染料敏化二氧化钛纳米晶薄膜太阳电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳能光伏发电是能源利用不可逆转的潮流。光伏产业是目前发展最快的产业。在过去五年中,世界光伏电池产业以平均每年40%的速度稳定增长,这是比IT行业发展还快的产业。降低成本和提高转换效率是目前光伏行业迫切需要解决的问题。
     染料敏化纳米晶太阳电池是当前纳米技术和光电转换材料研究的热点之一,其廉价的成本和简单的制作工艺以及稳定的性能,为人类廉价和方便的利用太阳能提供了更有效的方法。同时,怎样进一步提高染料敏化纳米晶太阳电池的稳定性和光电转换效率是关乎该电池实际应用前景的重大课题。基于目前染料敏化纳米晶太阳电池国内外发展情况,并结合国内纳米粉末制备的成熟技术,本论文从以下几个方面进行研究:以自制纳米粉末为原料制备纳米晶薄膜及合成具有良好光谱响应的酞菁衍生物来降低成本;以磁控溅射的方法改进纳米晶薄膜的电荷传输性能;以固态电解质替代液态电解质来提高电池的稳定性。
     本论文的具体研究内容和主要结论在于:
     1.结合目前太阳电池发展前沿和国内发展现状,通过以两种易聚集的平均粒径为26nm的纳米粉末TiO_2 Ⅰ、TiO_2 Ⅱ为原料、采用一种快速挥发溶剂并固定纳米颗粒的新技术成功制备出具有高比表面面积的纳米晶TiO_2薄膜。以X-ray衍射(XRD)、透射电子显微(TEM)、扫描电子显微(SEM)和X-ray光电子能谱(XPS)测试了薄膜的结构和性能。结果表明颗粒的平均尺寸在450℃下热处理前后没有改变,1微米厚的薄膜产生的粗糙因子为86和80。而以粒径为36纳米传统TiO_2粉末P25为原料制得的具有同样厚度的薄膜能产生粗糙因子为82。TiO_2Ⅰ纳米晶薄膜电极在0.05M四丁基溴化铵(TBAB)的碳酸丙烯酯(PC)溶液中的电化学性能测试展现了与P25薄膜相似的良好电化学活性。而且,这种方法适合于以其他材料或更小纳米颗粒为原料,制备应用于染料敏化纳米晶太阳电池的薄膜;
     2.根据电荷在纳米晶薄膜上复合的特点,通过直流磁控溅射和粉末涂覆法分别在导电玻璃上依次沉积一层溅射沉积TiO_2层和一层纳米晶TiO_2层,从而构建了
The conversion of sunlight to electrical power is an irreversible trend in the field of energy generation. Photovoltaic is one of the fastest growing industries at present. In the last five years, the production of photovoltaic cells has increased steadily at an average rate of 40% per year in the world, which exceeds the development of IT industry. However, how to reduce its cost and improve its energy conversion efficiency is the most important issue in PV industry.The dye-sensitized nanocrystalline solar cell is one of hot-spot in the field of materials for photoelectric conversion and nano technology. Based on low-cost, simple technique and stable character, it can offer a better method to use solar energy in cheaper and more convenient way. However, how to further improve its stability and energy conversion efficiency is also a major problem for its application prospects. Based on the development of the dye-sensitized nanocrystalline solar cells and the matured technology of preparing nanoparticles in our country, this dissertation deals with the dye-sensitized nanocrystalline solar cells through reducing cost by preparing nanocrystalline films using home-made nanoparticles and synthesizing a novel metal-phthalocyanine derivatives with good photo-response, improving charge transport properties of nanocrystalline films by the method of magnetron sputtering deposition, and improving the stability with solid-state medium replacing the liquid electrolyte.The main contents and results of this dissertation are listed as following: 1. Based on the trend in solar cells and PV status in our country, a high-surface-area nanocrystalline TiO_2 films were successfully prepared from two kinds of easy-reaggregation primary nanoparticles with the mean size of 26 nm in ethanol solution by a novel technique of quickly volatilizing solvent to fix the nanoparticles. Structure and properties of the films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and
    X-ray photoelectron spectroscopy (XPS). The results show that the mean size of nanoparticles doesn't change with heat-treatment at 450°C and the roughness factor about 86 and 80 was obtained for 1 ^m thickness films. A roughness factor of 82 was found for the commercial P25 TiO2 films with the mean size of 36 nm and the same thickness. The electrochemical properties of the interfaces of the TiC"2 I film electrodes in propylene carbonate (PC) containing 0.05 M tetrabutyl ammonium bromide (TBAB) was also measured and show that the electroactive of the T1O2 I film is similar to P25. Moreover, this method is adapted