太阳能双效溴化锂吸收式制冷系统的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国城乡建筑的发展非常迅速。每年新建房屋的建筑面积高达16-19亿平方米。到2001年底,全国城乡的房屋建筑面积已超过360亿平方米。目前,全国建筑能耗已超过全国总能耗的四分之一以上,而且有持续上升的趋势。建筑能耗包括热水、采暖、空调、照明、家电等。其中,住宅和公共建筑的空调能耗在全部建筑能耗中占有很大的比重。
     随着常规能源的日益匮乏和环境问题的日益严峻,太阳能因其洁净、无污染、可再生等优点,日益受到人们的重视和青睐。在太阳能热利用领域,太阳能制冷空调具有对能量地利用与季节相匹配、对环境无破坏作用等优点,近几十年来得到了迅速发展。
     太阳能溴化锂吸收式制冷是目前最成熟的太阳能制冷技术,现已进入实用化示范阶段。目前,针对太阳能溴化锂吸收式制冷地研究开发主要集中在单效系统,这主要是因为单效系统对热源要求低(75-90℃),系统通常选用价格便宜的平板型或真空管型太阳能集热器即可,系统成本相对较低,但系统的效率不高(COP 0.6-0.7)。
     本文对太阳能双效溴化锂吸收式制冷系统进行了理论研究。系统的太阳能集热部分采用具有反映灵敏、集热效率高和工作流体出口温度高等优点的抛物面槽太阳能聚焦集热器(PTC),制冷机采用性能系数较高的热水型双效并联溴化锂吸收式制冷机。与太阳能单效溴化锂吸收式制冷系统相比,双效系统对热源的要求较高(120-160℃),但对太阳能的利用效率更高(COP 1.2-1.5),具有更好的节能效果。
     首先建立了PTC的一维、非稳态传热模型,对其沿轴线的光强分布进行了计算,对PTC在给定工况下的动态性能进行了数值模拟,并与远大空调有限公司的实验结果进行了比较,模拟结果与实验结果相差在4.61%以内,两者吻合较好,验证了模型的合理性。
     建立了热水型双效并联LiBr/H_2O吸收式制冷系统的稳态集中参数模型。通过数值模拟,研究了热源水进口温度、热源水流量、冷却水进口温度、冷却水流量、冷冻水出口温度、冷冻水流量、溶液分配比和溶液循环量等运转条件的变化对系统性能的影响,分析了运转条件变化容易引发的系统故障。计算结果表明:系统的制冷量和COP随运转条件的变化而变化;运转条件的变化需要控制在一定范围内,否则将引发溶液结晶、工作压力过高、冷剂水或冷冻水结冰等系统故障。
     以PTC和双效并联LiBr/H_2O吸收式制冷系统的模型为基础,对采用抛物面槽聚焦集热器(PTC)的太阳能双效LiBr/H_2O吸收式制冷系统的性能进行了数值模拟,研究了运行温度对系统总效率的影响,计算结果显示:PTC在高温工作条件下具有非常高的集热效率;运行温度为173.5℃时,系统总效率最高,达到0.8250;与采用复合抛物面聚焦集热器(CPC)和高效真空管集热器(ETC)相比,采用PTC的太阳能双效吸收式制冷系统具有最佳的系统性能;相同条件下,选用PTC时集热面积最小,但由于PTC的价格很高,导致系统成本很高。
     在合肥地区的气候条件下,对采用抛物面槽聚焦集热器(PTC)的太阳能双效LiBr/H_2O吸收式制冷系统进行了设计优化和经济性分析。系统由66.125m~2PTC和16kW双效并联溴化锂吸收式制冷机组成,并增设了蓄热水箱和燃气辅助加热装置。研究了蓄热水箱容量及燃气辅助加热设定温度等对系统性能的影响。结果表明:蓄热水箱容量为0.6 m~3、燃气辅助加热设定温度为158.0℃时,系统在制冷期内所消耗的燃气量最少;制冷期内系统获得太阳能113594.52MJ,太阳能保证率达0.5997;与只采用燃气的双效溴化锂吸收式制冷系统相比,太阳能双效制冷系统全年制冷期内可节省燃气4091.11m~3;系统运行费用较低,但系统仍然是不经济的,这主要是由于PTC价格昂贵、初投资过大所致;当PTC价格低于$350.0/m~2时,太阳能双效制冷系统才比只采用燃气的双效溴化锂吸收式制冷系统更经济。
     对双效并联溴化锂吸收式制冷系统双热源工作模式的热性能进行了理论研究,分析了低压发生器所消耗的热量及系统运转参数的变化对系统热性能的影响。计算结果显示:在双热源工作模式下,随着低压发生器所消耗热量的变化,为保证系统的正常运行,需要对溶液流量进行调节控制:随着低压发生器所消耗热量的增加,系统的节能效果更好,运行费用更低;溶液分配比的可调节范围随着运转条件的变化而变化。
In recent years,the architecture of China has received great development.The area of the buildings in construction is 1600-1900 million square meters per year.By the end of 2001,the total area of the buildings of China has been more than 36000 million square meters.Now,more than a quarter of the total energy consumption of China is on building,and the trend keeps on increasing.As is known,the building energy consumption includes many aspects,such as hot water,heating,air conditioning,lighting,household appliances,etc.
