新型复合光催化材料的设计及其在光纤反应器中的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2半导体材料因具有无毒、无害、廉价、稳定、高催化性能等优点,而成为一种理想的光催化材料。但是由于其带隙能较大,只能被占太阳光不到5%的紫外光激发,太阳光利用率较低;此外,TiO_2表面产生的电子–空穴对复合几率较高,导致其量子效率较低。这些都限制了TiO_2的实际应用。因此研制具有较高光催化性能的新型光催化材料成为当前科研工作者的研究重点。另外,开发以太阳光为光源的高效光催化反应器是提高光催化体系能效和活性的另一重要途径。虽然传统的悬浮型光催化反应器构造设计简单,催化剂担载量高,但存在催化剂分离困难,光照不均匀,光利用率低等问题,从而使得这种反应器局限于实验室研究。因此,本文致力于设计和制备具有较高太阳光光催化活性的新型复合光催化材料,并研制一种新型高效的光催化反应器。通过各种分析测试方法对光催化材料的结构和形貌进行表征,并系统地考察其在新型反应器中的模拟太阳光催化性能。本论文具体的研究内容如下:
     1.采用溶胶凝胶结合溶剂热技术制备了H_3PW_(12)O_(40)/TiO_2复合材料,采用浸渍提拉的方法把H_3PW_(12)O_(40)/TiO_2复合材料涂覆到光纤的表面,采用光沉积技术在光纤的表面制备了Ag/H_3PW_(12)O_(40)/TiO_2异质结薄膜复合材料。通过X射线粉末衍射仪(XRD)、傅里叶变换红外光谱仪(FT IR)、电感耦合等离子体原子发射光谱仪(ICP AES)、X射线光电子能谱仪(XPS)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)、紫外可见漫反射光谱仪(UV vis/DRS)和N2吸附脱附等现代检测技术对复合光催化材料的组成结构、形貌、光吸收性质以及孔隙率进行了全面表征。通过在模拟太阳光的照射下,对染料罗丹明B(RB)和对硝基苯酚(4NP)的降解评价了各种催化剂薄膜的光催化活性;通过六次降解RB循环实验,评价了H_3PW_(12)O_(40)/TiO_2和Ag/H_3PW_(12)O_(40)/TiO_21薄膜的循环使用情况;把涂覆有催化剂薄膜的光纤垂直均匀地放置在石英反应器中,成功设计了新型的光纤反应器。在新型光纤反应器中,涂覆催化剂的光纤束不仅仅是催化剂薄膜的载体,而且又是光的传播媒介,因此,光纤反应器提高了光利用率,光纤反应器对RB和4NP的降解速率明显高于光纤水平放置仅作为催化剂载体时的光催化速率。新型高效的光催化剂与新型的光纤反应器相结合,大大提高了整个反应体系对污染物的降解能力。
     2.分别采用热缩聚和溶剂热方法制备了石墨相C3N4(g-C_3N_4)和Bi_5Nb_3O_(15),以制备的g-C_3N_4和Bi_5Nb_3O_(15)为原料,通过研磨热处理的方法制备了g-C_3N_4/Bi_5Nb_3O_(15)复合光催化材料。采用XRD、FT IR、TEM、UV vis/DRS和荧光光谱(PL)等现代检测技术,对复合光催化材料的组成结构、形貌和光吸收性质等进行了系列表征。通过可见光下对染料甲基橙(MO)和对氯苯酚(4CP)的降解评价了制备的g-C_3N_4/Bi_5Nb_3O_(15)光催化材料的催化性能。结果表明,在适当的g-C_3N_4担载量下,g-C_3N_4/Bi_5Nb_3O_(15)的可见光催化活性显著优于纯g-C_3N_4和Bi_5Nb_3O_(15);通过自由基和空穴捕获实验,研究了4-CP降解过程中的主要活性物钟,提出了可能的降解机理;通过五次循环实验评价了制备的g-C_3N_4/Bi_5Nb_3O_(15)的循环使用情况。
     通过光电化学实验和荧光光谱分析研究了g-C_3N_4/Bi_5Nb_3O_(15)复合光催化材料中光生电子和空穴的分离和迁移情况;通过g-C_3N_4/Bi_5Nb_3O_(15)复合材料能带结构的提出,理论上研究了光生电子和空穴分离和迁移的过程,为复合光催化材料的构筑提供了理论依据。
TiO_2semiconductor has been considered a kind of ideal photocatalytic material due to itsnon-toxic, low cost, high stability and superior photocatalytic properties. However, TiO_2canutilize no more than5%of the total solar energy impinging on the surface of the earth due toits wide bandgap. Moreover, the photogenerated electrons and holes of TiO_2can recombinerapidly, which results in the low quantum efficiency. These restrict the practical application ofTiO_2. Therefore, much effort has been devoted to developing more efficient and stablephotocatalysts. In addition, the design of highly efficient photoreactors is also crucial to thewide range of needs for environmental remediation and clean-up. Conventionally usedphotoreactors for liquid phase oxidation are based on the heterogeneous slurry system withsuspended catalyst. The design offers ease of construction and high catalyst loading. However,slurry reactors are limited to the laboratory scale for wastewater treatment because ofdifficulty of separation of photocatalyst nanoparticles from the treated water and nonuniformlight irradiation and low light utilization efficiency. Therefore, we devote ourselves to designand development of new and efficient composite photocatalyst with higher photocatalyticactivity and a new photoreactor. The photocatalytic materials were well characterized bymany techniques. And the photocatalytic activities were investigated systemically in thedesigned photoreactor under simulated sunlight irradiation.
     1. H_3PW_(12)O_(40)/TiO_2composite photocatalytic material was prepared by combination ofthe methods of sol gel and hydrothermal treatment at a lower temperature. AndH_3PW_(12)O_(40)/TiO_2-coated optical fibers were prepared by dip coating method. The Agnanoparticles were photodeposited on the surface of H_3PW_(12)O_(40)/TiO_2films coated on theoptical fibers. The photocatalysts were characterized by X ray diffraction (XRD), FourierTransform Infrared Spectrometer (FT IR), Inductively Coupled Plasma Atomic EmissionSpectrometer (ICP AES), X ray photoelectron spectroscopy (XPS), transmission electronmicroscopy (TEM), field emission scanning electron microscopy (FESEM), UV Vis diffusereflectance spectra (UV Vis/DRS) and N2adsorption/desorption. Their photocatalyticactivities were evaluated by degradation of aqueous RB and4NP under the simulatedsunlight irradiation. The recyclability of the H_3PW_(12)O_(40)/TiO_2and Ag/H_3PW_(12)O_(40)/TiO_21filmwas evaluated through six consecutive catalytic cycles. The optical fiber reactor was designedby puting H_3PW_(12)O_(40)/TiO_2or Ag/H_3PW_(12)O_(40)/TiO_21film coated optical fiber bundlevertically in the quartz reactor. In this design, the optical fibers act as not only supporter of thecomposites film but also the medium of light transmission. Therefore, this new type optical fiber reactor enhances the light use efficiency, which results to the enhanced photodegradationefficiency.
     2. g-C_3N_4and Bi_5Nb_3O_(15)were prepared by polycondensation and hydrothermaltreatment method respectively. g-C_3N_4/Bi_5Nb_3O_(15)composite photocatalytic materials wereprepared by a simple milling heat treatment method with g-C_3N_4and Bi_5Nb_3O_(15)as rawmaterials. The g-C_3N_4/Bi_5Nb_3O_(15)composites were characterized by XRD, FT IR, TEM,UV vis/DRS and PL. The photocatalytic activities of g-C_3N_4/Bi_5Nb_3O_(15)were evaluated bydegradation of aqueous MO and4CP under the visible light irradiation. At proper g-C_3N_4loading, the photocatalytic activity of g-C_3N_4/Bi_5Nb_3O_(15)outperforms pure g-C_3N_4andBi_5Nb_3O_(15). The main active species yielded in the g-C_3N_4-and g-C_3N_4/Bi_5Nb_3O_(15)-catalyzed4CP degradation systems were also investigated by the free radical and hole scavengingexperiments. Accordingly, the photodegradation mechanism was given. Andg-C_3N_4/Bi_5Nb_3O_(15)–70was chosen to evaluate the recyclability of the g-C_3N_4/Bi_5Nb_3O_(15)photocatalysts by five times’RB degradation reaction.
