U型玻璃真空管太阳能集热器热性能研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是世界上最丰富的永久性能源。太阳能集热器是太阳能系统的基本组成部分,其成本和技术决定了太阳能系统利用效果的优劣。U型玻璃真空管太阳能集热器是在全玻璃真空管集热器的基础上发展起来的一种新型集热装置。与全玻璃真空管型太阳能集热器相比较,其具有承压能力大、启动速度快、耐冻损性强等特性,为其推广与使用开辟了广阔的天地。目前,对U型玻璃真空管的研究相对较少,本文从传热机理和物理模型两方面对U型玻璃真空管的热性能进行研究,并提出优化方案。本文对U型玻璃真空管的研究取得如下几个方面的成果:
     (1)建立太阳辐射模型:太阳辐射量是太阳能系统中重要的参数。通常使用太阳辐射仪测量出的是水平面上总辐射,本文通过Matlab编程实现计算将实测总辐射分解为直射辐射和散射辐射,并且利用公式计算不同集热器放置倾角下能够获得的太阳辐射量,为下文对U型玻璃真空管的热性能研究提供可靠的基础数据。
     (2)区别于传统一维非稳态数学模型,在本文中,通过分析U型玻璃真空管的传热过程,在柱坐标系中建立三维非稳态数学模型,考虑各部分材料热容的影响,列出瞬态能量平衡方程,在不同气象参数条件下对所建非稳态模型进行数值求解,得到非稳态下流体的出口平均温度。由于U型铜管内容水量少,管内水热容对其热性能的影响小,为能更加真实的描述U型玻璃真空管的传热过程,建立稳态数学模型。传统稳态数学模型的建立一般近似认为真空管内部的温度均匀一致,采用集总参数的分析方法。本文中以能量平衡为基础,建立在太阳辐射下流体从U型管入口到出口的水温变化的数学模型,并采用控制容积法对每个微分方程在求解域上进行积分,实现对微分方程的节点离散,最后通过迭代求解得到离散方程的数值解。同时,本文建立了U型玻璃真空管集热器效率的计算模型,并且推导出总热损失系数、热转移因子和热效率因子的计算模型。
     (3)在深入研究U型玻璃真空管热特性的基础上,从理论上分析U型玻璃真空管管长、入口流速、U型铜管内径、太阳辐射量、流体入口温度和铝翼形式等因素对其热性能的影响,提出合理的优化方案。为U型玻璃真空管的优化设计,参数匹配等方面提供技术储备和理论支持。
     (4)鉴于通过实验获取真空管内部温度分布及流场状态的难度较大,为了验证U型玻璃真空管的数学模型,在FLUENT中建立U型玻璃真空管整体传热模型,通过模拟进行验证,得到U型铜管内流体沿管长方向及径向的温度变化情况。在其它参数设置相同的条件下,模拟不同入口流速、U型管内径以及太阳辐射量改变时流体的温度及流场变化,并与数值计算结果进行对比,验证数学模型的可靠性和正确性。
     (5)基于对U型玻璃真空管传热机理的研究,提出结构优化方案——在其内部内置波浪式铝翼,并申请了专利。将优化后的模型在FLUENT中进行模拟,对比传统U型玻璃真空管,发现内置波浪式铝翼的U型真空管热效率可以提高约6%。
     本文对U型玻璃真空管的传热机理和物理模型进行了详细具体的分析,所得结论为完善我国U型玻璃真空管的设计标准和整体优化提供理论根据,具有一定参考价值。
Nowadays, the usage of solar energy has become the worldwide trend. The solar collector is the key component in the solar thermal utilization whose effective utility has been the main concern, its quality standard express the overall utilization of solar system. The U-tube solar collector provide the combined effects of a highly selective surface coating and vacuum insulation of the absorber element so that they can have high heat extraction efficiency compared with the flat plate collectors. Currently, a few theoretical study focus on the U-tube solar collector. In this essay, most of attention concentrates on the theoretical study. From the basic thermal theory and simulation point, the optimizing way for the U-tube solar collector was developed. The completed works on the essay was displayed in the following:
     1) Set the solar radiation model. From the experiment equipment, the solar radiation set on the horizontal plate was got, by apply the matlab programming the beam radiation and the diffuse radiation was attained and the solar radiation on the tilted plate was finally achieved, which provide reliable data for the following computation.
