果显示,PV-SAHP系统具备优越的光电、光热性能:在恒定冷凝水温工况下,系统的平均光电转换效率、光电功率和COP分别为13.11%、371.82W和4.3;变冷凝水温工况下,系统的平均光电转换效率、光电功率和COP分别为13.02%、455W和3.41。两种工况下,系统的光电功率分别占压缩机输入功率的88.1%和85.5%,这意味着系统所输出的电能能够满足自身大部分的电能需求。对比数值模拟与实验测试结果发现,系统的动态模型具备较高的数值计算精度,能够对系统性能参数和工质的动态迁移情况进行准确的预测。
     以系统动态模型为基础,根据热力学第一定律和第二定律,采用能量效率和(火用)效率为性能评价指标,对PV-SAHP系统与独立商用PV组件和DX-SAHP系统以及两者的简单叠加系统“PV+SAHP”系统的综合性能进行对比分析和研究。研究结果显示,无论是从能量数量的角度,还是从能量品质的角度来考虑,PV-SAHP系统的性能均高于独立的商用PV组件、DX-SAHP系统和“PV+SAHP”系统,这说明以制冷工质为冷却介质,将光伏发电系统与太阳能热泵系统有机结合的方式,能够有效提高系统对太阳能的综合利用效率。本文还从理论上研究了光伏电池覆盖率和蒸发器玻璃盖板对系统性能的影响情况。研究结果表明,电池覆盖率的增大使得系统的综合性能得到了改善;而玻璃盖板的存在,能够提高系统的能量效率,但是却会导致系统(火用)效率的降低。
     为了研究热泵系统在湿工况中以空气为热源的性能,建立了风冷蒸发器和沉浸式水冷冷凝器的动态分布参数模型,以空气源热泵(ASHP)系统为基础,对蒸发器和冷凝器在动态温度和湿度工况下,制冷工质的迁移规律进行理论和实验研究。研究结果显示,根据系统动态模型所得出的数值模拟结果与实验测试结果基本吻合;该研究结果为深入研究PV-SAHP系统在太阳能不足的情况下,采用空气热源制取生活热水和进行室内采暖的性能奠定了一定的理论和实验基础。
Well known as a non-polluting, inexhaustible, and clean energy source, solar energy has received considerable attention due to the shortage of the normal fossil energy and the pollution of the environment. As two different means of utilization of solar energy, the photovoltaic technology and solar-assisted heat pump technology have received great development in recent decades.
     The electrical efficiency of a commercial PV module is about 6-15%. More than 85% of the incident solar energy is either reflected or absorbed as heat energy. Therefore, the electrical efficiency will drop due to the considerable increase of the working temperature of the PV cells. A photovoltaic/thermal (PV/T) system, which applies a coolant onto the solar cells, can override such a limitation by bringing down its working temperature and re-utilizing the captured heat energy. The researches mainly focus on PV/T systems with water or air as the coolant. The previous researches showed that the cooling effect of water is much better than air due to its thermo-physical properties. Nevertheless, for resident use, the hot water temperature has to reach at least 40℃, which unavoidably lowers down the cooling effect of the PV system. The working temperature of the refrigerant in a direct expansion evaporator is much lower and steadier. Therefore, if the refrigerant works as the coolant of the PV cells, better cooling effect can be achieved. Based on the principle, a novel photovoltaic solar assisted heat pump (PV-SAHP) has been presented. A specially designed direct expansion PV/T solar collector with PV cells laminated on the front surface is employed in the system to act as the evaporator (PV evaporator) for dual production of electricity and heat energy. This improves the electrical yield and the overall efficiency of the system.