to prepare nanostructural films using other materials and smaller primary nanoparticles for dye-sensitized nanocrystalline solar cells;2. To reduce the electron recombination rate on nanocrystalline films, a novel hybrid Ti(>2 electrode containing a sputter deposited layer and a nanocrystalline layer was fabricated on a conducting glass by DC magnetron sputtering and doctor blade technique, respectively. The sputter deposited layer (20 ~ 40nm) fabricated at 100 ~ 250°C is found to be outstanding in improving the performance of the dye-sensitized solar cells. In the case of P25, a high solar-to-electric energy conversion efficiency of 8.1%, larger short-circuit photocurrent of 20.8 mA-cm"2 and open-circuit voltage of 682 mV were obtained under irradiation of white light (98mW-cm"2). Comparing with the pure nanocrystalline electrodes, this hybrid electrode has doubled the short-circuit current density and raised the open-circuit voltage over 30%. At the same time, two kinds of cheap nanometer TiC>2 powders hydrolyzing from titanyl nitrate were used in the hybrid nanocrystalline TiC?2 electrode and fabricated dye-sensitized nanocrystalline solar cells. These suggest that this hybrid electrode provides a potential in improving performance of the dye-sensitized nanocrystalline solar cells;3. We synthesized a functional metal-phthalocyanine derivative VOPc. It can dissolve easily in DMF and has large photo-response in a broad wavelength from 650nm to 700nm. When coated in nanocrystalline titanium dioxide electrode, its photo-response is extended. We fabricated the solar cells after sensitizing nanocrystalline electrode by VOPc. The photo-electric conversion efficiency about
    0.16% (98mW-cm"2) and the largest monochromatic current yeild about 10% were obtained;4. We attempt to use Cul, a common p-type semiconductor material, to fabricate solid-state dye-sensitized solar cells by the method of magnetron sputtering deposition. The results show that the component of y-CuI can be controlled in this method. A high effective transmittance and lager conductivity were obtained. The conductivity of Cul has been improved about three magnitude orders than the films prepared by solution. At the same time, we obtained conversion efficiency about 0.14% under the irradiation of white light (65.2 mW-cm"2);5. An all solid-state dye-sensitized nanocrystalline solar cells have been successfully fabricated with the PEO/PVDF polymer redox electrolyte hybrid with titanium dioxide nanoparticles. The dependences of the glass transition temperature, crystallinity, morphology and conductivity of the blend polymer redox electrolyte on mixture ratio of polymer and hybrid were characterized by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and electrical conductivity measurements. The results show that the introduction of PVDF containing fluorine element 'F' having strong negativity and the titanium dioxide nanoparticles in the PEO electrolyte reduces the crystallinity of the blend polymer, increases the ionic conductivity and effectually overcomes the recombination rate at the interface of TiO2 / solid-state electrolyte. Moreover, the blend polymer redox electrolyte PEO/PVDF with the ratio of 4 to 6 hybridized with TiO2 nanoparticles showed the largest ionic conductivity and more outstanding overall energy conversion efficiency (about 4.8 %, 65.2 mW-cm'2) than the plain polymer redox electrolyte in the dye-sensitized nanocrystalline solar cells. Base on this method, it is hopeful to carry out a practicality device.