     2) Through analysis of U-tube solar collector, the unsteady state mathematical model was developed and the mean outlet temperature was got. For the small heat capacity of U-tube solar collector, this paper focuses on the heat transfer under the steady-state. Respectively from the overall analysis and simplification of the aluminum fin angle, thermal parameters: efficiency, heat loss coefficient and transferring coefficient were derived. Moreover, by computing in the Matlab program, the temperature of each part within the internal structure and thermal efficiency were finally got.
     3) From the theoretical analysis, consider the impact of various parameters on the mean outlet temperature of the U-tube solar collector. By changing the length of the collector, the fluid inlet velocity, the copper tube diameter, the solar radiation, the inlet temperature and the different structure of aluminum fin the internal heat transfer and efficiency of the U-tube solar collector were found. Working on the analyzing results, the optimal design scheme was proposed, which is useful for the betterment design and the matching parameters.
     4) Since the actual test is quite difficult to test the internal temperature distribution and flow field of the U-tube solar collector, the use of FLUENT simulation can be great assistant. Differencing the fluid inlet velocity, the U-tube diameter and the solar radiation, the temperature of the fluid along the tube length direction were finally achieved. Compared with the conclusions summarized in the above chapter, the trend agrees well, which demonstrated the reliability and validity of the model developed above.
     5) Simulated U-tube solar collector within the wavy aluminum fin in the FLUENT program. Compared with the traditional U-tube solar collector, the built-in wavy aluminum fin can achieved 6% higher efficiency. As a result, varying the structure of aluminum fin can effectively improve the thermal performance and have a better future.
     In this essay, focusing on the thermal theory, the optimization suggestions were put forward, which will provide theory support and make contributions to the continually development of solar heating system.
引文
1胡建国.太阳能热水器前景展望[J].白云科技. 2000,(1):18~19
    2中华人民共和国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书[M].北京:中国计划出版社. 2000
    3葛新石,龚堡,陆维德,王义方.太阳能工程——原理和应用[M].学术期刊出版社. 1988
    4 Yin Zhiqiang. Development of solar thermal systems in China [J]. Solar Energy Materials and Solar Cells. 2005:427~442
    5倪维斗.我国能源现状及某些重要战略对策[J].中国能源. 2008,(12):5~9
    6周志强.中国能源现状、发展趋势及对策[J].能源与环境. 2008,(6):9~10
    7岑幻霞.太阳能热利用.[M].清华大学出版社. 1997
    8 G.L. Morrison, I. Budihardjo, M. Behnia. Water-in-glass evacuated tube solar water heaters [J]. Solar energy. 2004,(26):135~140
    9 E. Zambolin, D. Del Col. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions [J]. Solar Energy xxx (2010) xxx~xxx