     The separation and transportation of photogenerated electrons and holes wereinvestigated by photoelectrochemistry experiments and fluorescence spectra analysis. Thespecific process of the transportation of photogenerated carriers was studied by the bandstructure, which provided theoretical basis for the design of composite photocatalysts.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    [2]Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities ofrare-earth-doped TiO2nanoparticles[J]. J Catal,2002,207:151-157.
    [3]Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications[J]. Chem Rev,2007,107(7):2891-2959.
    [4]Yu J G, Yu J C, Leung M, et, al. Effects of acidic and basic hydrolysis catalysts on the photocatalyticactivity and microstructures of bimodal mesoporous titania[J]. J Catal,2003,217:69-78.
    [5]Xu P, Lu J, Xu T, et al. I2-hydrosol-seeded growth of (I2)n-C-codoped meso/nanoporous TiO2for visiblelight-driven photocatalysis[J]. J Phys Chem C,2010,114(20):9510-9517.
    [6]Wang G M, Wang H Y, Ling Y C, et al. Hydrogen-treated TiO2nanowire arrays forphotoelectrochemical water splitting[J]. Nano Lett,2011,11(7):3026-3033.
    [7] Gopal N O, Lo H H, Ke S C. Chemical state and environment of boron dopant in B,N-codoped anataseTiO2nanoparticles: an avenue for probing diamagnetic dopants in TiO2by electron paramagnetic resonancespectroscopy[J]. J Am Chem Soc,2008,130(9):2760-2761.
    [8]Periyat P, McCormack D E, Hinder S J, et al. One-pot synthesis of anionic (nitrogen) and cationic (sulfur)codoped high-temperature stable, visible light active, anatase photocatalysts[J]. J Phys Chem C,2009,113(8):3246-3253.
    [9]Pan J H, Zhang X W, Du A J, et al. Self-etching reconstruction of hierarchically mesoporousF-TiO2hollow microspherical photocatalyst for concurrent membrane water purifications[J]. J Am ChemSoc,2008,130(34):11256-11257.
    [10]Spadavecchia F, Cappelletti G, Ardizzone S, et al. Solar photoactivity of nano-N-TiO2from tertiaryamine: role of defects and paramagnetic species[J]. Appl Catal B: Environ,2010,96:314-322.
    [11]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalystsoperating under visible light irradiation[J]. J Catal,2003,216:505-516.
    [12]Maeda K, Xiong A, Yoshinaga T, et al. Photocatalytic overall water splitting promoted by twodifferent cocatalysts for hydrogen and oxygen evolution under visible light[J]. Angew Chem, Int Ed,2010,122(24):4190-4193.
    [13]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev,2009,38(1):253-278.
    [14]Obee T N, Brown R T. TiO2photocatalysis for indoor air applications: effects of humidity and tracecontaminant levels on the oxidation rates of formaldehyde, toluene, and1,3-butadiene[J]. Environ SciTechnol,1995,29(5):1223-1231.
    [15]Jones A P. Indoor air quality and health[J]. Atmos Environ,1999,33(28):4535-4564.
    [16]Kuo C S, Tseng Y H, Huang C, et al. Carbon-containing nano-titania prepared by chemical vapordeposition and its visible-light-responsive photocatalytic activity[J]. J Mol Catal A: Chem2007,270(1-2):93-100.
    [17]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductorphotocatalysis[J]. Chem Rev,1995,95(1):69-96.
    [18]Hashimoto K, Wasada K, Osaki M, et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolitecomposite catalyst to remove nitrogen oxides in the atmosphere[J]. Appl Catal B: Environ,2001,30(3-4):429-436.
    [19]Ao C H, Lee S C. Enhancement effect of TiO2immobilized on activated carbon filter for thephotodegradation of pollutants at typical indoor air leve[J]. Appl Catal B: Environ,2003,44(2):191-205.
    [20]Ao C H, Lee S C. Combination effect of activated carbon with TiO2for the photodegradation of binarypollutants at typical indoor air level[J]. J Photochem Photobiol A: Chem,2004,161(2-3):131-140.
    [21]Ao C H, Lee S C, Yu J C. Photocatalyst TiO2supported on glass fiber for indoor air purification: effectof NO on the photodegradation of CO and NO2[J]. Photochem Photobiol A: Chem,2003,156(1-2):171-177.
    [22]Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOxusing composite sheets containingTiO2and a metal compound[J]. Chemosphere,2003,51(9):855-860.
    [23]Shelimov B N, Tolkachev N N, Tkachenko O P, et al. Enhancement effect of of TiO2dispersion overalumina on the photocatalytic removal of NOxadmixtures from O2-N2flow[J]. J Photochem Photobiol A:Chem,2008,195(1):81-88.
    [24]Wintgens T, Salehi F, Hochstrat R, et al. Emerging contaminants and treatment options in waterrecycling for indirect potable use[J]. Water Sci Technol,2008,57(1):99-107.
    [25]Richardson S D. Environmental mass spectrometry: emerging contaminants and current issues[J]. AnalChem,2008,80(12):4373-4402.
    [26]Suarez S, Carballa M, Omil F, et al. How are pharmaceutical and personal care products (PPCPs)removed from urban wastewaters?[J]. Rev Environ Sci Biotechnol,2008,7(2):125-138.
    [27]Bradley B R, Daigger G T, Rubin R, et al. Evaluation of onsite wastewater Treatment technologiesusing sustainable development criteria[J]. Clean Technol Environ Policy,2002,4(2):87-99.
    [28]Lapena L, Cerezo M, Garc a-Augustin P. Possible reuse of treated municipal wastewater for citrus spp.plant irrigation[J]. Bull Environ Contam Toxicol,1995,55(5):697-703.
    [29]Padmanabhan P V A, Sreekumar K P, Thiyagarajan T K, et al. Nano-crystalline titanium dioxideformed by reactive plasma synthesis[J]. Vacuum,2006,80(11-12):1252-1255.
    [30]Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants overtitanium dioxide: a review of fundamentals, progress and problems[J]. J Photochem Photobiol C:Photochem Rev,2008,9(1):1-12.
    [31]Yang H, Cheng H. Controlling nitrite level in drinking water by chlorination and chloramination[J].Sep Purif Technol,2007,56(3):392-396.
    [32]Lu J, Zhang T, Ma J, et al. Evaluation of disinfection by-products formation during chlorination andchloramination of dissolved natural organic matter fractions isolated from a filtered river water[J]. J HazardMater,2009,162(1):140-145.
    [33]Coleman H M, Marquis C P, Scott J A, et al. Bactericidal effects of titanium dioxide-basedphotocatalysts[J]. Chem Eng J,2005,113(1):55-63.
    [34]Esplugas S, Gimenez J, Conteras S, et al. Comparison of different advanced oxidation processes forphenol degradation[J]. Water Res,2002,36(4):1034-1042.
    [35]Pera-Titus M, Garc a-Molina V, Banos M A, et al. Degradation of chlorophenols by means of advancedoxidation processes: a general review[J]. Appl Catal B: Environ,2004,47(4):219-256.
    [36]Tada H, Teranishi K, Inubushi Y, et al. Ag nanocluster loading effect on TiO2photocatalytic reductionof bis(2-dipyridyl)disulfide to2-mercaptopyridine by H2O[J]. Langmuir,2000,16(7):3304-3309.
    [37]Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Characterization and photocatalytic activity ofAu/TiO2thin films for azo-dye degradation[J]. J Catal,2003,220(1):127-135.
    [38]Lam S W, Chiang K, Lim T M, et al. The effect of platinum and silver deposits in the photocatalyticoxidation of resorcinol[J]. Appl Catal B: Chem,2007,72(3-4):363-372.
    [39]Wang C M, Heller A, Gerischer H. Palladium catalysis of O2reduction by electrons accumulated onTiO2particles during photoassisted oxidation of organic compounds[J]. J Am Chem Soc,1992,114(13):5230-5234.
