武汉地区BIPV气候适应性策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,能源利用是地球环境可持续发展的关键内容。长期以来,与人们生活密切相关的建筑一直是最大的“能耗体”,但在太阳能光伏发电应用于建筑中后,建筑终于可以作为“供能体”来供给工作、生活的能源需求。为了在建筑中充分发挥光伏发电的生态性,提出了BIPV设计理念。BIPV设计受到气候因素的影响,会导致PV系统发电效率和建筑室内物理环境的改变。在不同的地区,不同的气候条件对BIPV设计产生不同的影响。本论文研究对象为武汉地区BIPV设计的气候适应性策略,主要分为四部分进行论述:
     第一部分首先阐释了PV板的倾斜角度、方位角,阵列间距等与PV发电效率的关系。然后探讨了太阳能辐射、温度、风和雨雪等对BIPV设计的影响。并初步分析了在不同的气候分区下BIPV设计中应考虑的气候因素。在此基础上,第二部分分析了对武汉地区BIPV设计影响最关键的气候因素。结合武汉地区独特的气候特征,对本地区太阳辐射、温度等与PV系统的姿态角度、PV板安装位置、安装方式的相互关系进行了研究。分析了武汉地区的电力负荷曲线与年PV发电负荷曲线的对应关系。论文的第四章“策略研究”属于第三部分,主要是探讨在武汉地区BIPV设计中,PV板角度(倾斜角、方位角)的最佳取值范围;PV阵列最适宜间距。并通过对几种形式的PV墙、PV屋顶的发电性能和建筑性能进行比较,确定最适合武汉地区气候条件的形式。PV遮阳板是本论文重要讨论的内容,综合了遮阳、采光、发电三方面的要求,对武汉地区PV遮阳板的安装位置和安装尺寸、角度进行了策略研究。第四部分为应用设计部分,在系馆屋顶加建BIPV项目的设计中,探讨了PV屋顶、PV墙体、PV遮阳的具体方案应用,并在项目建成后,进行了数据实测。
The 21st century, the Earth's environment, energy use is a key element of sustainable development. For a long time, and closely related to the construction of people's lives has always been the biggest "energy body", but applied to the construction of solar photovoltaic power generation, the construction has finally started as the "energy supply body" to the supply of work and life's energy needs. In order to give full play to the construction of the ecological nature of photovoltaic power generation is proposed BIPV design. BIPV design by climatic factors, will lead to PV system power generation efficiency and building indoor physical environment changes. In different regions, different climatic conditions on the BIPV design produce different effects. In this paper, object of study in Wuhan BIPV design of climate adaptation strategies, the main discussion is divided into four parts:
     Explained the first part of the first PV panel tilt angle, azimuth, array spacing and the relationship between the PV power generation efficiency. Then explore the solar radiation, temperature, wind and rain and snow and so the impact on the BIPV design. And a preliminary analysis of the climate in different partitions for BIPV design of the climatic factors should be considered. On this basis, the analysis of the impact of Wuhan BIPV design the most critical climatic factors. In Wuhan area's unique climate characteristics, solar radiation in this region, temperature etc. and the attitude angle of PV systems, PV panels installation location, installation of the mutual relations were studied. Analysis of the Wuhan regional electricity load curve and the annual PV electricity load curve corresponding relationship. This is the second part. Chapter IV Strategic Research papers belonging to the third part is mainly to explore the design of BIPV in the Wuhan area, PV panel angle (tilt angle, azimuth angle) is the best range; PV array of the most appropriate spacing. And through several forms of PV wall, PV power generation performance of the roof and building performance compared to determine the most suitable climatic conditions in Wuhan form. PV sun visor is important to discuss the contents of this paper is a synthesis of shading, lighting, power generation, the three requirements, the sun visor in Wuhan PV installation location and installation dimensions, angles Strategy Study. Part IV is divided into application design part of the Department of Museum in the construction of the roof BIPV project design, discussed the PV roof, PV wall, PV shading application specific programs. And the completion of the project was conducted after the data measured.
引文
1 Nordmann T,Clavadetscher L.Understanding temperature effects on PV systemrformance,the 3rd World Conference on Photovoltaic Energy Conversion,Osaka,2003
    2 Brinkworth B J,Cross B M,Marshall R H,et al.Thermal regulation of photovoltaic cladding,Solar energy,1997,61(3):169-178
    3 Fanney A H,Dougherty B P,Davis M W,Measured performance of building integrated photovoltaic anels,Journal of Solar Energy Engineering,2001,123: 187-193.