    10 Runsheng Tang, Zhimin Li, Hao Zhong, Qing Lan. Assessment of uncertainty in mean heat loss coefficient of all glass evacuated solar collector tube testing[J]. Energy Conversion and Management 2006,(47): 60~67
    11 Yong Kim, Taebeom Seo. Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube [J]. Renewable Energy. 2007, (32):775–778
    12 Louise Jivan Shah, Simon Furbo. Theoretical ?ow investigations of an all glass evacuated tubular collector [J]. Solar energy. 2007,(81):822~828
    13 G.L. Morrison, I. Budihardjo, M. Behnia. Water-in-glass evacuated tube solar water heaters [J]. Solar energy. 2004,(76):135~140
    14殷志强,Harding G L,Collins R E.全玻璃同轴型真空管太阳集热器的热性能[J].太阳能.学报. 1997,(2):19~20
    15田琦.水在玻璃管真空管太阳集热器性能计算与分析[J].能源技术. 2007,第28卷第3期:51~51
    16罗南春.真空管太阳能热水器的热特性分析及计算[J].山东建筑工程学院报. 1998,第13卷第1期:17~18
    17王志峰.全玻璃真空管空气集热器管内流动与换热的数值模拟[J].太阳能学报. 2001,第22卷第1期:36~36
    18王佩明,王志峰,费良斌.全玻璃真管太阳空气集热器[J].实用技术. 2004,(4):28~29
    19赵冰.太阳集热器热性能测试系统的设计及试验研究[D].沈阳从农业大学硕士学位论文. 2005
    20侯宏娟.太阳集热器热性能动态测试方法研究[D].上海交通大学博士学位论文. 2005
    21王立廷,陆维德,霍志臣.横置全玻璃真空集热管单管内自然对流换热的实验研究[J] .太阳能学报. 1989年02期
    22 Zhiqiang,Y., Harding, G.L.. Water in glass manifolds for heat extraction from evacuated solar collector tubes[J]. Solar Energy. 1984, 32 (2): 223~230
    23 Duffie,J.A,Beckman.W.A. Solar engineering of Thermal Processes[M]. Chapter 6.New York: 1980
    24张鹤飞.与太阳辐射量有关角度的定义和计算公式[J].能源工程. 1986(3)
    25张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西安工业大学出版社. 2004:9-50
    26李春华.太阳能新型吸附集热器及其吸附式空调性能的研究[D].上海交通大学博士论文. 2002年
    27 J.理查德.威廉斯.太阳能采暖和热水系统的设计与安装[M] .北京:新时代出版社,. 1990:174~175
    28谢红.全玻璃真空管空气—热水两用式太阳能集热器理论与实验研究[D].中国科学技术大学硕士学位论文. 2005年
    29 Yin Zhiqiang. Development of solar thermal systems in China[J]. Solar Energy Materials and Solar Cells. 2005,(86):427~442
    30 Liangdong Ma, Zhen Lu, Jili Zhang, Ruobing Liang. Thermal performance analysis of the glass evacuated tube solar collector with U-tube[J]. Building and Environment 2010,(45) :1959~1967
    31 Yin ZHIQIANG, G.L.HARDING, S.CRAIG. COMPARATIVE STUDY OF FLUID-IN-METAL MANIFOLDS FOR HEAT EXTRACTION FROM SINGLE ENDED EVACUATED GLASS TUBULAR COLLECTORS[J]. Solar Energy. Vol. 35. No. I, pp. 81-91, 1985
    32安翠翠.抛物槽集热器的热性能研究.河海大学硕士学位论文[D]. 2008年
    33 Wang, L., Lu, W., Huo, Z.. Experimental study on the flow pattern inside the horizontally disposed all glass evacuated solar collector with visual technique[J]. Acta Energiae Solaris Sinica. 1987,8 (3):305~309
    34 Kamminga W. The Testing Of An Evacuated Tubular Collector With A Heat Pipe Using The Fourier Frequency Domian [J]. Heat Mess Transfer. 1986,(29)
    35 RAKESH KUMAR, S.C.KAUSHIK, H.P.GARG. Transient analysis of evacuated tubular solar collector with finite difference technique[J]. Renewable Energy. 1994,Vol.4.No.8.pp.941~947
    36 C.H.Li,R.Z.Wang,Y.J.Dai. Simulation and economic analysis of a solar-powered adsorption refrigerator using an evacuated tube for thermal insulation [J]. Renewable Energy. 1994,Vol.4.No.8.pp.941~947.