     A mathematical model based on the distributed parameter technique has been introduced for predicting the dynamic behavior of the evaporator. The pressure drop due to the friction is considered in the model. The influence of the pressure drop on the physical properties of the liquid and vapor refrigerant, such as temperature, density and enthalpy, has also been taken into account. Numerical simulation was performed with instantaneous solar irradiance, ambient temperature and inlet parameters of the evaporator. Corresponding experiments were conducted to verify the model. The results show that the photovoltaic and thermal performance, pressure and temperature are mainly decided by the solar irradiance. The ambient temperature also has some influence on the thermal performance of the evaporator. Simulation results, such as output electricity, heat gain and temperature distribution of the PV cells and evaporator show satisfactory agreement with the experimental data. Notwithstanding these, the model underestimates the refrigerant pressure drop at the PV evaporator.
     A distributed dynamic model for the PV-SAHP system is then established based on the theoretical study of the PV evaporator. To improve the predicting accuracy of frictional pressure loss, a simple modification factor is introduced in the model. Theoretical and experimental studies were then conducted under two different working conditions of constant and rising condensing water temperature. The results show that high photovoltaic and thermal performance can be obtained by the system. The average electrical efficiency, output electricity and coefficient of performance are around 13.11%, 371.82W and 4.3 respectively under the working condition of constant condensing water temperature. While their values are about 13.02%, 455W and 3.41 under the working condition of rising condensing water temperature. The output electricity is about 88.1% and 85.5% of the power consumption under the two different working conditions, which means that the system can offer most of the power consumed by itself. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions.
     Furthermore, the numerical simulations are conducted on the PV-SAHP system, commercial PV module, DX-SAHP system and "PV+SAHP" system which is a simple combination of commercial PV module and DX-SAHP system. The energy efficiency and exergy efficiency, which are based on the 1 st and 2nd thermodynamic law respectively, are presented to evaluate the overall performance of the above four systems. The results show that both the energy efficiency and exergy efficiency of the PV-SAHP system are higher than the other three systems, which means that the overall efficiency of the system can be improved with the refrigerant as the coolant.
     The influence of the PV cell coverage ratio and the glass cover of the evaporator on the overall performance of the PV-SAHP system was also studied theoretically. The results show that the increase of the PV cell coverage ratio can improve both the energy efficiency and exergy efficiency. While the adoption of the glass cover can improve the energy efficiency, but will bring down the exergy efficiency of the PV-SAHP system.
     To describe the dynamic performance of the air-source evaporator and immersed condenser, the models for the two components based on the distributed parameter technique have been introduced. An air-source heat pump system (ASHP), which employs an air-source evaporator and immersed condenser, was built. Numerical simulation and experimental study were carried out under dynamic temperature and humidity of the environment. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions of instantaneous variables of the system, including the condensing water temperature, temperature and pressure of the refrigerant, condenser power, power consumption and COP. The predicted spatial temperature distributions of evaporator and condenser also show good agreement with the experimental data. The research provides a solid theoretical and experimental foundation for the PV-SAHP system working with the air-source evaporator.
引文
1.陈风英,赵宏图.2005.全球能源大棋观.北京,时事出版社.
    2.闫长乐,张永泽等.2007.中国能源发展报告2007.中国水利水电出版社.
    3.国家环保总局,国家统计局.2006.中国绿色国民经济核算研究报告2004.
    4.呼宝民,李振国.2007.中国能源--可持续战略.外文出版社.
    5.中国气象局太阳能风能资源评估中心.http://cwera.cma.gov.cn/cn/.
    6.董月鲜.2005.2005年房地产宏观调控成效明显.中国投资信息网.
    7.国务院.2006.国家中长期科学和技术发展规划纲要(2006-2020).
    8.合肥市建委.2007.合肥市太阳能与建筑一体化实施技术细则.
    9.中国市场调查研究中心.2006年中国太阳能行业现状分析与发展研究报告.
    10.J.C.Ward,G.O.G.Lof.1976.Long-term(18 years)performance of a residential solar heating system.Solar Energy,18(4):301-308.