    4 Ji J,He W,Lam H N,The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong,Solar Energy Materials and Solar Cells,2002,71(4):435-448
    5 Yang H X,John B,Simple approach to cooling load component calculation through PV walls,Energy and Buildings,2000,31(3):285-290
    6 Mei L,Infield D,Thermal modeling of a building with an integrated ventilated PV fa?ade,Energy and Buildings,2003,35:605-617
    7 Yoo S H,Lee E T,Efficiency characteristic of building integrated photovoltaics as a shading device,Building and Environment,2002,37:615-623
    8 Khedari J,Waewsak J,Supheng W,et al,Experimental investigation of performance of a multi-purpose PV-slat window,Solar Energy Materials&Solar Cells,2004,82:431-445
    9 Bazilian M D,Leenders F,Photovoltaic cogeneration in the built environment,Solar Energy,2001,71(1):57-69
    10百度百科词条“一体化”http://baike.baidu.com/view/50017.htm
    11全晖.由机械理性到整体有机的转变—生态思维及其影响下的建筑观和设计思路.新建筑,2003(l):P24
    12原慧军王效华光伏并网发电与建筑相结合技术的发展概况光伏与工程2006.1 P37
    
    13潘玉良施浒立光伏发电系统最大输出效率探索微电子与基础产品2001 11.9 P51
    14张利,钟云,张建成考虑阴影影响的光伏电池组件实验研究太阳能2008.5 P27
    15孔娟太阳能光伏发电系统的研究青岛大学硕士学位论文2006.5.11 P18
    16张雪松太阳能光电板在建筑一体化中的应用建筑技术2005.2 P81
    17董密太阳能光伏并网发电系统的优化设计与控制策略研究中南大学博士学位论文2007.2 P103
    18马兆彪太阳能光伏并网发电系统的分析与研究江南大学硕士学位论文2008.9 P54
    19江小涛,吴麟章,周明杰太阳电池最大功率点跟踪研究武汉科技学院学报2005.4 P44
    20刘洋圆形围护结构建筑BIPV系统的研究天津大学硕士学位论文2007.6 P54
    21 Koronakis P S. On the choice of the angle of tilt for south facing solar collectors in the Athens Basin area [J].Solar Energy,1986,36(3):217-225.
    22 Klucher T M. Evaluation of models to predict insola-tion on tilted surfaces[J].Solar Energy, 1979, 23 (2):111-114.
    23 Klucher T M.Evaluation of Models to Predict Insolation on Tilted Surfaces[J].Solar Energy,1979,23(2):111-114.
    24 Perez R, Stewart R, Arbogast C. An anisotropic hourly diffuse radiation model for sloping surfaces: description, performance validation, site dependency evaluation[J].Solar Energy,1986,36(6):481-497.
    25沈辉、曾祖勤主编,太阳能光伏发电技术,化学工业出版社
    
    26文小航中国大陆太阳辐射及其与气象要素关系的研究兰州大学研究生学位论文2008.5 P27
    27陈志华1957-2000年中国地面太阳辐射状况的研究中国科学院研究生院硕士学位论文2005.7 P23
    28中华人民共和国标准GB90176-93,民用建筑热工设计规范,北京:中国建筑工业出版社,1993;
    29田晓飞杨海洋周慧光伏发电中光电转换效率问题的探讨科技创新导报2008.11 P115
    30罗运俊、何梓年、王长贵编著,太阳能利用技术,化学工业出版社P 274
    31匡荛,周永云,杨昭宇建筑光伏系统电池姿态与可吸收辐射量的关系太阳能学报2004.8 P448
    32资料来自:中国气象科学数据共享服务网,http://cdc.cma.gov.cn,中国辐射国际交换站气候标准值月值数据集(1971-2000年)
    33方先金;高庆先;翁笃鸣我国大气混浊度系数的分布状况南京气象学院学报1986-12-31 P32
    36王立娜;周克亮;卢闻州组合蓄能离网型自治光伏发电系统优化运行与配置设计电网技术2009-09-05 P54
    37李玉云、张春枝、曾省雅武汉市公共建筑能耗现状及节能潜力分析暖通空调2002,32(4),85-87
    38 (美)诺伯特·莱希纳著,张利译,建筑师技术设计指南,p142
    39 R.N.CHAPMAN REPORT SAND87—1087. UC--63
    40匡荛,杨昭宇,周永云.关于定向光伏电池阵列布置间距的探讨[J].太阳能学报,2004,25(3):634—635
    42 H X Yang, R H M arshall and B J B rinkwo rth. V alidated simulat ion fo r thermal regulat ion of photovotaic w all st ructures. P roc. of the 25th Pho tovo taic Spcialist Conference,U SA , 1996
    43夏热冬冷地区建筑遮阳系统设计及其节能评价西南交通大学硕士论文,2007年,P32
    44夏热冬冷地区建筑外遮阳与建筑整合设计研究浙江大学硕士论文, 2008年,P15
    45 (德)考斯特(Koster,H.)著,王宏伟译动态自然采光建筑原理与应用——基本原理·设计系统·项目案例中国电力出版社2007 ,P4
    46 (德)考斯特(Koster,H.)著,王宏伟译动态自然采光建筑原理与应用——基本原理·设计系统·项目案例中国电力出版社2007 ,P24
    47夏热冬冷地区建筑遮阳系统设计及其节能评价西南交通大学硕士论文,2007年,P42
    48徐丽萍,窗口遮阳构件的计算研究,工程与建设, 2007年第21卷第6期,P889
    49崔新明廖春波外遮阳系统在夏热冬冷地区住宅建筑中的应用住宅科技2006年第4期P44
    51 Thang Ngoc Cong ; Progress in electrical energy storage system:A critical review ;Progress in Natural Science ;2009-04 ;P23
    52邱速希非晶硅玻璃薄膜电池应用及热稳定性能和抗压性能测试玻璃2009年第4期P35
    53任建波光伏屋顶形式优化的实验和理论研究硕士论文,2006 ,P49
    54 Genchi Y,Ishiaki M,Ohashi Y,et al,Impacts of large-scale photovoltaic panel installation on the heat island effect in Tokyo,Fifth International Conference onUrban Climate,Lodz,2003.