    37 X.Yu,D.J.Nelson,B.Vick. Phase change with multiple fronts in cylindrical systems using the boundary element method[J]. Engineering Analysis with Boundary Elements. 1995,(16):161~170
    38 A.Sridhar, K.S.Reddy. Transient analysis of modified cuboid solar integrated collector-storage system[J]. APPLIED THERMAL ENGIEERING. 2007 ,(27):330~346
    39 C.Dorfling, C.H.Hornung, B.Hallmark. The experimental response and modeling of a solar heat collector fabricated from plastic micro capillary films [J]. Solar Energy Materials and Solar Cells. 2007,(27):330~346
    40 A. H. FANNEY, S. A. KLEIN. THERMAL PERFORMANCE COMPARISONS FOR SOLAR HOT WATER SYSTEMS SUBJECTED TO VARIOUS COLLECTOR AND HEAT EXCHANGER FLOW RATES [J]. Solar Energy Vol. 40. No. I, pp. 1- II. 1988
    41陶大洲.与建筑结合的太阳能集热器的开发研究[D].天津大学工程硕士学位论文. 2004年
    42胡文旭.真空管热水器的非稳态效率方程与参数[J].西北大学学报(自然科学版). 2001年6月第31卷第3期
    43季杰,韩崇巍,陆剑平,何伟,裴刚.扁盒式太阳能光伏热水一体墙的理论研究[J].中国科学技术大学学报. 2007年第37卷第1期
    44刘可亮.光伏太阳能热泵的理论和实验研究[D].中国科学技术大学博士学位论文. 2007年
    45裴刚.光伏-太阳能热泵系统及多功能热泵系统的综合性能研究[D].中国科学技术大学博士学位论文. 2006年
    46阳季春.间接膨胀式太阳能多功能热泵系统的研究[D].中国科学技术大学博士学位论文. 2007年
    47 M. KUDRET SELCUK. ANALYSIS, DEVELOPMENT AND TESTING OF A FIXED TILT SOLAR COLLECTOR EMPLOYING REVERSIBLE VEE-TROUGH REFLECTORS AND VACUUM TUBE RECEIVERS[J].SOLAR ENERGY. Vol. 22, pp. 413~426
    48刘毓伟.关于抛物槽集热器的光学与热学的性能研究[D].大连理工大学硕士学位论文. 2005年
    49叶长焱.基于MATLAB的肋片传热特性分析与优化设计[J].化工设计. 2005,15(6):15~17
    50王金香.多孔介质土壤热渗耦合模型及埋管周围土壤温度场数值模拟研究[D].大连理工大学硕士学位论文. 2006
    51廖伟初.全玻璃真空管黑液太阳能集热系统的性能研究[D].广东工业大学硕士学位论文. 2009
    52殷志强,唐轩.全玻璃真空太阳集热管光一热性能[J].太阳能学报. 2001.22(1)
    53 FRANK K REITH G. O. G. LOF ARI RABL ROL, WINSTON. SOLAR COLLECTORS FOR LOW AND INTERMEDIATE TEMPERATURE APPLICATIONS [J]. Energy Combustion vol6.pp34
    54章熙民,任汝需等.传热学[M].中国建筑工业出版社. 2006年第二次印刷
    55田琦.太阳能喷射与压缩一体化制冷系统的研究[D].天津大学博士学位论文. 2004年
    56刘继者.热管平板式太阳能集热器和太阳能热水系统的研究[D].天津大学硕士学位论文. 2007年
    57王世锋.真空玻璃盖板热管平板式太阳能热水器的理论与实验研究[D].浙江大学硕士学位论文. 2004年
    58秦保军,朱春玲.肋片管换热器管外三维流动与传热的数值模拟[J].暖通空调. 2006年第36卷第11期: 51~53
    59 Gaa, F.O., Behnia, M., Morrison, G.L... Experimental study of flow rates through inclined open thermosyphons[J]. Solar Energy. 1996, 57 (5): 401~408
    60韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社2004年6月
    61温正,石良辰,任毅如编译. FLUENT流体计算应用教程[M].北京:清华大学出版社. 2009年第二次印刷

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700