    11.W.Smolec,A.Thomas.1991.Some aspects of trombe wall heat transfer models.Energy Conversion and Management,32(3):269-277.
    12.L.Zalewski,M.Chantant.1997.Experimental thermal study of a solar wall of composite type.Energy and Buildings,25:7-18.
    13.何伟,季杰,张爱风等.2003.带改进型Trombe墙体的热箱热性能的实验测定和分析.中国科学技术大学学报,33(5):567-572.
    14.P.Sporn,E.R.Ambrose.The heat pump and solar enegy.Proceedings of the World Symposium on Applied Solar Energy,Phoenix,Arizona,1955.
    15.J.W.MacArthur,W.J.Palm,R.C.Lessmann.1978.Performance analysis and cost optimization of a solar-assisted heat pump system.Solar Energy,21(1):1-9.
    16.T.L.Freeman,J.W.Mitchell,T.E.Audit.1979.Performance of combined solar-heat pump systems.Solar Energy,22(2):125-135.
    17.S.K.Chaturvedi,J.Y.Shen.1984.Thermal performance of a direct expansion solar-assisted heat pump.Solar Energy,33(2):155-162.
    18.S.K.Chaturvedi,M.Abazeri.1987.Transient simulation of a capacity-modulated,direct-expansion,solar-assisted heat pump.Solar Energy.39(5):421-428.
    19.S.K.Chaturvedi,D.T.Chert,A.Kheireddine.1998.Thermal performance of a variable capacity direct expansion solar-assisted heat pump.Energy Conversion and Management,39(3):181-191.
    20.G.L.Morrison.1994.Simulation of packaged solar heat-pump water heater.Solar Energy,53(3):249-257.
    21.K.Kaygusuz.1995.Performance of solar-assisted heat-pump systems.Applied Energy,51(2): 93-109.
    22.V.Badescu.2002.First and second law analysis of a solar(?)ssisted heat-pump based heating system.Energy Conversion and Management,43(18):2539-2552.
    23.E.Torres-Reyes,M.P.Nufieza,J.G.Cervantes.1998.Exergy analysis and optimization of a solar-assisted heat pump.Energy,23(4):337-344.
    24.J.G.Cervantes,E.Torres-Reyes.2002.Experiments on a solar-assisted heat pump and an exergy analysis of the system.Applied Thermal Engineering,22(12):1289-1997.
    25.B.J.Huang,J.P.Chyng.2001.Performance characteristic of integral type solar-assisted heat pump.Solar Energy,71(6):403-414.
    26.J.R Chyng,C.P.Lee,B.J.Huang.2003.Performance analysis of a solar-assisted heat pump water heater.Solar Energy,74(1):33-44.
    27.S.Ito,N.Miura,K.Wang.1999.Performance of a heat pump using direct expansion solar collectors.Solar Energy,65(3):189-196.
    28.赵军,刘立平,李丽新等.2000.R134a应用于直接膨胀式太阳能热泵系统.天津大学学报,33(3):301-305.
    29.旷玉辉,王如竹,许煜雄.2004.直膨式太阳能热泵供热水系统的性能研究.工程热物理学报,25(3):737-740.
    30.旷玉辉,王如竹.2005.直膨式太阳能热泵热水器的试验研究.工程热物理学报,26(3):379-381.
    31.余延顺,马最良,廉乐明.2004.太阳能热泵系统运行工况的模拟研究.流体机械,32(5):65-69.
    32.阳季春.2007.间接膨胀式太阳能多功能热泵系统的研究.中国科学技术大学博士学位论文.
    33.沈辉,曾祖勤,2005.太阳能光伏发电技术.北京:化学工业出版社.
    34.许国强.太阳光发电原理与应用.台湾工研院材料所薄膜技术组.
    35.H.A.Zondag,D.W.de Vries,W.G.V.van Helden,et al.2002.The thermal and electrical yield of a PV-thermal collector.Solar Energy,72:113-128.