    [40]Jana N R, Sau T K, Pal T. Growing small silver particle as redox catalyst[J]. J Phys. Chem B,1999,103(1):115-121
    [41]Vamathevan V, Amal R, Beydoun D, et al. Photocatalytic oxidation of organics in water using pure andsilver-modified titanium dioxide particles[J]. J Photochem Photobiol A: Chem,2002,148(1-3):233-245.
    [42]Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar tochemical energy[J]. Nature Mater,2011,10(12):911-921.
    [43]Ren L L, Zeng Y-P, Jiang D L. Preparation, characterization and photocatalytic activities ofAg-deposited porous TiO2sheets[J]. Catal Commun,2009,10(5):645-649.
    [44]Yang Y X, Su F, Zhang S Q. Fabrication of metallic platinum doped ordered mesoporous titania–silicamaterials with excellent simulated sunlight and visible light photocatalytic activity[J]. Colloids Surf A:Physiochem Eng Asp,2012,415:399-405.
    [45]Kuvarega A, Krause R, Mamba B. Nitrogen/palladium-codoped TiO2for efficient visible lightphotocatalytic dye degradation[J]. J Phys Chem C,2011,115(45):22110-22120.
    [46]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titaniumoxides[J]. Science,2001,293(5528):269-271.
    [47]Yang G D, Jiang Z, Shi H, et al. Preparation of highly visible-light active N-doped TiO2photocatalyst[J]. J Mater Chem,2010,20(25):5301-5309.
    [48]Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for theoxidation of acetone in air[J]. J Photochem Photobiol A: Chem,1998,116(1):63-67.
    [49]Gopalan R, Lin Y S. Evolution of pore and phase structure of sol-gel derived lanthana doped titania athigh temperatures[J]. Ind Eng Chem Res,1995,34(4):1189-1195.
    [50]LeDuc C A, Campbell J M, Rossin J A. Effect of lanthana as a stabilizing agent in titanium dioxidesupport[J]. Ind Eng Chem Res,1996,35(7):2473-2476.
    [51]Sibu C P, Kumar S R, Mukundan P, et al. Structural modifications and associated properties oflanthanum oxide doped sol-gel nanosized titanium oxide[J]. Chem Mater,2002,14(7):2876-2881.
    [52]Li F B, Li X Z, Ao C H, et al. Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2catalystsfor indoor air purification[J]. Chemosphere,2005,59(6):787-800.
    [53]Nguyen-Phan T D, Song M B, Shin E W. Removal efficiency of gaseous benzene usinglanthanide-doped mesoporous titania[J]. J Hazard Mater,2009,167(1-3):75-81.
    [54]Wu H H, Deng L X, Wang S R, et al. The preparation and characterization of La doped TiO2nanotubesand their photocatalytic activity[J]. J Dispersion Sci Technol,2010,31(10):1311-1316.
    [55]Du P, Bueno-Lopez A, Verbaas M, et al. The effect of surface OH-population on the photocatalyticactivity of rare earth-doped P25-TiO2in methylene blue degradation[J]. J Catal,2008,260(1):75-80.
    [56]Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titaniananocomposites[J]. J Mol Catal A: Chem,2008,287(1-2):151-158.
    [57]Choi J, Park H, and Hoffmann M R. Effects of single metal-ion doping on the visible-lightphotoreactivity of TiO2[J]. J Phys Chem C,2010,114(2):783-792.
    [58]Shi H X, Zhang T Y, Wang H L. Preparation and photocatalytic activity of La3+and Eu3+co-dopedTiO2nanoparticles: photo-assisted degradation of methylene blue[J]. J Rare Earths,2011,29(8):746-752.
    [59]Mialon G, Gohin M, Gacoin T, et al. High temperature strategy for oxide nanoparticle synthesis[J].ACS Nano,2008,2(12):2505-2512.
    [60]Xing M Y, Qi D Y, Zhang J L, et al. One-step hydrothermal method to prepare carbon and lanthanumco-doped TiO2nanocrystals with exposed {001} facets and their high UV and visible-light photocatalyticactivity[J]. Chem-A Eur J,2011,17(42):11432-11436.
    [61]Wang Q Q, Xu S H, Shen F L. Preparation and characterization of TiO2photocatalysts co-doped withiron (III) and lanthanum for the degradation of organic pollutants[J]. Appl Surf Sci,2011,257(17):7671-7677.
    [62]Graf C, Ohser-Wiedemann R, Kreisel G. Preparation and characterization of doped metal-supportedTiO2-layers[J]. J Photochem Photobiol: A Chem,2007,188(2-3):226-234.
    [63]Sidheswaran M, Tavlarides L L. Characterization and visible light photocatalytic activity of cerium-and iron-doped titanium dioxide sol-gel materials[J]. Ind Eng Chem Res,2009,48(23):10292-10306.
    [64]Kralchevska R, Milanova M, Kovacheva P, et al. Influence of ThO2on the photocatalytic activity ofTiO2[J]. Cent Eur J Chem,2011,9(6):1027-1038.
    [65]Glen M, Grzmil B, Srenscek-Nazzal J, et al. Effect of CeO2and Sb2O3on the phase transformation andoptical properties of photostable titanium dioxide[J]. Chem Pap,2011,65(2):203-212.
    [66]Fang J, Bi X Z, Si D J, et al. Spectroscopic studies of interfacial tructures of CeO2-TiO2mixedoxides[J]. Appl Surf Sci,2007,253(22):8952-8961.
    [67]Fan C M, Xue P, Sun Y P. Preparation of nano-TiO2doped with cerium and its photocatalyticactivity[J]. J Rare Earths,2006,24(3):309-313.
    [68]Silva A M T, Silva C G, Drazic G, et al. Ce-doped TiO2for photocatalytic degradation ofchlorophenol[J]. Catal Today,2009,144(1-2):13-18.
    [69]Ling Q C, Sun J Z, Zhou Q Y, et al. Visible-light-driven boron/ferrum/cerium/titania photocatalyst[J]. JPhotochem Photobiol:A,2008,200(2-3):141-147.
    [70]Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: Effectivephotocatalysts for the degradation of organic pollutants[J]. J Mater Sci,1999,34(21):5273-5280.
    [71]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ Sci Technol,2001,35(7):1544-1549.
    [72]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide doped titanium dioxide photocatalysts:effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid[J]. J Catal,2001,204(2):305-313.
    [73]Ranjit K T, Willner I, Bossmann S, et al. Modified titanium dioxide photocatalysts for the enhancedphotodegradation of organic substrates[J]. Res Chem Intermed,1999,25(8):733-756.
    [74]Zhang Y H, Zhang H X, Xu Y X, et al. Europium doped nanocrystalline titanium dioxide: preparation,phase transformation and photocatalytic properties[J]. J Mater Chem,2003,13(9):2261-2265.
    [75]Luo W, Li R, Liu G, et al. Evidence of trivalent europium incorporated in anatase TiO2nanocrystalswith multiple sites[J]. J Phys Chem C,2008,112(28):10370-10377.
    [76]Setiawati E, Kawano K, Tsuboi T, er al. Studies on thermal migration of eu ion doped into TiO2nanoparticles[J]. Jpn J Appl Phys,2008,47(6PART1):4651-4657.
    [77]Bianco A, Cacciotti I, Fragala M E, et al. Eu-doped titania nanofibers: processing, thermal behaviourand luminescent properties[J]. J Nanosci Nanotechnol,2010,10(8):5183-5190.
    [78]Xie Y B, Yuan C W. Photocatalysis of neodymium ion modified TiO2sol under visible lightirradiation[J]. Appl Surf Sci,2004,221(1-4):17-24.
    [79]Li F B, Li X Z, Cheah K R. Photocatalytic activity of neodymium ion doped TiO2for2-Mercaptobenzothiazole degradation under visible light irradiation[J]. Environ Chem,2005,2(2):130-137.
    [80]Li F B, Li X Z, Ng K H. Photocatalytic degradation of an odorous pollutant:2-mercaptobenzothiazolein aqueous suspension using Nd3+-TiO2catalysts[J]. Ind Eng Chem Res,2006,45(1):1-7.
