过渡金属氧化物纳米材料的设计、制备及相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展和人民生活水平的提高,环境污染问题越来越成为世界各国共同关注的焦点问题,而水体有机污染更是各国亟待解决的重要问题之一。半导体光催化氧化技术由于半导体催化剂价格低廉和能使多种有机物完全矿化而被认为是处理有机废水的最有前途的技术之一。但半导体催化剂在实际应用中普遍存在一个难题,即电子空穴容易复合,从而导致光催化效果不理想,所以提高半导体光催化性能尤为重要。
     本论文围绕“过渡金属氧化物(即Cu20和ZnO)纳米材料的设计、制备及相关性能”展开研究工作,主要包括以下几方面的研究内容:
     1.采用室温液相法合成了立方相Cu20纳米方块。X射线衍射、透射电镜和扫描电镜表明产物是由形貌和大小高度均匀、边长约为170nm的Cu20纳米方块组成。以高浓度酸性品红溶液(100mg/L)为研究体系对材料的光催化性能进行测试表征,研究表明,体系中添加适量H202能够大大提高Cu20纳米方块的光催化性能,这是由于适量H202的加入不但能够提供较多的羟基自由基(·OH),而且可以阻止Cu20半导体中电子和空穴的复合效率。此光催化路线对提高半导体Cu2O的光催化活性是非常有效的。
     2.以H2O2为还原剂,CoCl2为氯(Cl)源,采用乙醇的水溶液为溶剂,采用水热法分别合成了Cu20薄膜和CuCl/Cu2O复合物薄膜,可以通过控制CoCl2的浓度控制复合物的组成。将制备的薄膜用于光催化降解罗丹明B溶液,发现CuCl/Cu2O复合物薄膜的光催化性能明显优于纯Cu20薄膜,主要由于CuCl/Cu2O复合物薄膜的形成提高了Cu20的光生电子空穴的分离效率。
     3.采用一步水热法,在银氨溶液里合成Ag/ZnO复合物薄膜,并用作光催化剂降解罗丹明B溶液。研究发现,与纯ZnO薄膜相比,Ag/ZnO复合物薄膜对罗丹明B溶液的光降解表现出更好的光催化性能。另外,也测试了Ag/ZnO复合物薄膜与纯ZnO薄膜室温下的荧光光谱和氨气传感性能。结果发现,与纯ZnO薄膜相比较,Ag/ZnO复合物薄膜具有更弱的荧光发射峰强度,对氨气具有更好的荧光传感性能。Ag/ZnO复合物薄膜光催化性能和氨气传感性能的提高是由于贵金属Ag的存在提高了半导体ZnO内的电子-空穴分离效率。
     4.以锌片作模板和还原剂,在银氨缓冲溶液里制备形貌均一、总长度为3-10μm、主干和分支分别为100和50nm的Ag纳米枝晶。并将制备的Ag纳米枝晶组装成荧光型传感器,室温下测试材料对水汽的传感性能。研究发现,与Ag颗粒相比,Ag纳米枝晶传感器表现出更高的灵敏度、更快的恢复时间和更理想的灵敏度和湿度之间的线性关系。
With the quick development of social economy and the enhancement of living standard of people, environmental problem has increasingly become a focus in many countries of the world. More important, organic pollution in water is one of the most vexing problems to be resolved. Photocatalytic oxidation with semiconductors is proven to be a promising technology because the semiconductors are inexpensive and can easily mineralize various organic compounds. However, the electron and hole in the semiconductors easily recombine, which results in unsatisfactory photocatalytic efficiency in practical application. Therefore, how to enhance the photocatalytic performance of semiconductors is quite important.
     In this dissertation, the work was carried out centreing on the theme of design, preparation and properties of transitional metal oxide nanomaterials. The main researches are as following.