引文
[1] M. Gratzel, Nature 2000, 403, 363
    [2] 雷永泉主编,《二十一世纪新材料丛书—新能源材料》,2002,天津大学出版社,222
    [3] Masafumi, Yamaguchi, Renewable and Sustainable Energy Reviews 2001, 5, 113
    [4] Arnulf Jager-Waldau, PV Status Report 2003, European Commission, DG JRC http://europa.eu.int
    [5] Paul Maycock, PV News, 2003
    [6] European Photovoltaic Industry Association, European Photovoltaic Industry Association Roadmap, 2004
    [7] Yuwen Zhao, Solar Energy Materials & Solar Cells 2001, 67, 663
    [8] 军民两用技术与产品,2003,11
    [9] 何月,电子产吕世界 2001,3,61
    [10] 施敏主编,《现代半导体器件物理》,2001,科学出版社
    [11] A. Shah, R. Platz, H. Keppner, Solar Energy Materials & Solar Cells 1995, 38, 501
    [12] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 1999, 285, 692
    [13] G. Giroult-Matlakowski, U. Theden, A. W. Blakers, in Proceedings of the 2nd World Conference on PV Sola Energy Conversion, J. Schmid et al., Eds. (European Commission, Directorate General Joint Research Center, Ispra, Italy), 1998, 3403
    [14] J. Zhao, A. Wang, M. A. Green, F. Ferrazza, Appl. Phys.Lett. 1998, 73, 1991
    [15] C. E. Witt et al, in Proceedings of the 1st IEEE WorldConference on PV Energy Conversion (Institute of Electrical and Electronics Engineers, Piscataway, NJ), 1994, 2262
    [16] J. Meier et al., Mater. Res. Soc. Syrup. Proc. 1998, 507, 139
    [17] K. Yamamoto et al., Mater. Res. Soc. Syrup. Proc. 1998, 507, 131
    [18] J. Meier et al., J. Non-Co, st. Solids 1998, 227, 1250
    [19] K. Saito et al., in Proceedings of the 2nd Worm Conference on PV Solar Energy Conversion, J. Schmid et al., Eds. (European Commission, Directorate General Joint Research Center, Ispra, Italy), 1998, 351
    [20] D. E. Carlson, S. Wagner, Renewable Energy: sources for fuels and Electricity, 1993, Island Press, Washington
    [21] D. E. Carlson, C. R. Wronski, Appl. Phys. Lett., 1976, 28, 671
    [22] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., 1977, 31, 292
    [23] J. Yang, A. Banerjee, S. Guha, Appl. Phys. Lett. 1997, 70, 2975
    [24] S. Guha, K. L. Narasimhan, S. M. Pietruszko, J. Appl. Phys. 1981, 52, 859
    [25] P. Iles, Y. C. M. Yeh, Solar cells and their applications, 1995, Wiley, New York
    [26] H. Ohyama et al., in Proceedings of the 26th IEEE Photovoltaic Specialists Conference (Institute of Electrical nand Electronics Engineers, Piscataway, NJ), 1997, 343
    [27] T. L. Chu et al., in Proceedings of the 11th European Commission Photovoltaic Solar Energy Conference, L. Guimaraes et al., Eds. (Harwood Academic, Chur, Switzerland), 1992, 988
    [28] G. C. Datum, S. A. Billets, Proceedings of 22th IEEE PVSC, 1991, 1422
    [29] J. J. Wysocki, P. Rappaport, J. Appl. Phys., 1960, 31, 571
    [30] M. Yamaguchi, S. Katsumoto, C. Amano, Proceedings ofWCPEC-1, 1994, 2149
    [31] C. Becquerel, C. R. Acad. Sci.(Paris), 1839, 9, 14
    [32] 戴松元,王孔佳等,太阳能学报 1997,18(2),228
    [33] Marinus Kunst, Ahmed Ennaoui, Solar Energy Materials & Solar Cells 2004, 83, 3
    [34] Fujishima A, Honda K, Nature 1972, 37, 238
    [35] R. Memming, Journal of the Electrochemical Society 1978, 125, 117
    [36] R. Memming, Polymer Science and Technology 1975, 261
    [37] F. Moellers, H. J. Tolle, R. Memming, Journal of the Electrochemical Society 1974, 121, 1160
    [38] W. Badawy, K. Doblhofer, I. Eiselt, H. Gerischer, S. Krause, J. Melsheimer, Electrochimica Acta 1984, 29, 1617
    [39] F. Decker, B. Pettinger, H. Gerischer, Journal of the Electrochemical Society 1983, 130, 1335