    [81]Zhang X, Meng H, Cao X H. Visible response performance of TiO2nanocomposites doped with Gd3+[J]. Chin J Inorg Chem,2009,25(11):1947-1952.
    [82]Hirano M, Ito T. Direct formation of new, phase-stable, and photoactive anatase-typeTi12XNbXScXO2solid solution nanoparticles by hydrothermal method Mater [J]. Res Bull,2008,43(8-9):2196-2206.
    [83]Liu H J, Liu G G, Xie G H, et al. Gd3+, N-codoped trititanate nanotubes: preparation, characterizationand photocatalytic activity[J]. Appl Surf Sci,2011,257(8):3728-3732.
    [84]Matsuo S, Sakaguchi N, Yamada K, et al. Role in photocatalysis and coordination structure of metalions adsorbed on titanium dioxide particles: a comparison between lanthanide and iron ions[J]. Appl SurfSci,2004,228(1-4):233-244.
    [85]Li Z X, Shi F B, Zhang T, et al. Ytterbium stabilized ordered mesoporous titania for near-infraredphotocatalysis[J]. Chem Commun,2011,47(28):8109-8111.
    [86]Reszczynska J, Iwulska A, Sliwinski G, et al. Characterization and photocatalytic activity of rare earthmetal-doped titanium dioxide[J]. Physicochem Probl Mineral Pro,2012,48(1):201-208.
    [87]Yang J, Dai J, Li J T. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-dopedTiO2with highly visible light activity[J]. Appl Surf Sci,2011,257(21):8965-8973.
    [88]El-Bahy Z M, Ismail A A, Mohamed R M. Enhancement of titania by doping rare earth forphotodegradation of organic dye (Direct Blue)[J]. J Hazard Mater,2009,166(1):138-143.
    [89]Weber A S, Grady A M, Koodali R. Lanthanide modified semiconductor photocatalysts[J]. Catal SciTechnol,2012,2(4):683-693.
    [90]Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells[J]. Chem Rev,2010,110(11):6446-6473.
    [91]Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503-6570.
    [92]Xu J H, Wang W Z, Sun S M, et al. Enhancing visible-light-induced photocatalytic activity by couplingwithwide-band-gap semiconductor: A case study on Bi2WO6/TiO2[J]. Appl Catal B: Environ,2012,111-112:126-132.
    [93]Rawal S B, Chakraborty A K, Kim Y J, et al. Double-heterojunction structure of SbxSn1-xO2/TiO2/CdSefor efficient decomposition of gaseous2-propanol under visible-light irradiation[J]. RSC Advances,2012,2(2):622-630.
    [94]Wang J X, Wang P X, Cao Y T. A high efficient photocatalyst Ag3VO4/TiO2/graphenenanocompositewith wide spectral response[J]. Appl Catal B: Environ,2013,136-137:94-102.
    [95]Herrmann J M, Disdier J, Pichat P. Effect of chromium doping on the electrical and catalytic propertiesof powder titania under UV and visible illumination[J]. Chem Phys Lett,1984,108(6):618-622.
    [96]Borgarello E, Kiwi J, Gratzel M, et al. Visible light induced water cleavage in colloidal solutions ofchromium-doped titanium dioxide particles[J]. J Am Chem Soc,1982,104(11):2996-3002.
    [97]Karakitsou K E, Verykios X E. Effects of altervalent cation doping of titania on its performance as aphotocatalyst for water cleavage[J]. J Phys Chem,1993,97(6):1184-1189.
    [98]Mu W, Herrmann J M, Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane intocyclohexanone over neat and modified TiO2[J]. Catal Lett,1989,3(1):73-84.
    [99]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxidesemiconductor photocatalyst[J]. Nature,2001,414:625-627.
    [100]Ouyang S X, Kikugawa N, Zou Z G, et al. Effective decolorizations and mineralizations of organicdyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation[J]. Appl Catal A:Gen,2009,366(2):309-314.
    [101]Li X K, Ouyang S X, Kikugawa N, et al. Novel Ag2ZnGeO4photocatalyst for dye degradation undervisible light irradiation[J]. Appl Catal A: Gen,2008,334(1-2):51-58.
    [102]Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants overCaBi2O4under visible-light irradiation[J]. Angew Chem Int Ed,2004,43(34):4463-4466.
    [103]Kato H, Kobayashi H, Kudo A. Role of Ag+in the band structures and photocatalytic properties ofAgMO3(M: Ta and Nb) with the perovskite structure[J]. J Phys Chem B,2002,106(48):12441-12447.
    [104]Kim H G, Hwang D W, Lee J S. An Undoped, single-phase oxide photocatalyst working under visiblelight[J]. J Am Chem Soc,2004,126(29):8912-8913.
    [105]Ouyang S X, Zhang H T, Li D F, et al. Electronic structure and photocatalytic characterization of anovel photocatalyst AgAlO2[J]. J Phys Chem B,2006,110(24):11677-11682.
    [106]Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2[J]. Solar Energy,2006,80(3):272-280.
    [107]Saadi S, Bouguelia A, Derbal A, et al. Hydrogen photoproduction over new catalyst CuLaO2[J]. JPhotochem Photobiol A: Chem,2007,187(1):97-104.
    [108]Hosogi Y, Shimodaira Y, Kato H, et al. Role of Sn2+in the band structure of SnM2O6and Sn2M2O7(M=Nb and Ta) and their photocatalytic properties[J]. Chem Mater,2008,20(4):1299-1307.
    [109]Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchangedwith Sn2+under visible light irradiation[J]. J Phys Chem C,2008,112(45):17678-17682.
    [110]Li X K, Kikugawa N, Ye J H. Nitrogen-doped lamellar niobic acid with visible light-responsivephotocatalytic activity[J]. Adv Mater,2008,20(20):3816-3819.
    [111]Li X K, Yue B, Ye J H. Photocatalytic hydrogen evolution over SiO2-pillared and nitrogen-dopedtitanic acid under visible light irradiation[J]. Appl Catal A: Gen,2010,390(1-2):195-200.
    [112]Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidationphotocatalyst under visible light irradiation (λ≤500nm)[J]. Chem Commun,2002,(16):1698-1699.
    [113]Kasahara A, Nukumizu K, Takata T, et al. LaTiO2N as a visible-light (≤600nm)-driven photocatalyst(2)[J]. J Phys Chem B,2003,107(3):791-797.
    [114]Ishikawa A, Takata T, Kondo J N,et al. Oxysulfide Sm2Ti2S2O5as a stable photocatalyst for wateroxidation and reduction under visible light irradiation (λ≤650nm)[J]. J Am Chem Soc,2002,124(45):13547-13553.
    [115]Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalyticactivity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. J Phys Chem C,2008,112(3):747-753.
    [116]Ogisu K, Ishikawa A, Shimodaira Y, et al. Electronic band structures and photochemical properties ofLa Ga-based oxysulfides[J]. J Phys Chem C,2008,112(31):11978-11984.
    [117]Yan H J, Yang J H, Ma G J, et al. Visible-light-driven hydrogen production with extremely highquantum efficiency on Pt–PdS/CdS photocatalyst[J]. J Catal,2009,266(2):165-168.
    [118]Lei Z B, You W S, Liu M Y, et al. Photocatalytic water reduction under visible light on a novelZnIn2S4catalyst synthesized by hydrothermal method[J]. Chem Commun,2003,(17):2142-2143.
    [119]Kudo A, Tsuji I, Kato H. AgInZn7S9solid solution photocatalyst for H2evolution from aqueoussolutions under visible light irradiation[J]. Chem Commun,2002,(17):1958-1959.
    [120]Zhang X H, Jing D W, Liu M C, et al. Efficient photocatalytic H2production under visible lightirradiation over Ni doped Cd1xZnxS microsphere photocatalysts[J]. Catal Commun,2008,9(8):1720-1724.
    [121]Sato J, Kobayashi H, Saito N, et al. Photocatalytic activities for water decomposition of RuO2-loadedAInO2(A=Li, Na) with d10configuration[J]. J Photochem Photobiol A: Chem,2003,158(2-3):139-144.
    [122]Sato J, Saito N, Nishiyama H, et al. New photocatalyst group for water decomposition ofRuO2-Loaded p-block metal (In, Sn, and Sb) oxides with d10configuration[J]. J Phys Chem B,2001,105(26):6061-6063.