     1. Cubic cuprous oxide nanocubes were prepared by liquid phase method at room temperature. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images have verified that the products consists of uniform Cu2O nanocubes with edge length of170nm. Moreover, the photocatalytic performance of Cu2O nanocubes was investigated by photodegrading acid fuchsin. The results reveal that the phtotocatalytic activity of Cu2O nanocubes was greatly enhanced by adding moderate hydrogen peroxide in the system. Because moderate hydrogen peroxide can not only provide more·OH but also prohibit the recombination of electron and hole as oxidant. Therefore, the method to enhance photocatalytic activity of semiconductors is propagable.
     2. The Cu2O and CUCl/Cu2O films based on the copper substrate were respectively obtained by an easy hydrothermal method, in which hydrogen peroxide was used as reducing agent, cobalt chloride (CoCl2) as chlorine source as well as ethanol aqueous solution as solvent. The composition of CuCl/Cu2O films can be successful controlled by adjusting the concentration of cobalt chloride. The four films obtained with different concentration of cobalt chloride were used as photocatalyst degrading Rhodamin B solution, and it was discovered that the CuCl/Cu2O films exhibit higher photocatalytic performance than pure Cu2O film, which is attributed to the higher separation of electron and hole. Moreover, the initial concentration of cobalt chloride during preparation has a great effect on the photocatalytic performance of the CUCI/Cu2O films.
     3. The Ag/ZnO film based on the zinc substrate was synthsized in the Tollen's reagent by a hydrothermal method via one step. The photocatalytic performance of the Ag/ZnO film was studied by photodegrading Rhodanmin B solution. The results demonstrate that in the degradation of Rhodamin B solution, the Ag/ZnO film exhibits ehancement of photocatalytic activity in comparsion with the pure ZnO film. In additon, the PL peformance and gas sensitivity to ammonia of the Ag/ZnO film were measured at room temperature. The Ag/ZnO film shows weaker PL intensity and better gas sensitivity than the pure ZnO film. The enhanced performance of the Ag/ZnO film was attributed to the more effective seperation of electron and hole resulting from the presence of metal silver.
     4. Cubic Ag dendritic nanostructure with ordered branches have been successfully prepared by soaking Zn plate into silver ammonia buffer solution and via a facile reduction reaction at room temperature. The overall length of the Ag nanodendrites is3-10μm, and the average diameter of the stems and the branches are100nm and50nm, respectively. A room temperature photoluminescence-type gas sensing device based on the pure Ag nanodendrites has been established to investigate their humidity sensing properties. Compared with Ag particles, the sensor based on the Ag nanodendrites presents better sensitivity, more excellent linearity, quicker recovery and reliable repeatability in a very wide humidity range at room temperature.
引文
[1]M. A. Rauf, S. B. Bukallah, A. Hammadi, A. Soliman, F. Hammadi, The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2, Chem. Eng. J 129(2007)167-172.
    [2]A. Danion, J. Disdier, C. Guillard, N. Jaffrezic-Renault, Malic acid photocatalytic degradation using a Ti02-coated optical fiber reactor, J. Photochem. Photobiol, A:Chem 190 (2007) 135-140.
    [3]E. V. Skorb, E. A. Ustinovich, A. I. Kulak, D. V. Sviridov, Photocatalytic activity of TiO2:In2O3 nanocomposite films towards the degradation of arylmethane and azo dyes, J. Photochem. Photobiol A:Chem 193 (2008) 97-102.
    [4]K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, C. Guillard, Photocatalytic decoloration of Remazol Black 5 (RB5) and Procion Red MX-5B-isotherm of adsorption, kinetic of decoloration and mineralization, Appl. Catal., B:Environ 77 (2007) 100-109.
    [5]D. S. Bhatkhande, V. G. Pangarkar, A. A. Beenackers, Photocatalytic degradation for environmental applications-a review, J. Chem. Technol. Biotechnol 77 (2001) 102-116.
    [6]N. M. Mahmoodi, M. Arami, N. Y. Limaee, N. S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci 295 (2006)159-164.