     As a clean,non-polluting and renewable energy source,solar energy has received considerable attention due to the shortage of the normal fossil energy and the pollution of the environment.In the field of solar thermal utilization,solar cooling has received great development in recent decades since the availability of solar radiation matches very well with the varying cooling load demand and is friendly to environment.
     Among the solar cooling technologies,the solar LiBr/H_2O absorption cooling which has been in the stage of demonstration is ripest.Nevertheless,nearly all the studies on solar absorption cooling system focused on single-effect LiBr/H_2O systems.Single-effect LiBr/H_2O systems require hot water generator inlet temperatures in a low range of 75-90℃,so collectors of low price such as flat-plate pattern and evacuated tube collectors can be matched with them.Solar single-effect LiBr/H_2O systems has the advantage of low cost,but the energy efficiency is low (COP 0.6-0.7).
     In this study,a solar double-effect LiBr/H_2O absorption cooling system is theoretical studied.The system mainly consists of parabolic trough collectors(PTC) and a double-effect LiBr/H_2O absorption chiller.PTC has the ability to obtain a high fluid temperature with high energy efficiency.Compared with single-effect chiller, double-effect chiller requires hot water generator inlet temperatures in a high range of 120-160℃.The energy efficiency of double-effect system is higher(COP 1.2-1.5), which means a better energy-efficiency effect.
     An unsteady,one-dimensional heat transfer model of PTC is presented in this article.The distribution of the concentrated solar radiation along focal axis has been calculated.The thermal performance of the PTC is simulated,and the simulated results are compared with the experimental results.The comparison shows that the simulated and experimental results are in good agreement,and the difference between them is within 4.61%,which means the model set up is reasonable.
     A steady state concentrated parameter model of hot-water-driven double-effect parallel-flow LiBr/H_2O absorption refrigeration system is set up.The effect of the variation of operating conditions such as inlet temperature and mass flow rate of hot water,inlet temperature and mass flow rate of cooling water,outlet temperature and mass flow rate of cold water,solution distribution ratio and mass flow rate of solution on system performance is studied,and the possible faults caused by the variation of operating conditions are analyzed.Results show that the cooling capacity and the COP of the system vary with the variation of the operation conditions;system faults such as solution crystallization,overhigh working pressure, freezing of cooling water or chilled water will be caused if the variation of the operation conditions is out of range.
     Based on the theoretical study of the PTC and the double-effect parallel-flow LiBr/H_2O absorption refrigeration chiller,the system performance of the solar cooling system with PTC and a double-effect LiBr/H_2O absorption chiller is studied, and the influence of the operating temperature on the overall efficiency of the system is studied.Results show that the PTC has the ability to work at high temperature with high efficiency;the overall efficiency of the system achieves a maximum value of 0.8250 at operating temperature of 173.5℃;the system with PTC and a double-effect LiBr/H_2O absorption chiller has better system performance compared with the solar absorption cooling system with CPC and ETC;when PTC is used,its area is the least under the same design condition,but due to its high price,the cost of the system is still at a high level.