    [1]民用建筑设计通则GB 50352-2005
    [2]建筑结构荷载规范GBJ—87
    [3]民用建筑热工设计标准GB50176-93
    [4]公共建筑节能设计规范GB 50189-2005
    [5]武汉市城市建筑规划管理实施办法
    [1]李安定,太阳能光伏发电系统工程,北京工业大学出版社,2001
    [2]罗运俊、何梓年、王长贵,太阳能利用技术,化学工业出版社,2004
    [3]沈辉、曾祖勤,太阳能光伏发电技术,化学工业出版社,2005
    [4]王崇杰、薛一冰,太阳能建筑设计,中国建筑工业出版社,2007
    [5]韩继红、江燕,上海生态建筑示范楼,中国建筑工业出版社,2005
    [6]徐占发,建筑节能技术实用手册,机械工业出版社,2005
    [7]彰国社(日)国外建筑设计详图图集14中国建筑工业出版社2005
    [8]丁国华.太阳能建筑一体化研究、应用及实例,北京:中国建筑工业出版社,2007.
    [9]运俊、何梓年、王长贵编著,太阳能利用技术,化学工业出版社P 274
    [10] (德)考斯特(Koster,H.)著,王宏伟译动态自然采光建筑原理与应用——基本原理·设计系统·项目案例中国电力出版社2007 ,P4
    [1]李海霞,郑志阳光、技术与美学—兼谈光伏技术在建筑中的应用,建筑,2005.71
    [2]杨洪兴,季杰,BIPV对建筑墙体得热量影响的研究,太阳能学报,1999
    [3]刘京华、庄向东,景丹阳,太阳能光伏与建筑集成化发展前景,河北省科学院学报2000
    [4]张雪松,太阳能光电板在建筑一体化中的应用.建筑.2005.2
    [5]赵国英,太阳能光伏发电产业的现状与前景,科技信息参考,2005.
    [6]敖三妹,太阳能与建筑一体化结合技术进展,南京工业大学学报,2005.11
    [7]匡荛等,关于定向光伏电池阵列布置间距的探讨,太阳能学报,2004.11
    [8]黄向阳、何清、谢士涛,光伏建筑一体化浅谈,中外建筑,2007
    [9]郝国强,光伏建筑一体化并网电站的应用和发展,上海节能,2006.6
    [10]全晖.由机械理性到整体有机的转变—生态思维及其影响下的建筑观和设计思路.新建筑,2003(l):P24
    [11]原慧军王效华光伏并网发电与建筑相结合技术的发展概况光伏与工程2006.1 P37
    [12]潘玉良施浒立光伏发电系统最大输出效率探索微电子与基础产品2001 11.9 P51
    [13]张利,钟云,张建成考虑阴影影响的光伏电池组件实验研究太阳能2008.5 P27
    [14]江小涛,吴麟章,周明杰太阳电池最大功率点跟踪研究武汉科技学院学报2005.4 P44
    [15]田晓飞杨海洋周慧光伏发电中光电转换效率问题的探讨科技创新导报2008.11 P115
    [16]方先金;高庆先;翁笃鸣我国大气混浊度系数的分布状况南京气象学院学报1986-12-31 P34
    [17]王立娜;周克亮;卢闻州组合蓄能离网型自治光伏发电系统优化运行与配置设计电网技术2009-09-05 P54
    [18]李玉云、张春枝、曾省雅武汉市公共建筑能耗现状及节能潜力分析暖通空调2002,32(4),85-87
    [19]徐丽萍,窗口遮阳构件的计算研究,工程与建设, 2007年第21卷第6期,P889
    [20]崔新明廖春波外遮阳系统在夏热冬冷地区住宅建筑中的应用住宅科技2006年第4期P44
    [21]邱速希非晶硅玻璃薄膜电池应用及热稳定性能和抗压性能测试玻璃2009年第4期P35
    [22] Koronakis P S. On the choice of the angle of tilt for south facing solar collectors in the Athens Basin area [J].Solar Energy,1986,36(3):217-225.