    [7]M. A. Rauf, S. Salman Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J 151 (2009) 10-18.
    [8]A. E. H. Machado, J. A. de Miranda, R. F. de Freitas, E. T. F. M. Duarte, L. F. Ferreira, Y. D. T. Albuquerque, R. Ruggiero, C. Sattler, L. de Oliveira, Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis, J. Photochem. Photobiol A: Chem 155 (2003) 231-241.
    [9]C. G. de Silva, J. L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, J. Photochem. Photobiol A:Chem 155 (2003) 133-143.
    [10]S. Serpone, V. Emelie, Suggested terms and definitions in photocatalysis and radiocatalysis, Int. J. Photoenergy 4 (2002) 91-131.
    [11]B. Yue, Y. Zhou, J. Xu, Z. Wu, X. Zhang, Y. Zou, S. Jin, Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates, Environ. Sci. Technol 36 (2002) 1325-1329.
    [12]M. A. Behnajady, N.Modirshahla, M. Shokri, Photodestruction of acid orange 7 (AO7) in aqueous solutions by UV/H2O2:influence of operational parameters, Chemosphere 55 (2005) 129-134.
    [13]M. Qamar, M. Saquib, M. Muneer, Photocatalytic degradation of two selected dye derivatives: chromotrope 2B and amido black 10B in aqueous suspensions of titanium dioxide, Dyes Pigments 65 (2005) 1-9.
    [14]D. Fabbri, A. Bianco Prevot, E. Pramauro, Effect of surfactant microstructureson photocatalytic degradation of phenol and chlorophenols, Appl. Catal. B:Environ 62 (2006) 21-27.
    [15]C. C. Wang, C. K. Lee, M. D. Lyu, L. C. Juang, Photocatalytic degradation of C. I. basic violet 10 using TiO2 catalysts supported by Y zeolite:an investigation of the effects of operational parameters, Dyes Pigments 76 (2008) 817-824.
    [16]L. C. Macedo, D. A. M. Zaia, G. J. Moore, H. de Santana, Degradation of leather dye on TiO2:a study of applied experimental parameters on photoelectrocatalysis, J. Photochem. Photobiol A: Chem 185 (2007)86-93.
    [17]F. Zhang, A. Yediler, X. Liang, A. Kettrup, Effects of dye additives on the ozonation process and oxidation by-products:acomparative study usinghydrolyzed C.I. Reactive Red 120, Dyes Pigments 60 (2004) 1-7.
    [18]S. S. Ashraf, M. A. Rauf, S. Alhadrami, Degradation of methyl red using Fenton's reagent and the effect of various salts, Dyes Pigments 69 (2006) 74-78.
    [19]M. Muruganandham, M. Swaminathan, Photochemical oxidation of reactive azo dye with UV-H2O2 process, Dyes Pigments 62 (2004) 271-277.
    [20]J. Yoon, Y. Lee, S. Kim, Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment, Water Sci. Technol 44 (2001) 15-21.
    [21]M. Saquiba, M.A. Tariqa, M. Faisala, M. Muneer, Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide, Desalination 219 (2008) 301-311.
    [22]M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments 77 (2008) 327-334.
    [23]Y. Zhiyong, H. Keppner, D. Laub, E. Mielczarski, J. Mielczarski, L. Kiwi-Minsker, A. Renken, J. Kiwi, Photocatalytic discoloration of Methyl Orange on innovative parylene-TiO2 flexible thin films under simulated sunlight, Appl. Catal. B:Environ 79 (2008) 63-71.
    [24]S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater B 112 (2004) 269-278.
    [25]I. K. Konstantinou, T. A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations-A review, Appl. Catal. B:Environ 49 (2004) 1-14.