    36.Jr.E.C.Kern,M.C.Russell.1978.Combined photo-voltaic and thermal hybrid collector system.In Proc IEEE Photovoltaic Specialists,Washington DC,USA,1153-1157.
    37.M.C.Russell,Jr.E.C.Kern.1979.Optimization of photovoltaic/thermal collector heat pump systems.International Solar Energy Society meeting,Atlanta,USA,1870-1874.
    38.P.Raghuraman.1981.Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance.Journal of Solar Energy Engineering,103:291-298.
    39.C.H.Cox,R Raghuraman.1985.Design considerations for flat-plate thermal collectors.Solar Energy,35:227-245.
    40.A.K.Bhargava,H.P.Garg,R.K.Agarwal.1991.Study of a hybrid solar system-solar air heater combined with solar cells.Energy Conversion and Management,31(5):471-479.
    41.K.Sopian,K.S.Yigit,H.T.Liu,et al.1996.Performance analysis of photovoltaic thermal air heaters.Energy Conversion and Management,37(11):1657-1670.
    42.K.Sopian,H.T.Liu,S.Kakac,et al.2000.Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems.Energy Conversion and Management,41(4):353-365.
    43.H.P.Garg,R.S.Adhikari.1997.Conventional hybrid photovoltaic/thermal(PV/T)air heating collectors:steady-state simulation.Renewable Energy,11(3):363-385.
    44.H.P.Garg,R.S.Adhikari.1998.Transient simulation of conventional hybrid photovoltaic/thermal(PV/T)air heating collectors.International Journal of Energy Research,22(6):547-562.
    45.A.A.Hegazy.2000.Comparative study of the performance of four photovoltaic/thermal solar air collectors.Energy Conversion and Management,41:861-881.
    46.J.K.Tonuia,Y.Tripanagnostopoulos.2007.Improved PV/T solar collectors with heat extraction by forced or natural air circulation.Renewable Energy,32(4):623-637.
    47.何伟.2002.太阳能在建筑上的光电、光热应用研究.中国科学技术大学博士学位论文.
    48.易桦.2007.新型PV-Trombe墙系统的理论和实验研究.中国科学技术大学博士学位论文.
    49.R.K.Agarwal,H.P.Garg.1994.Study of a photovoltaic-thermal system:Thermosyphonic solar water heater combined with solar cells.Energy Conversion and Management,35(7):605-620.
    50.T.Bergene,O.M.Lowik.1995.Model calculations on a flat-plate solar heat collector with integrated solar cells.Solar Energy,55(6):453-46.
    51.H.Saitoh,Y.Hamada,H.Kubota,et al.2003.Field experiments and analyses on a hybrid solar collector.Applied Thermal Engineering,23(16):2089-2105.
    52.T.T.Chow.2003.Performance analysis of photovoltaic-thermal collector by explicit dynamic model.Solar Energy,75(2):143-152.
    53.Tiwari,M.S.Sodha.2006.Performance evaluation of solar PV/T system:An experimental validation.Solar Energy,80(7):751-759.
    54.S.A.Kalogirou,Y.Tripanagnostopoulos,Hybrid PV/T solar systems for domestic hot water and electricity production.Energy Conversion and Management,2006,47(18-19),pp.3368-3382
    55.韩俊.2006.光伏光热建筑一体化系统数值模拟研究.中国科学技术大学硕士学位论文.
    56.陆剑平.2006.复合光伏热水一体化系统综合性能研究.中国科学技术大学硕士学位论文.
    57.Wei He,Tin-Tai Chow,Jie Ji,et al.2006.Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water,Applied Energy,83(3):199-210.
    58.T.T.Chow,W.He,J.Ji.2007.An experimental study of facade-integrated photovoltaic/water-heating system.Applied Thermal Engineering,27(1):37-45.
    59.T.T.Chow,W.He,A.L.S.Chan,et al.2007.Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system.Applied Thermal Engineering.