    [40] H. Gerischer, M. Luebke, B. Bressel, Journal of the Electrochemical Society1983, 130, 2112
    [41] W. Kautek, H. Gerischer, ElectrochimicaActa 1981, 26, 1771
    [42] U. Bode, K. Hauffe, Journal of the Electrochemical Society 1978, 125, 51
    [43] J. Halfdanarson, K. Hauffe, J. Range, Photographic Science and Engineering 1976, 20, 251
    [44] K. Hauffe, U. Bode, Polymer Science and Technology, 1975, 281
    [45] C. P. Keszthelyi, A.J. Bard, Journal of the Electrochemical Society 1973,120, 1726
    [46] C. P. Keszthelyi, A. J. Bard, Journal of the Electrochemical Society 1973,120, 241
    [47] G. H.Brilmyer, A. Fujishima, K. S. V. Santhanam, A. J. Bard, Analytical Chemistry 1977, 49, 2057
    [48] H.Tributsch, erichte der Bunsengesellschaft fuer Physikalische Chemie 1977,81, 361
    [49] G Betz, H. Tributsch, R. Marchand, Journal of Applied Electrochemistry 1984,14, 315
    [50] J. Kiwi, M. Gratzel, Journal of the American Chemical Society 1979,101, 7214
    [51] P. Liska, N. Vlachopoulos, M. K. Nazeeruddin, P. Comte, M. Gratzel, Journal of the American Chemical Society 1988,110, 3686
    [52] L. Kavan, M. Gratzel, Electrochimica Acta 1989,34, 1327
    [53] O. Regan, B. & Gratzel, M. Nature 1991,353, 737
    [54] Nazeeruddin M K, A. Kay, I. Rodicio, R. H. Barer, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 1993,115, 6382
    [55] Ch.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Cer.Soc. 1997, 80, 3157
    [56] O. Kohle, M. Gratzel, A. F. Meyer, T. B. Meyer, Advanced Material 1997,9, 904
    [57] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 1998,395, 583
    [58] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nature Materials 2003,2, 402
    [59] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nature Materials 2003,2, 498
    [60] M. Gratzel, Nature 2001,414, 338
    [61] SX Tan, J Zhai, MX Wan, QB Meng, YL Li, L Jiang, DB Zhu, J. Phys. Chem. B. 2004,108, 18693
    [62] SX Tan, J Zhai, BF Xue, MX Wan, QB Meng, YL Li, L Jiang, DB Zhu, Langmuir 2004, 20, 2934
    [63] TL Ma, K Inoue, K Yao, H Noma, T Shuji, E Abe, JH Yu, XS Wang, BW Zhang, J
     Electroanaly. Chem. 2002, 537, 31
    [64] TL Ma, XM Fang, M Akiyama, K Inoue, H Noma, E Abe, J. Electroanaly. Chem. 2004, 574, 77
    [65] M Yang, DJ Wang, YH Lin, ZH Li, QL Zhang, Mat. Chem. Phys. 2004, 88, 333
    [66] J Kang, W Li, X Wang, Y Lin, X Li, X Xiao, S Fang, J. Appl. Electrochem. 2004, 34, 301
    [67] J Kang, W Li, X Wang, Y Lin, X Xiao, S Fang, Electrochim. Acta 2003, 48, 2487
    [68] YX Weng, L Li, Y Liu, L Wang, GZ Yang, J. Phys. Chem. B. 2003, 107, 4356
    [69] QB Meng, K Takahashi, XT Zhang, I Sutanto, TN Rao, O Sato, A Fujishima, H Watanabe, T Nakamori, M Uragami, Langmuir 2003, 19, 3572
    [70] ZS Wang, YY Huang, C H Huang, J Zheng, HM Cheng, SJ Tian, Syn. Meta. 114, 201, 2000
    [71] K Song, LZ Wu, CH Yang, CH Tung, Tetra. Lett. 2000, 41, 1951
    [72] 国民经济和社会发展第十个五年计划能源发展重点专项规划 http://www.sdpc.gov.cn/
    [73] M. Gratzel, Corrdination Chemistry Reviews 1991, 111, 167
    [74] A. Hagfeldt, M. Gratzel, Chem. Rev. 1995, 95, 49
    [75] T.J. Savenije, J.M. Warman, A. Goosens, Chem. Phys. Lett. 1998, 278, 148
    [76] A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 2000, 33, 269
    [77] M. Hilgendorff, L. Spanhel, Ch. Rothenhauler, G. Muller, J. Electrochem. Soc. 1998, 145, 3632
    [78] J. Nelson, Phys. Rev. B 1999, 59, 15374