    [26]V. Augugliaro, C. Baiocchi, A. Bianco-Prevot, E. Garcia-Lopez, V. Loddo, S. Malato, G. Marci, L. Palmisano, M. Pazzi, E. Pramauro, Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation, Chemosphere 49 (2002) 1223-1230.
    [27]M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions, Dyes Pigments 56 (2003) 37-49.
    [28]S. C. G. Huling, R.G. Arnold, R.A. Sierka, P. K. Jones, D.D. Fine, Contaminant adsorption and oxidation via Fenton reaction, J. Environ. Eng 126 (2000) 595-600.
    [29]J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. A:Chem 260 (2006) 241-246.
    [30]J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped T1O2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater 155 (2008) 312-319.
    [31]H. M. Coleman, V. Vimonses, G. Leslie, R. Amal, Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater 146 (2007) 496-501.
    [32]N. M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interf. Sci 295 (2006) 159-164.
    [33]K. Tanaka, T. Hisanaga, K. Harada, Efficient photocatalytic degradation of chloralhydrate in aqueous semiconductor suspension, J. Photochem. Photobiol A:Chem 48 (1989) 155-159.
    [34]W. A. Zeltner, C. G. J. Hill, M. A. Anderson, Supported titania for photodegradation, Chemtech 23(1995)21-28.
    [35]A. A. Yawalkar, D. S. Bhatkhande, V. G. Pangarkar, A. C. Beenackers, Solar assisted photocatalytic and photochemical degradation of phenol, J Chem Technol Biotechnol 76 (2001) 363-370
    [36]K. Hofstadler, R. Bauer, S. Novalic, G, Heiser, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers:photomineralization of 4-chlorophenol, Environ Sci Technol 28 (1994) 670-674.
    [37]R. Andreozzi, V. Caprio, A. Insola, G. Longo, V, Tufano, Photocatalytic oxidation of 4-nitrophenol in aqueous TiO2 slurries:an experimental validation of literature kinetic models, J Chem. Technol. Biotechnol 75 (2000) 131-136.
    [38]J. Yoon, Y. Lee, S. Kim, Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment, Water Sci. Technol 44 (2001) 15-21.
    [39]M. Muruganandham, M. Swaminathan, Photocatalytic decoloration and degradation of reactive orange 4 by TiO2-UV process, Dyes Pigments 68 (2006) 133-142.
    [40]F. Sayilkan, M. Asilturk, P. Tatar, N. Kiraz, S. Sener, E. Arpac, H. Sayilkan, Photocatalytic performance of Sn-doped TiO2 nanostuctured thin films for photocatalytic degradation of Malachite Green dye under UV and VIS light, Mater. Res. Bull 43 (2008) 127-134.
    [41]A. F. Caliman, C. Cojocaru, A. Antoniadas, I. Poulios, Optimized photocatalytic degradation of Alcian Blue 8GX in the presence of TiO2 suspensions, J. Hazard. Mater 144 (2007) 265-273.
    [42]J. Aguado, R.V. Grieken, M.J. LMunoz, J. Marugan, A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts, Appl. Catal A:General 312(2006)202-212.
    [43]J. Yang, J. Zhang, L. Zhua, S. Chen, Y. Zhang, Y. Tang, Y. Zhua, Y. Li, Synthesis of nano titania particles embedded in mesoporous SBA-15:characterization and photocatalytic activity, J. Hazard. Mater B 137 (2006) 952-958.
    [45]S. L. Kuo, C. J. Liao, Solar photocatalytic degradation of 4-chlorophenol in kaolinite catalysts, J. Chin. Chem. Soc 53 (2006) 1073-1083.
    [46]P. A Korzhavyi, B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation, Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co, www.skb.se.
    [47]I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, H. L. S. kriver, Locally self-consistent Green's function approach to the electronic structure problem. Phys. Rev. B:56 (1997) 9319-9334.
    [48]F. C. Akkari, M. Kanzari, Optical, structural, and electrical properties of Cu2O thin films, Phys. Status Solidi. A 207 (2010) 1647-1651.