    [123]Sato J, Saito N, Nishiyama H, et al. Photocatalytic activity for water decomposition of indates withoctahedrally coordinated d10configuration. I. influences of preparation conditions on activity[J]. J PhysChem B,2003,107(31):7965-7969.
    [124]Sato J, Nishiyama H, I noue Y. Photocatalytic activity for Wwater decomposition of indates withoctahedrally coordinated d10configuration. II. roles of geometric and electronic structures[J]. J Phys ChemB,2003,107(31):7970-7975.
    [125]Zou Z G, Ye J H, Arakawa H. Substitution effects of In3+by Al3+and Ga3+on the photocatalytic andstructural properties of the Bi2InNbO7photocatalyst[J]. Chem Mater,2001,13(5):1765-1769.
    [126]Ouyang S X, Kikugawa N, Chen D, et al. A Systematical study on photocatalytic properties ofAgMO2(M=Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures[J].J Phys Chem C,2009,113(4):1560-1566.
    [127]Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4active undervisible light irradiation[J]. Chem Phys Lett,2002,356(3-4):221-226.
    [128]Zou Z G, Ye J H, Arakawa H. Time-resolved infrared absorption spectroscopy of photogeneratedelectrons in platinized TiO2particles[J]. Chem Phys Lett,2000,332(3-4):271-277.
    [129]Zou Z G, Ye J H, Sayama K, et al. Photocatalytic and photophysical properties of a novel series ofsolid photocatalysts, BiTa1xNbxO4(0    [130]Ouyang S X, Li Z S, Ouyang Z, et al. Correlation of crystal structures, electronic structures, andphotocatalytic properties in a series of Ag-based oxides: AgAlO2,AgCrO2, and Ag2CrO4[J]. J Phys Chem C,2008,112(8):3134-3141.
    [131]Sattair D, Hill C L. Photochemical dehalogenation of carbon tetrachloride by alcohols catalysed bypolyoxotungstates[J]. J Chem Soc Chem Commun,1990,(8):634-635.
    [132]Sattari D, Hill C L. Catalytic carbon-halogen bond cleavage chemistry by redox-activepolyoxometalates[J]. J Am Chem Soc,1993,115(11):4649-4657.
    [133]Hill C L. Introduction: polyoxometalates as multicomponent molecular vehicles to probe fundamentalissues and practical problems[J]. Chem Rev,1998,98(1):1-2.
    [134]Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties ofpolyoxometallates and semiconducting particles[J]. Chem Soc Rev,2001,30(1):62-69.
    [135]Papaconstantinou E. Photochemistry of polyoxometallates of molybdenum and tungsten and/orvanadium[J]. Chem Soc Rev,1989,18(1):1-31.
    [136]Guo Y H, Hu C W. Heterogeneous photocatalysis by solid polyoxometalates[J]. J Mol Catal A: Chem,2007,262(1-2):136-148.
    [137]Guo Y H, Hu C W, Wang X L, et al. Microporous decatungstates: synthesis and photochemicalbehavior[J]. Chem Mater,2001,13(11):4058-4064.
    [138]Guo Y H, Wang Y H, Hu C W, et al. Microporous polyoxometalates POMs/SiO2: synthesis andphotocatalytic degradation of aqueous organocholorine pesticides[J]. Chem Mater,2000,12(11):3501-3508.
    [139]Guo Y H, Li D F, Hu C W, et al. Photocatalytic degradation of aqueous organocholorine pesticide onthe layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24)·4H2O[J]. Appl CatalB: Environ,2001,30(3-4):337-349.
    [140]Guo Y H, Yang Y, Hu C W, et al. Preparation, characterization and photochemical properties ofordered macroporous hybrid silica materials based on monovacant Keggin-type polyoxometalates[J]. JMater Chem,2002,12(10):3046-3052.
    [141]Yang Y, Guo Y H, Hu C W, et al. Synergistic effect of Keggin-type [Xn+W(12-n)-11O39]and TiO2inmacroporous hybrid materials [Xn+W2-n)11O39](1-TiO2for the photocatalytic degradation of textile dyes[J]. JMater Chem,2003,13(7):1686-1694.
    [142]Yang Y, Guo Y H, Hu C W, et al. Lacunary Keggin-type polyoxometalates-based macroporouscomposite films: preparation and photocatalytic activity[J]. Appl Catal A: Gen,2003,252(2):305-314.
    [143]Qu X S, Guo Y H, Hu C W. Preparation and heterogeneous photocatalytic activity of mesoporousH3PW12O40/ZrO2composites[J]. J Mol Catal A Chem,2007,262(1-2):128-135.
    [144]Jiang S J, Guo Y H, Wang C H, et al. One-step sol–gel preparation and enhanced photocatalyticactivity of porous polyoxometalate–tantalum pentoxide nanocomposites[J]. J Colloid Interface Sci,2007,308(1):208-215.
    [145]Li K X, Guo Y H, Ma F Y, et al. Design of ordered mesoporous H3PW12O40-titania materials and theirphotocatalytic activity to dye methyl orange degradation[J]. Catal Commun,2010,11(9):839-843.
    [146]Li K X, Yang X, Guo Y H, et al. Design of mesostructured H3PW12O40–titania materials withcontrollable structural orderings and pore geometries and their simulated sunlight photocatalytic activitytowards diethyl phthalate degradation[J]. Appl Catal B: Environ,2010,99(1-2):364-375.
    [147]Ma F Y, Shi T, Gao J, et al. Comparison and understanding of the different simulated sunlightphotocatalytic activity between the saturated and monovacant Keggin unit functionalized titaniamaterials[J]. Colloids Surf A: Physiochem Eng Asp,2012,401:116-125.
    [148]Guo Y N, Yang X, Ma F Y, et al. Additive-free controllable fabrication of bismuth vanadates and theirphotocatalytic activity toward dye degradation[J]. Appl Surf Sci,2010,256(7):2215-2222.
    [149]Guo Y N, Chen L, Ma F Y, et al. Efficient degradation of tetrabromobisphenol A by heterostructuredAg/Bi5Nb3O15material under the simulated sunlight irradiation[J]. J Hazard Mater,2011,189(1-2):614-618.
    [150]Guo Y N, Chen L, Yang X, et al. Visible light-driven degradation of tetrabromobisphenol A overheterostructured Ag/Bi5Nb3O15materials[J]. RSC Adv,2012,2(11):4656-4663.
    [151]Guo W, Zhang S Q, Guo Y N, et al. Template-free and morphology-controlled hydrothermal growth ofsingle-crystalline Bi12TiO20with excellent simulated sunlight photocatalytic activity[J]. RSC Advances,2013,3(12):4008-4017.
    [152]Franklin E C. The ammono carbonic acids[J]. J Am Chem Soc,1922,44(3):486-509.
    [153]Redemann C E, Lucas H J. Some derivatives of cyameluric acid and probable structures of melam,melem and melon[J]. J Am Chem Soc,1940,62(4):842-846.
    [154]May H. Pyrolysis of melamine[J]. J Appl Chem,1959,9(6):340-344.
    [155]Finkelshtein A I, Spiridonova N V. Chemical properties and molecular structure of derivatives ofsym-heptazine [1,3,4,6,7,9,9b-heptaazaphenalene, tri-1,3,5-triazine][J]. Russ Chem Rev,1964,33(7):400-405.
    [156]Miller D R, Holst J R, Gillan E G. Nitrogen-rich carbon nitride network materials via the thermaldecomposition of2,5,8-triazido-s-heptazine[J]. Inorg Chem,2007,46(7):2767-2774.
    [157]Hosmane R S, Rossman M A, Leonard N J. Synthesis and structure of tri-s-triazine[J]. J Am ChemSoc,1982,104(20):5497-5499.
    [158]Shahbaz M, Urano S, LeBreton P R, et al. Tri-s-triazine: synthesis, chemical behavior, andspectroscopic and theoretical probes of valence orbital structure[J]. J Am Chem Soc,1984,106(10):2805-2811.