    [79] K. Schwarzburg, F. Willig, J. Phys. Chem. B 1999, 103, 5743
    [80] F. Pichot, B. A. Gregg, J. Phys. Chem. B 2000, 104, 6
    [81] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B 2000, 104, 2053
    [82] J. Van de Lagemaat, N.-G. Park, A. J. Frank, J. Phys. Chem. B 2000, 104, 2044
    [83] 雀部博之,《导电高分子材料》,1997,p204
    [84] JB. Baxter, ES. Aydil, Appl. Phys. Lett. 2005, 86, 053114
    [85] P. Hoyer, H. Weller, J. Phys. Chem. 1995, 99, 14096
    [86] G. Hodes, D. J. Howell, L. M. Peter, Electrochem. Soc. 1992, 139, 3136
    [87] T. Torimoto, N. Tsumura, M. Miyake, Langmuir 1999, 75,1853
    [88] C. Nasr, S. Hotchandani, P. V. Kamat, Langmuir 1995,11, 1777
    [89] I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 1994, 98, 4133
    [90] L. Kavan, B. O Regan, A. Kay, M. Graetzel, J. Electroanaly. Chem. 1993,346,291
    [91] L. Kavan, Ladislav, M. Gratzel, Electrochimica Acta 1995,40, 643
    [92] D. Mattews, A. Kay, M. Gratzel, Aust. J. Chem. 1994,47,1869
    [93] M. Gomez, J. Rodriguez, S. Tingry, A. Hagfeldt, S. E. Lindquist, et al., Sol. Energy Mater. Sol. Cells 1999, 59, 277
    [94] M. Gomez, N. Beermann, J. Lu, E. Olsson, A. Hagfeldt et al., Sol. Energy Mater. Sol. Cells 2003, 76,37
    [95] M. Gomez, J. Lu, E. Olsson, A. Hagfeldt, C.G. Granqvist, Sol. Energy Mater. Sol. Cells 2000, 64,385
    [96] R odriguez, M. Gomez, J. Lu, E. Olsson, C. G. Granqvist, Adv. Mater. 2000,12,341
    [97] K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 1998,177, 347
    [98] S. Tanaka, Japanese Journal of Applied Physics, Part 1 2001,40, 97
    [99] L. M. Peter, N.W. Duffy, R. L. Wang, K. G U. Wijayantha, J Electroanaly. Chem. 2002, 524-525, 127
    [100] L. M. Peter, E. A. Ponomarev, G Franco, N. J. Shaw, Electrochimica Acta 1999,45,549
    [101] M. Gratzel, J. Photochem.Photobio. C 2003,4, 145
    [102] P. R. Bacsa, M. Gratzel, J. Am. Ceram. Soc. 1996, 79, 2185
    [103] P. E. De. Jongh, D. Vanmaekelbergh, J. Phys. Rev. Lett. 1996, 77,3427
    [104] G. Shichthorl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B. 1997,101,8141
    [105] T. Taketo, XT. Zhang, Chem. Commun. 2003,2480
    [106] D. Yishay, C. Shlomit, Coord. Chem. Rev. 2004,248, 1271
    [107] S. Yanagida, T. Kitamura, M. Kohmoto, Electrochem. 2002, 70, 399
    [108] P. J. Cameron, L. M. Peter, J. Phys. Chem. B107,2003,14394
    [109] 李卫华,郝彦忠,蔡生民,应用化学 1999,16, 6
    [110] YQ. Wang, YZ Hao, SM Cai, J. Mater. Sci, 1999,34, 2773
    [111] C. Wen, K. Ishikawa, T. Kitamura, Sol. Energy Mater. Sol. Cells 2000, 61,339
    [112] K. Tennakone, VPS. Perera, J. Phys. D. 1999,32, 374
    [113] K. Tennakone, VPS. Perera, Chem. Comm. 1999, 15
    [114] K. Kalyanasundaram, J. P. Chauvet, M. Gratzel, Inorg. Chem. 1988,27,2820
    [115] G K. Boschloo, A. Goosens, J. Phys. Chen. 1996,100, 19489
    [116] A. Kay, R. Humphry Baker, M. Gratzel, J. Phys. Chem. 1994, 98, 952
    [117] I. Bedja, S. Hotchandani, R. Carpentier, R. W. Fessenden, P. V. Kamat, J. Appl. Phys. 1994, 75, 5444
    [118] K. Kalyanasundaram, Coord Chem. Rev. 1982,46, 159
    [119] J. R. Darwent, P. Walters, A. Mills, G Porter, A. Harriman, Coord. Chem. Rev. 1982, 44, 83
    [120] T. J. Meyer, Prog. Inorg. Chem. 1983,30, 389
    [121] A. Juris, V. Balzani, F. Barigelletti, S. Campagon, P. Belser, A. Zelewsky, Corrd. Chem. Rev. 1988, 84, 85
    [122] V. Balzani, F. Boletta, M. T. Gandolfi, M. Maestri, Top. Curr. Chem. 1978, 75,1
    [123] V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96,759