     A modelling and simulation is carried out for evaluating the system performance of a solar-assisted absorption cooling system under the climatic conditions of Hefei,China.The system consists of 66.125m~2 parabolic trough collectors(PTC),a double-effect LiBr/H_2O absorption chiller of 16kW cooling capacity and a storage tank.The effects of gas-firing thermostat setting,storage tank size and collector area on the system performance are analyzed.The results show that an optimal performance is attained when the storage tank size is 0.6 m~3 and gas-firing thermostat setting is 158.0℃.During the cooling season,the collector energy gain is 113594.52MJ,and the solar fraction reaches 0.5997.Though 4091.11m~3 gases are saved per year compared with the gas-fired double-effect absorption cooling system,the system is not cost-effective due to the high initial cost. It is found that the solar-assisted absorption cooling system is marginally competitive with gas-fired absorption system when collector prices reach values less than $350.0/m~2.
     The thermal performance of double-effect parallel-flow LiBr/H_2O absorption refrigeration system under dual-heat mode of operation is theoretically studied,and the influence of variation of external heat capacity of low pressure generator and operation parameters on the performance of system is analyzed.Results show that under dual-heat mode of operation,the flux of solution should be adjusted with the variation of the external heat capacity of low pressure generator to ensure the normal operation of the system;an increase in external heat capacity of low pressure generator leads to a better effect of energy-saving and a lower operating cost;the adjustable range of solution distribution ratio changes with the variation of operating conditions.
引文
[1]罗运俊,何梓年,王长贵,等.太阳能利用技术.北京:化学工业出版社,2006.
    [2]阙光辉.中国能源可持续战略/全景中国.北京:外文出版社,2007.
    [3]中国现代国际关系研究院经济安全研究中心.全球能源大棋局.北京:时事出版社,2005.
    [4]闫长乐,张永译.中国能源发展报告2007.北京:中国水利水电出版社,2007.
    [5]中华人民共和国国家统计局.中国统计年鉴2003.北京:中国统计出版社,2003.
    [6]国家环境保护总局,国家统计局.中国绿色国民经济核算研究报告2004.环境经济,2006,(6):10-16.
    [7]罗运俊,何梓年,王长贵.太阳能利用技术.北京:化学工业出版社,2005.
    [8]http://hi.baidu.com/solarheating/album/item/0d5214f994f98d42242df229.html
    [9]董月鲜.2005年房地产宏观调控成效明显.中国投资信息网,2005.
    [10]国务院.国家中长期科学和技术发展规划纲要(2006-2020年).2005.
    [11]国家发展和改革委员会.可再生能源中长期发展规划.2007.
    [12]J.C.Ward,G.O.G.Lof.Long-term(18 years) performance of a residential solar heating system.Solar Energy,1976,18(4):301-308.
    [13]黄素逸,高伟.能源概论.北京:高等教育出版社,2004.
    [14]W.Smolec,A.Thomas.Some aspects of Trombe wall heat transfer models.Energy Conversion and Management,1991,32(3):269-277.
    [15]L.Zalewski,M.Chantant,S.Lassue,et al.Experimental thermal study of a solar wall of composite type.Energy and Buildings,1997,25(1):7-18.
    [16]何伟,季杰,张爱凤,等.带改进型Trombe墙体的热箱热性能的实验测定和分析.中国科学技术大学学报,2003,33(5):567-572.
    [17]P.Sporn,E.R.Ambrose.The heat pump and solar energy.Proceedings of the World Symposium on Applied Solar Energy,Phoenix,Arizona,1997.
    [18]J.W.MacArthur,W.J.Palm,R.C.Lessmann.Performance analysis and cost optimization of a solar-assisted heat pump system.Solar Energy,1978,21(1):1-9.
    [19]T.L.Freeman,J.W.Mitchell,T.E.Audit.Performance of combined solar-heat pump systems.Solar Energy,1979,22(2):125-135.
    [20]S.K.Chaturvedi,M.Abazeri.Transient simulation of a capacity-modulated,direct-expansion,solar-assisted heat pump.Solar Energy,1987,39(5):421-428.
    [21]K.Kaygusuz.Performance of solar-assisted heat-pump systems.Applied Energy,1995, 51(2):93-109.