    [159]Halpern A M, Rossman M A, Hosmane R S, et al. Photophysics of the S1.tautm. SO transition intri-s-triazine[J]. J Phys Chem,1984,88(19):4324-4326.
    [160]Liu A Y, Cohen M L. Predication of new low compressibility solids[J]. Science,1989,245(4920):841-842.
    [161]Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science,1996,271(5245):53-55.
    [162]Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-s-triazine derivatives. Part1. Fromtrichloro-tri-s-triazine to graphitic C3N4structures[J]. New J Chem,2002,26(5):508-512.
    [163]Wang Y, WangX C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneousorganocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew ChemInt Ed,2012,51(1):68-89.
    [164]Goettmann F, Fischer A, Antonietti M, et al. Metal-free catalysis of sustainable Friedel–Craftsreactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides andhalogenated compounds[J]. Chem Commun,2006,(43):4530-4532.
    [165]Komatsu T, Nakamura T. Polycondensation/pyrolysis of tris-s-triazine derivatives leading tographite-like carbon nitrides[J] J Mater Chem,2001,11(2):474-478.
    [166]Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4fabricated by directly heatingmelamine[J]. Langmuir,2009,25(17):10397-0401.
    [167]Gillan E G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azideprecursor[J]. Chem Mater,2000,12(12):3906-3912.
    [168]Zhang Y J, Thomas A, Antonietti M, et al. Activation of carbon nitride solids by protonation:morphology changes, enhanced ionic conductivity, and photoconduction experiments[J]. J Am Chem Soc,2009,131(1):50-51.
    [169]Deifallah M, McMillan P F, Cora F. Electronic and structural properties of two-dimensional carbonnitride graphenes[J]. J Phys Chem C,2008,112(14):5447-5453.
    [170]Wang X C, Maeda K, Chen X F, et al. Polymer semiconductors for artificial photosynthesis: hydrogenevolution by mesoporous graphitic carbon nitirde with visible light[J]. J Am Chem Soc,2009,131(5):1680-1681.
    [171]Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen productionfrom water under visible light[J]. Nat Mater2009,8:76-80.
    [172]Liu G, Niu P, Sun C H, et al. Unique electronic structure induced high photoreactivity of sulfur-dopedgraphitic C3N4[J]. J Am Chem Soc,2010,132(33):11642-11648.
    [173]Zhang J S, Chen X F, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-lightcatalysis by copolymerization[J]. Angew Chem Int Ed,2010,49(2):441-444.
    [174]Ritterskamp P, Kuklya A, Wustkamp M A, et al. A titanium disilicide derived semiconducting catalystfor water splitting under solar radiation—reversible storage of oxygen and hydrogen[J]. Angew Chem IntEd,2007,46(41):7770-7774.
    [175]Maeda K, Wang X C, Nishihara Y, et al. Photocatalytic Activities of Graphitic Carbon Nitride Powderfor Water Reduction and Oxidation under Visible Light[J]. J Phys Chem C,2009,113(12):4940-4947.
    [176]Di Y, Wang X C, Thomas A, et al. Making metal-carbon nitride heterojunctions for improvedphotocatalytic hydrogen evolution with visible light[J]. ChemCatChem,2010,2(7):834-838.
    [177]Li Q Y, Yue B, Iwai H, et al. Carbon nitride polymers sensitized with N-doped tantalic acid for visiblelight-induced photocatalytic hydrogen evolution[J].J Phys Chem C,2010,114(9):4100-4105.
    [178]Takanabe K, Kamata K, Wang X C, et al. Photocatalytic hydrogen evolution on dye-sensitizedmesoporous carbon nitride photocatalyst with magnesium phthalocyanine[J]. Phys Chem Chem Phys,2010,12(40):13020-13025.
    [179]Bal R, Tada M, Sasaki T, et al. Direct phenol synthesis by selective oxidation of benzene withmolecular oxygen on an interstitial-N/Re cluster/zeolite catalyst[J]. Angew Chem Int Ed,2006,45(3):448-452.
    [180]Chen X F, Zhang J S, Fu X Z, et al. Fe-g-C3N4-catalyzed oxidation of benzene to phenol usinghydrogen peroxide and visible light[J]. J Am Chem Soc,2009,131(33):11658-11659.
    [181]Silva T F S, Mishra G S, Silva M F G, et al. CuIIcomplexes bearing the2,2,2-tris(1-pyrazolyl)ethanol or2,2,2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates. X-Ray structural characterizationand application in the mild catalytic peroxidative oxidation of cyclohexane[J]. Dalton Trans,2009,(42):9207-9215.
    [182]Wang Y, Li H R, Yao J, et al. Synthesis of boron doped polymeric carbon nitride solids and their useas metal-free catalysts for aliphatic C–H bond oxidation[J]. Chem Sci,2011,2(3):446-450.
    [183]Su F Z, Mathew S C, Lipner G, et al. mpg-C3N4-catalyzed selective oxidation of alcohols usingO2and visible light[J]. J Am Chem Soc,2010,132(46):16299-16301.
    [184]Su F Z, Mathew S C, M hlmann L, et al. Aerobic oxidative coupling of amines by carbon nitridephotocatalysis with visible light[J]. Angew Chem Int Ed,2011,50(3):657-660.
    [185]Yan S C, Lv S B, Li Z S, et al. Organic–inorganic composite photocatalyst of g-C3N4and TaON withimproved visible light photocatalytic activities[J]. Dalton Trans,2010,9(6):1488-1491.
    [186]Wang Y, Yao J, Li H R, et al. Highly selective hydrogenation of phenol and derivatives over aPd@carbon nitride catalyst in aqueous media[J]. J Am Chem Soc,2011,133(8):2362-2365.
    [187]Jin X, Balasubramanian V V, Selvan S T, et al. Highly ordered mesoporous carbon nitridenanoparticles with high nitrogen content: a metal-free basic catalyst[J]. Angew Chem Int Ed,2009,48(42):7884-887.
    [188]Datta K K R, Reddu B V S, Ariga K, et al. Gold nanoparticles embedded in a mesoporous carbonnitride stabilizer for highly efficient three-componet coupling reaction[J]. Angew Chem Int Ed,2010,49(34):5961-5965.
    [189]Zhu J J, Wei Y C, Chen W K, et al. Graphitic carbon nitride as a metal-free catalyst for NOdecomposition[J]. Chem Commun,2010,46(37):6965-6967.
    [190]McCullagh C, Skillen N, Adams M, et al. Photocatalytic reactors for environmental remediation: areview[J]. J Chem Technol Biotechnol,2011,86(8):1002-1017.
    [191]Choi Y, Kim B. Photocatalytic disinfection of E.coli in a UV/TiO2-immobilised optical-fiberreactor[J]. J Chem Technol Biotechnol,2000,75(12):1145-1150.
    [192]Dijkstra M, Michorius A, Buwalda H, et al. Comparison of the efficiency of immobilized andsuspended systerms in photocatalytic degradation[J]. Catal Today,2001,66(2-4):487-494.
    [193]Lee J, Kim M, Kim B. Removal of paraquat dissolved in a photoreactor with TiO2immobilized on theglass-tube of UV lamps[J]. Water Res,2002,36(7):1776-1782.
    [194]Horikoshi S, Watanabe N, Onishi H, et al. Photodecomposition of a nonylphenol polyethoxylatesurfactant in a cylindrical photoreactor with TiO2immobilized fiberglass cloth[J]. Appl Catal B: Environ,2002,37(2):117-129.
    [195]Kanki T, Hamasaki S, Sano N, et al. Water purification in a fluidized bed photocatalytic reactor usingTiO2-coated ceramic particles[J]. Chem Eng J,2005,108(1-2):155-160.
    [196]Wang R, Ren D, Xia S, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilizedTiO2and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR)[J]. J HazardMater,2009,169(1-3):926-932.
    [197]Idoko J O, Oluwapomile O O, Robert P, et al. Three-phase photocatalysis using suspended titania andtitania supported on a reticulated foam monolith for water purification[J]. Catal Today,2007,128(1-2):100-107.
    [198]Grzechulska J, Morawski A W. Photocatalytic labyrinth flow reactor with immobilized P25TiO2bedfor removal of phenol from water[J]. Appl Catal B: Environ,2003,46(2):415-419.