    [124] V. Balzani, F. Barigelletti, L. Cola, Top. Curr. Chem. 1990,158,31
    [125] V. Scandola, M. T. Indelli, C. Chiorboli, C. A. Bignozzi, Top. Curr. Chem. 1990,158, 73
    [126] E. C. Constable, A. M. W. Cargill Thompson, New J. Chem. 1996,29,65
    [127] E. C. Constable, Pure Appl. Chem. 1996, 68,253
    [128] H. Tributsch, M. Calvin, Photochem. Photobiol. 1971,14,95
    [129] H. Tributsch, M. Calvin, Photochem. Photobiol. 1972,16, 261
    [130] T. Miyasaka, K. Honda, Surf. Sci. 1980,101, 541
    [131] T. Miyasaka, S. Nakatani, T. Yamaguchi, T. Komura, S. Ito, K. Honda, Sol. Energy Mater. Sol. Cells 1997, 45, 127
    [132] G. K. Boschloo, A. Goosens, J. Phys. Chem. 1996,100,19489
    [133] C. D. Jaeger, F. R. Fan, A. J. Bard, J. Am. Chem. Soc. 1980,101, 2592
    [134] A. Giraudeau, F. R. Fan, A. J. Bard, J. Am. Chem. Soc. 1980,102, 5137
    [135] H. Yanagi, S. Y. Chan, P. A. Lee, K. W. Nebesny, N. R. Armstrong, A. Fujishima, J. Phys. Chem.1996,100,5447
    [136] J. Hodak, C. Quinteros, M. I. Litter, E. S. Roman, J. Chem. Soc. Faraday Trans. 1996, 92,
     5081
    [137] A. Wiederkehr, PhD Dissertation, Switzerland, 1990, 872
    [138] M. K. Nazeeruddin, R. H. Baker, M. Gratzel, B. A. Murrer, d. Chem. Soc. Chem. Commun. 1998, 719
    [139] R. Amadelli, R. Argazzi, F. Scndola, J. Am. Chem. Soc. 1990, 112, 7099
    [140] J. Desilvestro, M. Gratzel, K. Kaven, J. Moser, J. Am. Chem. Soc. 1985, 107, 2988
    [141] N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, d. Am. Chem. Soc. 1988, 110, 1216
    [142] Md. K. Nazeeruddin, P. Pechy, M. Gratzel, Chem. Commun. 1997, 1705
    [143] Md. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 2001, 123, 1613
    [144] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, J. Am. Chem. Soc. 2003, 125, 1166
    [145] L. Schmidt-Mende, S. M. Zakeeruddin, M. Gratzel, Appl. Phys. Lett. 2005, 86, 013504
    [146] M. Gratzel, Chem. Lett. 2005, 34, 8
    [147] M. Gratzel, Mrs. Bulletin 2005, 30, 23
    [148] G. Kron, T. Egerter, J. H. Wemer, U. Rau, d. Phys. Chem. B. 2003, 107, 3556
    [149] S. Ruhle, D. Cahen, J. Phys. Chem. B. 2004, 108, 17946
    [150] K. Schwarzburg, R. Ernstorfer, S. Felber, et al., Coord. Chem. Rev. 2004, 248, 1259
    [151] J. Kruger, R. Plass, L. Cevey, M.Piccirelli, M. Gratzel, U. Bach, Appl. Phys. Lett. 2001, 79, 2085
    [152] VPS. Perera, MKI Senevirathna, PKDDP Pitigala, K. Tennakone, Sol. Energy Mat. Sol. Cells 2005, 86, 443
    [153] B. O. Regan, F. Lenzmann, J. Phys. Phys. Chem. B 2004, 108, 4342
    [154] B. O. Regan, F. Lenzmann, R. Muis, J. Wienke, Chem. Mat. 2002, 14, 5023
    [155] B. O. Regan, DT. Schwartz, SM. Zakeeruddin, M. Gratzel, Adv. Mat. 2000, 12, 1263
    [156] T. Taguchi, XT Zhang, I. Sutanto, K. Tokuhiro, TN Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima, Chem.Comm. 2003, 19, 2480
    [157] A. Konno, T. Kitagawa, H. Kida, GRA. Kumara, K. Tennakone, Cuur. Appl. Phys. 2005, 5 (2), 149
    [158] GRA Kumara, A Konno, K Shiratsuchi, J Tsukahara, K Tennakone, Chem. Mat. 2002, 14, 954
    [159] JJ. He, H. Lindstrom, A. Hagfeldt, SE. Lindquist, J. Phys, Chem. B. 1999,42, 8940
    [160] K. Tennakone, VPS. Rerera, Semicond. Sci. Technol. 1995,10, 1689
    [161] K. Tennakone, GRRA Kumara, IRM Kottegoda, et al., J. Phys. D. 31, 1492, 1998
    [162] O. Brian, TS. Daniel, Chem. Mater. 1995, 7, 1349
    [163] O. Brian, TS. Daniel, J. Appl. Phys. 1998, 80, 1635