    60.J.Prakash.1994.Transient analysis of a photovoltaic/thermal solar collector for co-generation of electricity and hot air/water.Energy Conversion and Management,35:967-972.
    61.裴刚.2006.光伏-太阳能热泵系统及多功能热泵系统的综合性能研究.中国科学技术大学博士学位论文.
    62.刘可亮.2007.光伏太阳能热泵的理论和实验研究.中国科学技术大学博士学位论文.
    63.S.Ito,N.Miura,Jinqi Wang,et al.1997.Heat pump using a solar collector with photovoltaic modules on the surface.Journal of Solar Energy Engineering,119:147-151.
    64.S.Ito,N.Miura,Y.Takano.2005.Studies of heat pumps using direct expansion type solar collectors.Journal of Solar Energy Engineering,127:60-64.
    65.J.Rosell,R.Margan,J.T.Macmullan.1982.The performance of heat pump in service-A simulation study.Energy Research,6:83-99.
    66.R.R Crawford,D.B.Shirey.1987.Dynamic modeling of a residential heat pump from actual system performance data.ASHRAE Transactions,93(2):1179-1190.
    67.M.J.Kempiak,R.R.Crawford.1992.Three-zone,steady-state modeling of a mobile air-conditioning condenser.ASHRAE Winter Meeting,Anaheim,CA,USA,475-488.
    68.周兴禧,陈武,夏清等.2002.双联变频空调系统控制方法的仿真.上海交通大学学报,36(10):1388-1392.
    69.J.W.MacArthur,E.W.Grald.1989.Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data.International Journal of Refrigeration,12:29-41.
    70.H.Wang,S.Touber.1991.Distributed and non-steady-state modeling of an air cooler.International Journal of Refrigeration,14:98-111.
    71.葛云亭.1997.房间空凋器系统仿真模型研究.清华大学博士学位论文.
    72.X.Jia,C.P.Tso,R Jolly,et al.1999.Distributed steady and dynamic modeling of dry-expansion evaporators.International Journal of Refrigeration,22:126-136.
    73.C.P.Tso,Y.C.Cheng,A.C.K.Lai.2006.Dynamic behavior of a direct expansion evaporator under frosting condition.Part Ⅰ.Distributed model.International Journal of Refrigeration,29:611-623.
    74.J.Jie,R Gang,C.Tin-tai,et al.2008.Experimental study of photovoltaic solar assisted heat pump system.Solar Energy,82(1):43-52.
    75.裴刚,季杰,何伟,孙炜.2006.PVT太阳能热泵系统的性能研究.中国工程科学,8(9):49-57.
    76.季杰,刘可亮,裴刚等.2006.对太刚能热泵PV蒸发器的理论研究及基于分布参数法的 数值模拟.太阳能学报,28(6):587-592.
    77.2C*123*7AA02型变频涡旋压缩机说明书.日本松下电器产业株式会社.
    78.控制器说明书.合肥阳光电源有限公司.
    79.逆变器说明书.合肥阳光电源有限公司.
    80.质量流量计说明书.美国Emerson过程控制(上海)有限公司.
    81.压力传感器说明书.瑞士Huba公司.
    82.太阳辐照仪说明书.锦州阳光科技发展公司.
    83.风速传感器说明书.上海维天科技公司.
    84.功率传感器说明书.绵阳维博电子有限责任公司.
    85.电流传感器说明书.绵阳维博电子有限责任公司.
    86.J.A.Duffie,W.A.Beckman.1991.Solar engineering of thermal processes,2nd Edition.New York:Wiley.
    87.Y.Y.Hsieh,T.F.Lin.2002.Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger.International Journal of Heat and Mass Transfer,45(5):1033-1044.
    88.R.W.Lockhart,R.C.Martinelli.1949.Proposed correlation of data for isothermal two-phase two-component flow in pipes.Chemical Engineering Progress,45:39-45.