    [199]Qiu W, Zheng Y. A comprehensive assessment of supported titania photocatalysts in a fluidized bedphotoreactor: Photocatalytic[J]. Appl Catal B: Environ,2007,71(3-4):151–162.
    [200]Hofstadler K, Bauer R, Novallc S, et al. New reactor design for photocatalytic wastewater treatmentwith TiO2immobilized on fused-silica glass fibers: photomineralization of4-chlorophenol[J]. Environ SciTechnol,1994,28(4):670-674.
    [201]Peill N J, Hoffmann M R. Development and optimization of a TiO2-coated fiber-optic cable reaction:photocatalytic degradation of4-chlorophenol[J]. Environ Sci Technol,1995,29(12):2974-2981.
    [202]Peill N J, Hoffmann M R. Chemical and physical characterization of a TiO2-coated fiber optic cablereactor[J]. Environ Sci Technol,1996,30(9):2806-2812.
    [203]Danion A, Disdier J, Guillard C, et al. Characterization and study of a single-TiO2-coated optical fiberreactor[J]. Appl Catal B: Environ,2004,52(3):213-223.
    [204]Hager S, Bauer R. Heterogeneous photocatalytic oxidation of organics for air purification by near UVirradiated titanium dioxide[J]. Chemosphere,1999,38(7):1549-1559.
    [205]Sun R, Nakajima A, Watanabe I, et al. TiO2-coated optical fiber bundles used as a photocatalytic filterfor decomposition of gaseous organic compounds[J]. J Photochem Photobiol A: Chem,2000,136(1-2):111-116.
    [206]Choi W, Ko J Y, Park H, et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalyticoxidation of acetone[J]. Appl Catal B: Environ,2001,31(3):209-220.
    [207]Wang W, Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiberphotoreactor[J]. J Photochem Photobiol A: Chem,2003,159(1):47-59.
    [208]Ji Z, Callahan J D M, Ismail M N, et al. Development and characterization of a titanosilicateETS-10-coated optical fiber reactor towards the photodegradation of methylene blue[J]. J PhotochemPhotobiol A: Chem,2011,217(1):22-28.
    [209]Braham R J, Harris A T. Review of major design and scale-up considerations for solar photocatalyticreactors[J]. Ind Eng Chem Res,2009,48(19):8890-8905.
    [210]Danion A, Disdier J, Guillard C, et al. Photocatalytic degradation of imidazolinone fungicide inTiO2-coated optical fiber reactor[J]. Appl Catal B: Environ,2006,62(3-4):274-281.
    [211]Wang Z Y, Chou H C, Wu J C S, et al. CO2photoreduction using NiO/InTaO4in optical-fiber reactorfor renewable energy[J]. Appl Catal A: Gen,2010,380(1-2):172-177.
    [212]Liou P Y, Chen S C, Wu J C S, et al. Photocatalytic CO2reduction using an internally illuminatedmonolith photoreactor[J]. Energy Environ Sci,2011,(4):1487-1494.
    [213]Nguyen T-V, Wu J C S. Photoreduction of CO2in an optical-fiber photoreactor: Effects of metalsaddition and catalyst carrier[J]. Appl Catal A: Gen,2008,335(1):112-120.
    [214]Pozzo R L, Brandi R J, Cassano A E, et al. Photocatalytic oxidation of oxalic acid in dilute aqueoussolution, in a fully illuminated fluidized bed reactor[J]. Chem Eng Sci,2010,65(4):1345-1353.
    [215]Faramarzpour M, Vossoughi M, Borghei M. Photocatalytic degradation of furfural by titaniananoparticles in a floating-bed photoreactor[J]. Chem Eng J,2009,146(1):79-85.
    [116]Wu Y M, Xing M Y, Tian B Z, et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2microsphere and photodegradation of acid orange7under visible light[J]. Chem Eng J,2010,162(2):710-717.
    [217]Canterino M, Somma I D, Marotta R, et al. Energy recovery in wastewater decontamination:simultaneous photocatalytic oxidation of an organic substrate and electricity generation[J]. Water Res,2009,43(10):2710-2716.
    [218]Zhang X W, Pan J H, Du A J H, et al. Combination of one-dimensional TiO2nanowire photocatalyticoxidation with microfiltration for water treatment[J]. Water Res,2009,43(5):1179-1186.
    [219]Lee D K, Kim S C, Cho I C, et al. Photocatalytic oxidation of microcystin-LR in a fluidized bedreactor having TiO2-coated activated carbon[J]. Sep Purif Technol,2004,34(1-3):59-66.
    [220]Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6nanoparticles as a visible-light-driven photocatalyst[J]. J Hazard Mater,2010,177(1-3):1013-1018.
    [221]Yang Y Q, Zhang G K, Yu S J,et al. Efficient removal of organic contaminants by a visible lightdriven photocatalyst Sr6Bi2O9[J]. Chem Eng J,2010,162(1):171-177.
    [222]Xu J, Hu C G, Liu G B, et al. Synthesis and visible-light photocatalytic activity of NdVO4nanowires[J]. J Alloys Compd,2011,509(30):7968-7972.
    [223]Liu G, Wang L Z, Yang H G, et al. Titania-based photocatalysts—crystal growth, doping andheterostructuring[J]. J Mater Chem,2010,20(5):831-841.
    [224]Li H X, Bian Z F, Zhu J, et al. Mesoporous Au/TiO2nanocomposites with enhanced photocatalyticactivity[J]. J Am Chem Soc,2007,129(15):4538-4539.
    [225]Yang X, Wang Y H, Xu L L, et al. Silver and indium oxide codoped TiO2nanocomposites withenhanced photocatalytic activity[J]. J Phys Chem C,2008,112(30):11481-11489.
    [226]Wu J C S, Wu T H, Chu T C, et al. Application of optical-fiber photoreactor for CO2photocatalyticreduction[J]. Top Catal,2008,47(3-4):131-136.
    [227]Ma C M, Wang W, Ku Y, et al. Photocatalytic degradation of benzene in air streams in an optical fiberphotoreactor[J]. Chem Eng Technol,2007,30(8):1083-1087.
    [228]Nguyen T V, Wu J C S. Photoreduction of CO2to fuels under sunlight using optical-fiber reactor[J].Sol Energy Mater Sol Cells,2008,92(8):864-872.
    [229]Kormali P, Triantis T, Dimotikali D, et al. On the photooxidative behavior of TiO2and PW3–12O40: OHradical versus holes[J]. Appl Catal B: Environ,2006,68(3-4):139-146.
    [230]Chen C C, Lei P X, Ji H W, et al. Photocatalysis by titanium dioxide and polyoxometalate/TiO2cocatalysts. Intermediates and mechanistic study[J]. Environ Sci Technol,2004,38(1):329-337.
    [231]Wu J C S, Lin H M, Lai C L. Photo reduction of CO2to methanol using optical-fiber photoreactor[J].Appl Catal A: Gen,2005,296(2):194-200.
    [232]Li L, Wu Q Y, Guo Y H, et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2composites: preparation and photocatalytic degradation of organophosphorus pesticide using visible-lightexcitation[J]. Microporous Mesoporous Mater,2005,87(1):1-9.
    [233]Xu L L, Li W, Hu. J L, et al. Transesterification of soybean oil to biodiesel catalyzed bymesostructured Ta2O5-based hybrid catalysts functionalized by both alkyl-bridged organosilica moietiesand Keggin-type heteropoly acid[J]. J Mater Chem,2009,19(45):8571-8579.
    [234]Xu L, Yang X, Guo Y H, et al. Simulated sunlight photodegradation of aqueous phthalate esterscatalyzed by the polyoxotungstate/titania nanocomposite[J]. J Hazard Mater,2010,178(1-3):1070-1077.
    [235]Zhao X, Xu T G, Yao W Q, et al. Photoelectrocatalytic degradation of4-chlorophenol at Bi2WO6nanoflake film electrode under visible light irradiation[J]. Appl Catal B: Environ,2007,72(1-2):92-97.
    [236]Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2photocatalytic reactions:design of new photocatalysts[J]. J Phys Chem C,2007,111(14):5259-5275.