    [23] Petersen、Christine,solar power,Scholastic Library Pub
    [24] Maycock P,PV market update,Renewable Energy World,2004
    [25] BIPV study for renewa ble energy centr and ECO-Energy house.SB Riffat.School of built environment The University of Nottingham.
    [26] Case study for building integrated photovolta ic(BIPV)facade in United States.RIO 3-World Clima te & Energy Event,1-5 December 2003, Riode Janeiro,Bra zil
    [27] Anne,Grete,Hestnes.Building integration of solar energy systems.Solar energy.Vol 67
    [28] HAQUE, NASEEM H A , BROWN WD. Aluminium induced degradation and failure mechanisms of a - Si : H solar cell [ J] .Solar Energy Materials and Solar Cells , 1996
    [29] Brinkworth B J,Cross B M,Marshall R H,et al.Thermal regulation of photovoltaic cladding,Solar energy,1997,61(3)
    [30] Fanney A H,Dougherty B P,Davis M W,Measured performance of building integrated photovoltaic anels,Journal of Solar Energy Engineering,2001,
    [31] Yang H X,John B,Simple approach to cooling load component calculation through PV walls,Energy and Buildings,2000
    [32] Mei L,Infield D,Thermal modeling of a building with an integrated ventilated PV facade,Energy and Buildings,200.5
    [33] Bazilian M D,Leenders F,Photovoltaic cogeneration in the built environment,Solar Energy,2001,7
    [34] Khedari J,Waewsak J,Supheng W,et al,Experimental investigation of performance of a multi-purpose PV-slat window,Solar Energy Materials&Solar Cells,2004,8
    [35] Thang Ngoc Cong ; Progress in electrical energy storage system:A critical review ;Progress in Natural Science ;2009-04 ;P23
    [36] Genchi Y,Ishiaki M,Ohashi Y,et al,Impacts of large-scale photovoltaic panel installation on the heat island effect
    [1] BRE,The Environmental Building,A model for the 21st century,2000
    [2] IEA,World Energy Outlook,2002
    [3] THERMAL ISOLATED BIPV DESIGN MATCHED TO A-SI MODULES BEHAVIOURS,Angelo Berna sconi,the 4th World Conference on PV Energy Conversion(WCPEC),Ha waii(US),May 2006
    [4] J Karlsson,A Roos,B Karlsson.Building and climate influence on the balance temperature of buildings.Building and Enviornment,
    [5] Nordmann T , Clavadetscher L.Understanding temperature effects on PV systemrformance,the 3rd World Conference on Photovoltaic Energy Conversion,Osaka,2003
    [6] Ji J,He W,Lam H N,The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong,Solar Energy Materials and Solar Cells,2002
    [7] Yoo S H,Lee E T,Efficiency characteristic of building integrated photovoltaics as a shading device,Building and Environment,2002,3
    [8] Friedrich Sick .Thomas Erge, A Design Handbook for Architects and Engineers, XYZ Publishing Company Fraunhofer Institute for Solar Energy Systems(FhG-ISE) Freiburg,Germany
    [9] Genchi Y,Ishiaki M,Ohashi Y,et al,Impacts of large-scale photovoltaic in Tokyo, onUrban Climate,Lodz,2003.
    [1]郄昭昭,太阳能建筑一体化设计,江南大学硕士学位论文,2007.3
    [2]宣晓东,太阳能光伏技术与建筑一体化应用初探,全国优秀硕士论文,2007
    [3]孔娟太阳能光伏发电系统的研究青岛大学硕士学位论文2006.5.11 P18
    [4]董密太阳能光伏并网发电系统的优化设计与控制策略研究中南大学博士学位论文2007.2 P1
    [5]马兆彪太阳能光伏并网发电系统的分析与研究江南大学硕士学位论文2008.9 P54
    [6]刘洋圆形围护结构建筑BIPV系统的研究天津大学硕士学位论文2007.6 P54
    [7]文小航中国大陆太阳辐射及其与气象要素关系的研究兰州大学研究生学位论文2008.5 P27
    [8]陈志华1957-2000年中国地面太阳辐射状况的研究中国科学院研究生院硕士学位论文2005.7 P23
    [9]夏热冬冷地区建筑外遮阳与建筑整合设计研究浙江大学硕士论文, 2008年,P15
    [10]任建波光伏屋顶形式优化的实验和理论研究天津大学硕士论文,2006 ,P49
    [11]夏热冬冷地区建筑遮阳系统设计及其节能评价西南交通大学硕士论文,2007年,P32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700