    [22]B.J.Huang,J.P.Chyng.Performance characteristic of integral type solar-assisted heat pump.Solar Energy,2001,71(6):403-414.
    [23]旷玉辉,王如竹,许煜雄.直膨式太阳能热泵供热水系统的性能研究.工程热物理学报,2004,25(3):737-740.
    [24]旷玉辉,王如竹.直膨式太阳能热泵热水器的试验研究.工程热物理学报,2005,26(3):379-381.
    [25]赵军,刘立平,李丽新,等.R134a应用于直接膨胀式太阳能热泵系统.天津大学学报,2000,33(3):301-305.
    [26]阳季春,季杰,裴刚,等.间接膨胀式太阳能多功能热泵供热实验.中国科学技术大学学报,2007,37(1):53-60.
    [27]阳季春,季杰,裴刚,等.间接膨胀式太阳能多功能热泵单独制热水性能实验研究.太阳能学报,2008,29(6):678-683.
    [28]余延顺,马最良,廉乐明.太阳能热泵系统运行工况的模拟研究.流体机械,2004,32(5):65-69.
    [29]裴刚.光伏-太阳能热泵系统及多功能热泵系统的综合性能研究[博士].合肥:中国科学技术大学,2006.
    [30]刘可亮.光伏太阳能热泵的理论和实验研究[博士].合肥:中国科学技术大学,2007.
    [31]王如竹,代彦军.太阳能制冷.北京:化学工业出版社,2007.
    [32]李戬洪,白宁,马伟斌,等.大型太阳能空调/热泵系统.太阳能学报,2006,27(2):152-158.
    [33]李戬洪,马伟斌,江晴,等.100kW太阳能制冷空调系统.太阳能学报,1999,20(3):239-243.
    [34]何梓年,朱宁,刘芳,等.太阳能吸收式空调及供热系统的设计和性能.太阳能学报,2001,22(1):6-11.
    [35]Ibrahim Dincer,Mustafa Edin,Engin Ture.Investigation of thermal performance of a solar powered absorption refrigeration system.Energy Conversion and Management,1996,37(1):51-58.
    [36]Arif Ileri.Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system.Solar Energy,1995,55(4):255-265.
    [37]R.J.Romero,W.Rivera,I.Pilatowsky,et al.Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide.Solar Energy Materials and Solar Cells,2001,70:301-308.
    [38]I.Pilatowsky,W.Rivera,R.J.Romero.Performance evaluation of a monomethylamine-water solar absorption refrigeration system for milk cooling purposes.Applied Thermal Engineering,2004,24:1103-1115.
    [39]冷振.采用新型制冷工质-TFE/NMP的吸收式制冷/热泵循环热力计算及优化分析[硕士].大连:大连理工大学,1999.
    [40]陈滢,朱玉群,耿玮,等.低温热源驱动的单效/双级(SE/DL)吸收式制冷循环.太阳能学报,2002,23(1):1-6.
    [41]A.Yattara,Y.Zhu,M.Mosa Ali.Comparison between solar single-effect and single-effect double-lift absorption machines(Part Ⅰ).Applied Thermal Engineering,2003,23:1981-1992.
    [42]万忠民,舒水明.一种高效太阳能混合吸收式制冷循环系统.华中科技大学学报,2003,31(1):100-102.
    [43]万忠民,舒水明.一种新型混合吸收式制冷循环的性能分析.太阳能学报,2003,24(2):189-192.
    [44]张云娟,舒水明,万忠民.新型混合吸收式制冷循环的实验研究.制冷与空调,2005,5(4):27-30.
    [45]陈亚平,王克勇,施明恒.太阳能1.x级溴化锂吸收式制冷循环性能分析.东南大学学报,2005,35(1):90-94.
    [46]陈亚平,王克勇,施明恒.1.x级溴化锂吸收式制冷循环性能分析.工程热物理学报,2005,26(2):193-195.
    [47]Douglas K.Priedeman,Michael A.Garrabrant,James A.Mathias,et al.Performance of a residential-sized GAX absorption chiller.Journal of Energy Resources Technology,2001,123:236-241.
    [48]N.Velazquez,R.Best.Methodology for the energy analysis of an air cooled GAX absorption heat pump operated by natural gas and solar energy.Applied Thermal Engineering,2002,22:1089-1103.