    89.D.Chisholm.1973.Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels.International Journal of Heat and Mass Transfer,16:347-358.9
    0.R.Gronnerud.1979.Investigation of liquid hold-up,flow-resistance and heat transfer in circulation type evaporators,part Ⅳ:two-phase flow resistance in boiling refrigerants.Annexe 1972-1,Bull.de 1'Inst,du Froid.
    91.L.Friedel.1979.Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow.European Two-Phase Flow Group Meeting,Ispra,Italy.
    92.H.Muller-Steinhagen,K.Heck.1986.A simple friction pressure drop correlation for two-phase flow in pipes.Chemical Engineering Progress,20:297-308.
    93.丁国良,张春路.2001.制冷空凋装置仿真与优化.科学出版社.
    94.F.W.Dittus,L.M.K.Boelter.1930.Heat transfer in automobile radiators of the tubular type.University of California Publications on Engineering,2:443.
    95.D.L.Bennett,J.C.Chen.1980.Forced convective boiling in vertical tubes for saturated pure components and binary mixtures.AIChE Journal 26(3):454-461.
    96.M.M.Shah.1982.A new correlation for saturated boiling heat transfer:Equations and further study.ASHRAE Transactions 88(1):185-196.
    97.K.E.Gungor,R.H.S.Winterton.1987.Simplified general correlation for saturated flow boiling and comparison of correlations with data.Chemical Engineering Research and Design,65:148-156.
    98.W.Qu,I.Mudawar.2003.Flow boiling heat transfer in two-phase micro-channel heat sinks-Ⅱ.Annular two-phase flow model.International Journal of Heat and Mass Transfer,46:2773-2784.
    99.L.Wojtan,T.Ursenbacher,J.R.Thome.2005.Investigation of flow boiling in horizontal tubes:Part Ⅱ-Development of a new heat transfer model for stratified-wavy,dryout and mist flow regimes.International Journal of Heat and Mass Transfer,48:2955-2969.
    100.M.Turage,R.W.Guy.1985.Refrigerant side heat transfer and pressure drop estimates for direct expansion coils.A review of works in North American use.International Journal of Refrigeration,8(3):134-142.
    101.刘志刚,刘咸定,赵冠春.1991.制冷工质热物性程序的编制.科学出版社.
    102.M.B.Ould Didi,N.Kattan,J.R.Thome.2002.Prediction of two-phase pressure gradients of refrigerants in horizontal tubes.International Journal of Refrigeration,25:935-947.
    103.柏杰,李连生,郁永章.1994.涡旋式压缩机动力特性分析.西安交通大学学报,28(8):83-88.
    104.刘振全,杜桂荣.1999.涡旋压缩机理论机构模型.机械工程学报,35(2):38-41.
    105.王宝龙,石文星,李先庭.2005.制冷空调用涡旋压缩机数学模型.清华大学学报,45(6):726-729.
    106.A.E.Dabiri,C.K.Rice.1981.A compressor simulation method with correlations for the level of suction gas superheat.ASHRAE Transactions,87(2):771-82.
    107.陈志澜,乔宗亮,熊则男.1995.涡旋压缩机HFC替代工质的研究.制冷学报,1:1-4.
    108.裴刚.2003.多功能家用热泵系统的研究.中国科学技术大学硕士学位论文.
    109.Xu Guoying,Zhang Xiaosong,Deng Shiming.2006.A simulation study on the operating performance of a solar-air source heat pump water heater.Applied Thermal Engineering,26:1257-1265.
    110.李连生.1998.涡旋压缩机.机械工业出版社.
    111.D.D.While.1935.The measurement of expansion valve capacity.Refrigeration Engineering,8:108-11.
    112.Ma Shanwei,Zhang Chuan,Chen Jiangping,et al.2005.Experimental research on refrigerant mass flow coefficient of electronic expansion valve.Applied Thermal Engineering,25:2351-2366.