    [237]An H Q, Zhou J, Li J X, et al. Deposition of Pt on the stable nanotubular TiO2and its photocatalyticperformance[J]. Catal Commun,2009,11(3):175-179.
    [238]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueoussolution: kinetic and mechanistic investigations: A review[J]. Appl Catal B: Environ,2004,49(1):1-14.
    [239]Jain R, Mathur M, Sikarwa r S, et al. Removal of the hazardous dye rhodamine B throughphotocatalytic and adsorption treatments[J]. J Environ Manage,2007,85(4):956-964.
    [240]Yu K, Yang S G, Liu C, et al. Degradation of organic dyes via bismuth silver oxide initiated directoxidation coupled with sodium bismuthate based visible light photocatalysis[J]. Environ Sci Technol,2012,46(13):7318-7326.
    [241]Ohko Y, Ando I, Niwa C, et al. Degradation of bisphenol A in water by TiO2photocatalyst[J]. EnvironSci Technol,2001,35(11):2365-2368.
    [242]Domínguez C, García J, Pedraz M A, et al. Photocatalytic oxidation of organic pollutants in water[J].Catal Today,1998,40(1):85-101.
    [243]Wang X C, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneousphotocatalysis[J]. ACS Catal,2012,2(8):1596-1606.
    [244]Tong H, Ouyang S X, Bi Y P, et al. Nano-photocatalytic materials: possibilities and challenges[J]. AdvMater,2012,24(2):229-251.
    [245]Hernández-Alonso M, Fresno F, Suárez S, et al. Development of alternative photocatalysts to TiO2:Challenges and opportunities[J]. Energy Environ Sci,2009,2(12):1231-1257.
    [246]Zheng Y, Liu J, Liang J, et al. Graphitic carbon nitride materials: controllable synthesis andapplications in fuel cells and photocatalysis[J]. Energy Environ Sci,2012,5(5):6717-6731.
    [247]Ge L, Han C C. Synthesis of MWNTs/g-C3N4composite photocatalysts with efficient visible lighthotocatalytic hydrogen evolution activity[J]. Appl Catal B: Environ,2012,117-118:268-274.
    [248]Ge L, Han C C, Liu J. In situ synthesis and enhanced visible light photocatalytic activities of novelPANI–g-C3N4composite photocatalysts[J]. J Mater Chem,2012,22(23):11843-11850.
    [249]Song L M, Zhang S J, Wu X Q, et al. A metal-free and graphitic carbon nitride sonocatalyst with highsonocatalytic activity for degradation methylene blue[J]. Chem Eng J,2012,184:256-260.
    [250]Cui Y J, Ding Z X, Liu P, et al. Metal-free activation of H2O2by g-C3N4under visible light irradiationfor thedegradation of organic pollutants[J]. Phys Chem Chem Phys,2012,14(4):1455-1462.
    [251]Liu W, Wang M L, Xun C X, et al. Significantly enhanced visible-light photocatalytic activity ofg-C3N4via ZnO modification and the mechanism study[J]. J Mol Catal A: Chem,2013,368–369:9-15.
    [252]Li T T, Zhao L H, He Y M, et al. Synthesis of g-C3N4/SmVO4composite photocatalyst with improvedvisible light photocatalytic activities in RB degradation[J]. Appl Catal B: Environ,2013,129:255-263.
    [253]Wang Y J, Bai X J, Pan C S, J.et al. Enhancement of photocatalytic activity of Bi2WO6hybridizedwith graphite-like C3N4[J]. J Mater Chem,2012,22(23):11568-11573
    [254]Liu J H, Zhang T K, Wang Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride withrecyclable adsorption and photocatalytic activity[J]. J Mater Chem,2011,21(38):14398-14401.
    [255]Zhang G G, Zhang J S, Zhang M W, et al. Polycondensation of thiourea into carbon nitridesemiconductors as visible light photocatalysts[J]. J Mater Chem,2012,22(16):8083-8091.
    [256]Dong F, Wu L W, Sun Y J, et al. Efficient synthesis of polymeric g-C3N4layered materials as novelefficient visible light driven photocatalysts[J]. J Mater Chem,2011,21(39):15171-15174.
    [257]Zhou X S, Jin B, Li L D, et al. A carbon nitride/TiO2nanotube array heterojunction visible-lightphotocatalyst: synthesis, characterization, and photoelectrochemical properties[J]. J Mater Chem,2012,22(34):17900-17905.
    [258]Wang Y J, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activityof ZnO hybridized withgraphite-like C3N4[J]. Energy Environ Sci,2011,4(8):2922-2929.
    [259]Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6composite photocatalysts forefficient degradation of methyl orange[J]. Appl Catal B: Environ,2011,108–109:100-107.
    [260]Keith L H. Environmental endocrine disruptors[J]. Pure and Applied Chemistry,1998,70(12):2319-2326.
    [261]Pozan G S, Kambur A. Removal of4-chlorophenol from wastewater: preparation, characterizationand photocatalytic activity of alkaline earth oxide doped TiO2[J]. Appl Catal B: Environ,2013,129:409-415.
    [262]Gao J, Zhou Y, Li Z S, et al. High-yield synthesis of millimetre-long, semiconducting carbon nitridenanotubes with intense photoluminescence emission and reproducible photoconductivity[J]. Nanoscale,2012,4(12):3687-3692.
    [263]Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-productionactivity of graphene/C3N4composites[J]. J Phys Chem C,2011,115(15):7355-7363.
    [264]Ge L, Zuo F, Liu J K, et al. Synthesis and efficient visible light photocatalytic hydrogen evolution ofpolymeric g-C3N4coupled with CdS quantum dots[J]. J Phys Chem C,2012,116(25):13708-13714.
    [265]Zhang J S, Zhang M W, Zhang G G, et al. Synthesis of carbon nitride semiconductors in sulfur flux forwater photoredox catalysis[J]. ACS Catal,2012,2(6):940-948.
    [266]Wang Y J, Wang Z X, Muhammad S, et al. Graphite-like C3N4hybridized ZnWO4nanorods: synthesisand its enhanced photocatalysis in visible light[J]. CrystEngComm,2012,14(15):5065-5070.
    [267]Singh J A, Overbury S H, Dudney N J, et al. Gold nanoparticles supported on carbon nitride:influence of surface hydroxyls on low temperature carbon monoxide oxidation[J]. ACS Catal,2012,2(6):1138-1146.
    [268]Liao G Z, Chen S, Quan X, et al. Graphene oxide modified g-C3N4hybrid with enhancedphotocatalytic capability under visible light irradiation[J]. J Mater Chem,2012,22(6):2721-2726.
    [269]Sun J X, Yuan Y P, Qiu L G, et al. Fabrication of composite photocatalyst g-C3N4–ZnO andenhancement of photocatalytic activity under visible light[J]. Dalton Trans,2012,41(22):6756-6763.
    [270]Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure andmorphology and their use as metal-free catalysts[J]. J Mater Chem,2008,18(41):4893-4908.
    [271]Min Y L, Zhang F J, Zhao W, et al. Hydrothermal synthesis of nanosized bismuth niobate andenhanced photocatalytic activity by coupling of graphene sheets[J]. Chem Eng J,2012,209:215-222.
    [272]Ma X G, Lv Y H, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4via doping ofnonmetal elements: a first-principles study[J]. J Phys Chem C,2012,116(44):23485-23493.
    [273]Vilela F, Zhang K, Antonietti M. Conjugated porous polymers for energy applications[J]. EnergyEnviron Sci,2012,5(7):7819-7832.
    [274]Li X F, Zhang J, Shen L H, et al. Preparation and characterization of graphitic carbon nitride throughpyrolysis of melamine[J]. Appl Phys A: Mater Sci Process,2009,94(2):387-392.
    [275]Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosized Bi2WO6Catalystssynthesized via a hydrothermal process[J]. Appl Catal B: Environ2006,66(1-2):100-110.
    [276]Cui Y J, Huang J H, Fu X Z, et al. Metal-free photocatalytic degradation of4-chlorophenol in waterby mesoporous carbon nitride semiconductors[J]. Catal Sci Technol,2012,2(7):1396-1402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700