    [49]郑宏飞,吴裕远,姜华,等.太阳能吸收式制冷机中弦月形通道热虹吸溶液提升管的研究.太阳能学报,2003,24(4):466-471.
    [50]郑宏飞,陈子乾.太阳能无泵LiBr吸收式制冷机中溶液提升管最低高度的确定.北京理工大学学报,2003,23(5):548-551.
    [51]李跃智,吴裕远,王鹏飞,等.无泵溴化锂热水型吸收式制冷机小型化研究.制冷技术,2003,(4):16-19.
    [52]谷雅秀,吴裕远,柯欣.无泵溴化锂吸收式制冷机二次发生器的实验研究.西安交通大学学报,2006,40(1):62-66.
    [53]Gu Yaxiu,Wu Yuyuan,Ke Xin.Experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator.Solar Energy,2008,82:33-42.
    [54]Adrian Sozen,Mehmet Ozalp.Solar driven ejector-absorption cooling system.Applied Energy,2005,80:97-113.
    [55]程波,杜垲.双级喷射热泵与吸收式制冷的复合循环.流体机械,2005,33(2):50-53.
    [56]蒋立本,顾兆林,牛宏新,等.吸收-喷射复合制冷循环与双效吸收式制冷循环的比较研究.制冷技术,2000,28(6):45-50.
    [57]顾兆林,蒋立本,冯诗愚,等.吸收-喷射复合制冷技术的研究进展.低温工程,1999,(2):1-5.
    [58]Jin-Soo Kim,Felix Ziegler,Huen Lee.Simulation of the compressor-assisted triple-effect H_2O/LiBr absorption cooling cycles.Applied Thermal Engineering,2002,22:295-308.
    [59]William M.Worek,Daniele Ludovisi,Milton Meekler.Enhancement of a double-effect absorption cooling system using a vapor recompression absorber.Energy,2003,28:1151-1163.
    [60]Selahattin Goktun,Ismail Deha Er.The optimum performance of a solar-assisted combined absorption-vapor compression system for air conditioning and space heating.Solar Energy,2001,71(3):213-216.
    [61]曹毅然,张小松,鲍鹤灵.太阳能驱动的压缩吸收式复合制冷循环分析.流体机械,2002,30(10):51-53.
    [62]Kreider JF,Kreith F.Solar systems for space cooling.In:Solar energy handbook.New York:McGraw Hill,1981.
    [63]Z.F.Li,K.Sumathy.Simulation of a solar absorption air conditioning system.Energy Conversion and Management,1981,42:313-327.
    [64]Z.F.Li,K.Sumathy,Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank.Solar Energy,2001,71(5):285-297.
    [65]Z.F.Li,K.Sumathy.Performance study of a partitioned thermally storage tank in a solar powered absorption air conditioning system.Applied Thermal Engineering,2002,22:1207-1216.
    [66]万忠民,舒水明,郭义明.一种新的太阳能吸收式制冷系统中的蓄能技术.华中科技大学学报,2002,30(7):14-16.
    [67]Grassie SL,Sheridan NR.Modeling of a solar-powered absorption air-conditioning system with refrigerant storage.Solar Energy,1977,19:691-700,
    [68]Sheridan NR,Kaushik SC.A novel latent heat storage for solar space heating systems: refrigerant storage.Applied Energy,9:165+-72.
    [69]N.K.Ghaddar,M.Shihab,F.Bdeir.Modeling and simulation of solar absorption system performance in Beirut.Renewable Energy,1997,10(4):539-558.
    [70]G.A.Florides,S.A.Kalogirou,S.A.Tassou,et al.Modelling and simulation of an absorption solar cooling system for Cyprus,Solar Energy,2002,72(1):43-51.
    [71]G.A.Florides,S.A.Kalogirou,S.A.Tassou,et al.Modelling,simulation and warming impact assessment of a domestic-size absorption solar cooling system.Applied Thermal Engineering,2002,22:1313-1325.
    [72]Ibrahim Atmaca,Abdulvahap Yigit.Simulation of solar-powered absorption cooling system.Renewable Energy,2003,28:1277-1293.