    [164] O. Brian, TS. Daniel, Chem. Mater. 1998,10, 1501
    [165] K. Tennakone, GRRA Kumara, IRM Kottegoda, et al., J. Phys. D. 1998,31,2326
    [166] S. Spiekermann, G Smestad, J. Kowalik, L. M. Tolbert, M. Gratzel, Synthetic Metals 2001, 121, 1603
    [167] LC Ma, XS Wang, BJ Wang, JR Chen, JH Wang, K Huang, BW Zhang, Y Cao, ZH Han, SP Qian, SD Yao, Chem. Phys. 2002,285, 85
    [168] DE. Fenton, JM. Oarker, PV. Wright, Polymer 1973,14, 589
    [169] G.Mao, M. L. Saboungi, D. L. Price, M. Armand, F. Mezei, S. Pouget, Macromolecules 2002,35,415
    [170] S. Atchia, W. Gorecki, M. Armand, D.Deroo, Electrochimica Acta 1992,37, 1743
    [171] M. Armand, F. El Kadiri, Proceedings - The Electrochemical Society 1987,87, 502
    [172] M. Armand, F. Dalard, D. Deroo, C. Mouliom, Solid State Ionics 1985,15,205
    [173] A. Killis, J. F. Lenest, A. Gandini, et al., Solid State Ionics 1984,14, 231
    [174] F. Allion, J. F. Sanchesz, Electrochim. Acta 1995,40, 2269
    [175] A. Nishimoto, K. Agehara, N. Furuya, et al., Macromolecules 1999,32,1541
    [176] M. M. E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Solid State Ionics, 1997,140,267
    [177] R. Mishra, N. Baskaran, P. A. Ramakrishnan, et al., Solid State Ionics 1998,112,261
    [178] A. Bouridah, F. Dalard, D. Deroo, et al., Solid State Ionics 1985,15,233
    [179] S. Sanderson, T. Zanodzinski, R. Hermes, et al., The electrochem. Soc. 1997,241
    [180] K.M. Abraham, M. Alamgir, R.K. Reynolds, J. Electrochem. Soc. 1989,136, 3576
    [181] K.M.Abraham, M. Alamgir, S. J. Perrotti, J. Electrochem. Soc. 1988,135, 535
    [182] A. Du Pasquier, P.C. Warren, D. Culver, A.S. Gozdz, G.G. Amatucci, J.M. Tarascon, Solid State Ionics 2000, 135, 249
    [183] A. Du Pasquier, T. Zheng, G.G. Amatucci, A.S. Gozdz, Journal of Power Sources 2001, 97, 758
    [184] J.M. Tarascon, C. Schmutz, A.S. Gozdz, EC. Warren, EK. Shokoohi, Materials Research Society Symposium - Proceedings 369, Solid State Ionics1995, Ⅳ, 595
    [185] A.S. Gozdz, J.-M. Tarascon, C.N. Schmutz, EC. Warren, O.S. Gebizlioglu, E Shokoohi, Proceedings of the Annual Battery Conference on Applications and Advances 1995, 301
    [186] M. Doyle, J. Newman, A. S. Gozdz, C.N. Schmutz, J. M. Tarascon, J. Electrochem. Soc. 1996, 143, 1890
    [187] P. Wang, SM. Zakeeruddin, I. Exnar, M. Gratzel, Chem. Comm. 2002, 24, 2972
    [188] J. E. Weston, B. C. Steele, Solid State Ionics 1982, 7, 75
    [189] J. Przyluski, W. Wieczorek, Solid State Ionics 1989, 36, 165
    [190] W. Wieczorek, K. Such, H, Wycislik, et al., Solid State Ionics 1989, 36, 255
    [191] F. Capuano, F. Corce, B. Scrosati, J. Electrochem. Soc. 1991, 138, 1918
    [192] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature 1998, 394, 456
    [193] F. D. Epifanio, S. Fiory, S. Licoccia, E. Traversa, B. Scrosati, E Croce, J. Appl. Electrochem. 2004, 34, 403
    [194] F. Croce, B. Scrosati, Adv. Mem. Tech. 2003, 984, 194
    [195] L. Persi, F. Croce, B. Scrosati, E. Plichta, M. A. Hendrickson, J. Electrochern. Soc. 2002, 149, A212
    [196] F. Croce, L. Persi, E Ronci, B. Scrosati, Solid State Ionics 2000, 135, 47
    [197] F. Croce, R. Curini, A. Martinelli, L. Persi, E Ronci, B. Scrosati, J. Phys. Chem. B 1999, 103, 10632
    [198] B. Scrosti, E Croce, L. Persi, J. Electrochem. Soc. 2000, 147, 1718
    [199] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, E Falaras, Nano Letters 2002, 2, 1259