    113.Zhang Chuan,Ma Shanwei,Chen Jiangping,et al.2006.Experimental analysis of R22 and R407c flow through electronic expansion valve.Energy Conversion and Management,47:529-544.
    114.Chasik Park,Honghyun Cho,Yongtaek Lee,et al.2007.Mass flow characteristics and empirical modeling of R22 and R410A flowing through electronic expansion valves.International Journal of Refrigeration,30(8):1401-1407.
    115.Xue Zhifang,Shi Lin,Ou Hongfei.2008.Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment. Applied Thermal Engineering, 28(2-3): 238-243.
    116. W. Chen, S.M. Deng. 2006. Development of a dynamic model for a DX VAV air conditioning system. Energy Conversion and Management, 47(11): 2900-2924.
    117. M.M. Shah. 1979. A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 22: 547-556.
    118. B.J. Huang, T.H. Lin, W.C. Hung, et al. 2001. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70(5): 443-448.
    119. H.P.Garg, R.K.Agarwal. 1995. Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Conversion and Management, 36: 87-99.
    120. K.Sopian, K.S.Yigit, H.T.Liu, et al. 1996. Performance analysis of photovoltaic thermal air heaters. Energy Conversion and Management, 37: 1657-1670.
    121. S.K. Chaturvedi, T.O. Mohieldin, D.T. Chen. 1991. Second-law analysis of solar-assisted heat pumps. Energy, 16(6): 941-949.
    122. E. Torres-Reyes, J.G. Cervantes. 2001. Optimal performance of an irreversible solar-assisted heat pump. Exergy, 1(2): 107-111.
    123. E. Bilgen, H. Takahashi. 2002. Exergy analysis and experimental study of heat pump systems. Exergy, 2(4): 259-265.
    124. Y.W. Li, R.Z. Wang, J.Y. Wu, et al. 2007. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater. Energy, 32: 1361-1374.
    125. T. Fujisawa, T. Tani. 1997. Annual exergy evaluation photovoltaic-thermal hybrid collector. Solar Energy Material and Solar Cells, 47: 135-148.
    126. A. S. Joshi, A. Tiwari. 2007. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector. Renewable Energy, 32: 2223-2241.
    127. G. Fraisse, C. Menezo, K. Johannes. 2007. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type. Solar Energy, 81(11): 1426-1438.
    128. J.K. Tonui, Y. Tripanagnostopoulos. 2007. Air-cooled PV/T solar collectors with low cost performance improvements. Solar Energy, 81(4): 498-511.
    129. K.G.T. Hollands, S.E. Unny, GD. Raithby, et al. 1976. Free convective heat transfer across inclined air layers. Journal of Heat Transfer, 98: 189-193.
    130. 2k32C225AHB 旋转式压缩机说明书.广州松下万宝压缩机有限公司.
    131. ASHRAE Handbook 2005. 2005. American Society of Heating, Refrigeration and Air Conditioning Engineers Inc.
    132. M.E. Ali. 1994. Experimental investigation of natural convection from vertical helical coiled tubes. International Journal of Heat and Mass transfer, 37:665-671.
    133. R.R. Bittle, D.A. Wolf, M.B. Pate. 1998. A generalized performance prediction method for adiabatic capillary tubes. HVAC&R Research, 4(1): 27-43.
    134. D. Jung, C. Park, B. Park. 1999. Capillary tube selection for HCFC22 alternatives. International Journal of Refrigeration, 22(8): 604-614.
    135. J. Choi, Y. Kim, H.Y. Kim. 2003. A generalized correlation for refrigerant mass flow rate through adiabatic capillary tubes. International Journal of Refrigeration, 26(8): 881-888.
    136. L. Yang, W. Wang. 2008. A generalized correlation for the characteristics of adiabatic capillary tubes. International Journal of Refrigeration, 31(2): 197-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700