    [73]F.Assilzadeh,S.A.Kalougirou,Y.Ali,et al.Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collector.Energy Conversion and Management,1996,37(1):51-58.
    [74]M.Balghouthi,M.H.Chahbni,A.Guizani.Feasibility of solar absorption air conditioning in Tunisia.Building and Environment,2008,43(9):1459-1470.
    [75]M.Mazloumi,M.Naghashzadegan,K.Javaherden.Simulation of solar lithium bromide-water absorption cooling system.Energy Conversion and Management,2008,49(10):2820-2832.
    [76]Ahmed Hamza H.Ali,Peter Noeres,Clemens Pollerberg.Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorption chiller.Solar Energy,2008,82(11):1021-1030.
    [77]Y.L.Liu,R.Z.Wang.Performance prediction of a solar/gas driving double effect LiBr/H_2O absorption system.Renewable Energy,2004,29:1677-1695.
    [78]William S.Duff,Roland Winston,Joseph.J.O.Gallagher,et al.Performance of the Sacramento demonstration ICPC collector and double effect chiller.Solar Energy,2004,76(1-3):175-180.
    [79]M.J.Tierney.Options for solar-assisted refrigeration—Trough collectors and double-effect chillers.Renewable Energy,2007,32(2):183-199.
    [80]远大空调有限公司.远大绿色中央空调.http://co.163.com/cfs/d/1162051269865.htm.
    [81]Xavier Garcia Casals.Solar absorption cooling in Spain:Perspectives and outcomes from the simulation of recent installations.Renewable Energy,2006,31(9):1371-1389.
    [82]苏树强.三效溴化锂吸收式制冷循环性能的研究[硕士].天津:天津商学院,2001.
    [83]王磊.小型直燃型吸收式制冷系统多参数耦合特性研究[博士].上海:上海交通大学,2002.
    [84]贾明生.溴化锂水溶液的几个主要物性参数计算方程.湛江海洋大学学报,2002,22(3):52-58.
    [85]戴永庆.溴化锂吸收式制冷空调技术实用手册.北京:机械工业出版社,2002.
    [86]Cohen G.Operation and efficiency of large-scale solar thermal power plants.Proceeding of Optical Materials Technology for Energy Efficiency and Solar Energy Conversion,SPIE,2003,2017:332-337.
    [87]Dudley V,Kolb G,Sloan M,et al.SEGS LS2 solar collector,test results.Report of Sandia National Laboratories,SANDIA94-1884,USA,1994.
    [88]S.D.Odeh,G.L.Morrison,M.Behnia.Modeling of parabolic trough direct steam generation solar collectors.Solar Energy,1998,62(6):395-406.
    [89]N.Eskin.Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results.Energy Conversion and Management,1999,40(2):175-191.
    [90]王志峰.抛物跟踪式太阳高温集热器的研究.太阳能学报,2000,21(1):69-76.
    [91]刘毓伟,陈滨,庄智,等.抛物槽集热器的能量效率.可再生能源,2005,123(5):7-11.
    [92]陈维,李戬洪.抛物柱面聚焦的几种跟踪方式的光学性能分析.太阳能学报,2003,24(4):477-482.
    [93]何汉峰,季杰,何伟.半圆形漫反射板对储热式真空管集热性能的影响.太阳能学报,2006,27(6):582-587.
    [94]达菲JA,贝克曼.太阳能工程:原理和应用.葛新石,龚堡,陆维德译.北京:学术期刊出版社,1988.
    [95]李业发,谢红,张有为.全玻真空管太阳能辐射量与其放置角度的关系.节能,2005,274(4):27-29.
    [96]T.T.Chow.Performance analysis of photovoltaic-thermal collector by explicit dynamic model.Solar Energy,2003,75(2):143-152.
    [97]弗兰克P英克鲁佩勒,戴维P戴维特.传热的基本原理.葛新石,王义方,郭宽良译.合肥:安徽教育出版社,1985.
    [98]邱国权,夏艳君,杨鸿毅.晴天太阳辐射模型的优化计算.太阳能学报,2001,22(4):456-460.
    [99]Khalid A.Joudi,Ali H.Lafta.Simulation of a simple absorption refrigeration system.Energy Conversion and Management,2001,42(13):1575-1605.