    [200] J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang, Chem. Commun. 2004, 14, 1662
    [201] A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 2000, 33, 267
    [202] Gerrit Boschloo, Donald Fitzmaurice, J. Phys. Chem. 1999, 103, 2228
    [203] Richard L. Willis, Carol Olson, Brian O'Regan, et al., J. Phys. Chem. B., 2002, 106, 7605
    [204] Ling Zan, Jiasheng Zhong, Qirong Luo, patent1373089A, China, 2002
    [205] Scherrer, Gottinger Nachr 1918, 2, 98
    [206] R.A. Spurr, H. Myers, Anal, Chem., 1957, 29, 760
    [207] K. Schwarzburg, F. Willig, Appl. Phys. Lett., 1991,58, 2520
    [208] Richard L. Willis, Carol Olson, Brian O'Regan, et al., J. Phys. Chem. B. 2002, 106, 7605
    [209] M. Koelsch, S. Cassaignon, J. F. Guillemoles, et al., Thin Solid Films, 2002, 430, 312
    [210] I. SafiU, Surface and Coatings Technology 2000, 127, 203
    [211] S.G. Springer, P.E. Schmid, R. Sanjines, F. Levy, Surface and Coatings Technology 2002, 151, 51
    [212] S.K. Zheng, T.M. Wang, G. Xiang, C. Wang, Vacuum 2001, 62, 361
    [213] Qi-Chu Zhang, Sol. Energy Mater. Sol. Cell 2000, 62, 63
    [214] KJ. Jiang, T. Kitamura, H. Yin, et al., Chem. Letters 2002, 9, 872
    [215] S. Takeda, Susurnu Suzuki, Hidefurni Odaka, et al., Thin SolidFilms 2001, 392, 338
    [216] F. Ciardelli, E. Tsuchida, D. Wohrle, 《高分子金属络合物》, 1999
    [217] 沈永嘉,《酞菁的合成与应用》,2000
    [218] Asok K. Jana, Benoy B. Bhowmik, Journal of Photobiology A: Chemistry 1999, 122, 53
    [219] Asok K. Jana, Journal of Photobiology A: Chemistry 2000, 132, 1
    [220] Oliver Schwarz, Dietmar Van Loyen, Steffen Jockusch, et al, Journal of Photochemistry A: Chemistry 2000, 162, 91
    [221] Qian Xingming, Bai Yubai, et al, Progress in Chemistry 2000, 12, 141
    [222] Cadenas, Jorge L. Hu Hailin, Solar Energy Material andSolar Cells 1998, 55, 105
    [223] 秦金贵,刘道玉,有机化学 1991,11,240,
    [224] Teketel Yohannes, O. Inganas, Solar Energy Materials and Solar Cells 1998, 51, 193
    [225] P. A. Lane, J. Rostalski, et al, Solar Energy Material and Solar Cells 2000, 63, 3
    [226] K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, et al, Solar Energy Material and Solar Cells 2000, 61, 63
    [227] H. Shirai, S. Yagi, A. Suzuki, N. Hojo, Makromol. Chem. 1977, 178, 1889
    [228] H. Shirai, A. Maruyama, J. Takano, K. Kobayashi, N. Hojo, Makromol. Chem. 1980, 181, 565
    [229] H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo, Makromol. Chem. 1980,181, 575
    [230] C. D. Jaeger, F. R. R. Fan, A. J. Bard, J. Am. Chem. Soc. 1980,102, 2592
    [231] K. Tennakone, G K. R. Senadeera, D. B. R. A. De Silva, I. R.M. Kottegoda, Appl. Phys. Lett. 2000, 77, 2367
    [232] GR.R.A. Kumara, A. Konno, G K. R. Senadeera, P. V.V. Jayaweera, D.B.R.A. De Silva, K. Tennakone, Sol. Energy Mater. Sol Cells 2001, 69, 195
    [233] J. X. M. Zheng-Johansson, R. L. McGreevy, Solid State Ionics 1996,83,35
    [234] J. X. M. Zheng-Johansson, I. Ebbsjo, R. L. McGreevy, Solid State Ionics 1995,82, 115
    [235] S. Miyake, S. Hoshino, T. Takenaka, J. Phys. Soc. Jpn. 1952, 7, 19
    [236] W. Buhrer, W. Halg, Electrochim. Acta 1977,22, 701
    [237] T. Tanaka, K. Kawabata, M. Hirose, Thin Solid Films 1996,281-282,179
    [238] P. J. Kelly, R. D. Arnell, Vacuum. 2000,56, 159
    [239] J. R. Durrant, S. A. Haque, Nat. Mater., 2003, 2, 362
    [240] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, J. R. Durrant, Chem. Commun., 2003,24, 3008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700