    [100]D.K.Anand,R.W.Allen,B.Kumar.Transient simulation of absorption machines.Journal of solar energy engineering,1982,104:197-203.
    [101]Ji Bian,Reinhard Radermacher,Dennis Moran.Transient simulation of an absorption chiller in a CHP system.International Sorption Heat Pump Conference.Denver,Co,USA,2005:1-7.
    [101]I.A.Bell,A.J.Al-Daini,Habib Al-Ali,et al.The design of an evaporator/absorber and thermodynamic analysis of a vapor absorption chiller driven by solar energy.Renewable Energy,1996,9(1-4):657-660.
    [103]F.Asdrubali.S.Grignaffini.Experimental evaluation of the performances of a H_2O-LiBr absorption refrigerator under different service conditions.International Journal of Refrigeration,2005,28(4):489-497.
    [104]G.P.Xu,Y.Q.Dai,K.W.Tou,et al.Theoretical analysis and optimization of a double-effect series-flow-type absorption chiller.Applied Thermal Engineering,1996,16(12):975-987.
    [105]G.P.Xu,Y.Q.Dai.Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller.Applied Thermal Engineering,1997,17(2):157-170.
    [106]余珏,张国强,郝小礼.双效吸收式制冷系统稳态仿真研究.制冷与空调,2005,5(3):24-28.
    [107]王立山,陈晓玲.冷却水对废热驱动型双效溴化锂吸收式制冷机组性能影响的仿真研究.流体机械,2005,33(6):68-72.
    [108]D.Fu,Z.Lu.Dynamic simulation of a gas-fired double-effect lithium bromide absorption chiller.Proceedings of the Absorption Heat Pump Conference.Shanghai,China,2002:189-193.
    [109]Wang Lei,Lu Zhen.Dynamic Performance of On-off Operation for a Small Scale Direct Fired Absorption Chiller.Journal of Dong Hua University(Eng.Ed.),2001,18(1):46-50.
    [110]王磊,陆震.小型直燃型吸收式机组部分负荷特性的实验研究.上海交通大学学报,2002,36(2):202-205.
    [111]文柏通,顾建明,陆震.复合热源驱动的吸收式制冷系统的控制策略研究.流体机械,2006,34(2):68-71.
    [112]赵龙,范林,陆震.三效吸收式制冷循环研究综述.制冷与空调,1999,(1):31-35.
    [113]Zijun Yan,Jincan Chen.The maximum overall coefficient of performance of a solar-driven heat pump system.Journal of Applied Physics,1994,76(12):8129-8134.
    [114]Chih Wu,Lingen Chen,Fengrui Sun.Optimization of solar absorption refrigerator.Applied Thermal Engineering,1997,17(2):203-208.
    [115]邹同华,涂光备,申江,等.太阳能吸收式制冷的最佳发生温度及节能分析.流体机械,2004,32(2):50-53.
    [116]A.Yattara,Y.Zhu,M.Mosa Ali.Comparison between solar single-effect and single-effect double-lift absorption machines(Part Ⅰ).Applied Thermal Engineering,2003,23(15):1981-1992.
    [117]D.S.Kim,C.A.Infante Ferreira.Solar refrigeration options-a state-of-the-art review.International Journal of Refrigeration,2008,31(1):3-15.
    [118]http://money.163.com/special/00251SCB/bankrate.html
    [119]http://www.wh-price.gov.cn/info/5772-1.asp
    [120]http://www.jc.net.cn/usm_xjrxdetail.asp?xjrxid={09A93D50-93DD-43EB-982F-B1D5D B6C091C}
    [121]http://www.icbc.com.cn/calculator/calculator_for.jsp
    [122]M.B.Arun,M.P.Maiya,S.Srinivasa Murthy.Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems.Applied Thermal Engineering,2000,20(3):227-242.
    [123]M.B.Arun,M.P.Maiya,S.Srinivasa Murthy.Performance comparison of double-effect parallel-flow and series flow water-lithium bromide absorption systems.Applied Thermal Engineering,2001,21(12):1273-1279.
    [124]张星.溴化锂吸收式制冷系统计算机模拟及分析[硕士].南京:东南大学,2000,47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700