    [49]K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, A. Tasaka, Y. Awakura, Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films, J. Electrochem. Soc 152 (2005) C 179-182.
    [50]R. N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells 27 (1992) 361-368.
    [51]P. E. de Jongh, D. Vanmaekelbergh, J. J. Kelly, Cu2O:a catalyst for the photochemical decomposition of water, Chem. Commun. (1999) 1069-1070.
    [52]J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater.18 (2006) 867-871.
    [53]H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphologydependent photocatalytic properties, J. Phys. Chem B 110 (2006) 13829-13834.
    [54]B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel, Nano Lett 6 (2006) 2095-2098.
    [55]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.
    [56]C. H. Kuo, M. H. Huang, Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures, J. Phys. Chem C 112 (2008) 18355-18360.
    [57]L. F. Gou, C. J. Murphy, Solution-phase synthesis of Cu2O nanocubes, Nano Lett.3(2003) 31-234.
    [58]Y. Xu, H. Wang, Y. F. Yu, L. Tian, W. W. Zhao, B. Zhang, Cu2O nanocrystals:surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities, J. Phys. Chem. C 115 (2011) 15288-15296.
    [59]Y. Yu, F. P. Du, J. C. Yu, Y. Y. Zhuang, P. K. Wong, One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template, J. Solid State Chem 177 (2004) 4640-4647.
    [60]Y. Chang, H. C. Zeng, Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals, Cryst. Growth Des 4 (2004) 273-278.
    [61]Y. Xu, X. Jiao, D. Chen, PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes, J. Phys. Chem. C 112 (2008) 16769-16773.
    [62]J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals, Langmuir 22 (2006) 7369-7377.
    [63]A. K. Ganguli, A. Ganguly, S. Vaidya. Microemulsion-based synthesis of nanocrystalline materials, Chem. Soc. Rev 39 (2010) 474-485.
    [64]H. W. Zhang, X. Zhang, H. Y. Li, et al. Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion, Cryst. Growth Des 7 (2007) 820-824.
    [65]D. Dodoo-Arhin, M. Leoni, P. Scardi, et al. Synthesis, characterisation and stability of Cu2O nanoparticles produced via reverse micelles microemulsion, Mater Chem. Physi 122 (2010) 602-608.
    [66]Y. Q. Wang, W. S. Liang, A. Satti, K. Nikitin, Fabrication and microstructure of Cu2O nanocubes, J. Cryst. Growth 312 (2010) 1605-1609.
    [67]V. A. Gevorkyan, A. E. Reymers, M. N. Nersesyan, M. A. Arzakantsyan, Characterization of Cu2O thin films prepared by evaporation of CuO powder, International symposium on optics and its applications (OPTICS2011), Journal of Physics:Conference Series 350 (2012) 012027
    [68]张霞,陶小军,张治军,吴志申,张余平,无机化学学报,21(2005)1098-1100.
    [69]R. V. Kumar, Y. Mastai, Y. Diamant and A. Gedanken, Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix J. Mater.Chem 11(2001) 1209-1213.
    [70]M. J. Siegfried, K. S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals, J. Am. Chem. Soc 128 (2006) 10356-10357.
    [71]G. C. Liu, L. D. Wang, D. F. Xue, Synthesis of Cu2O crystals by galvanic deposition technique. Mater. Lett 64 (2010) 2475-2478.
    [72]S. X. Wu, Z. Y. Yin, Q. Y. He, G. Lu, X. Z. Zhou, H, Zhang, Electrochemical deposition of Cl-doped n-type Cu2O on reduced grapheme oxide electrodes, J. Mater. Chem 21 (2011) 3467-3470.
    [73]L. Huang, F. Peng, H. Yu, H. J. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci 11 (2008)129-138.
    [74]M. A. Shoeib, O. E. Abdelsalam, M. G. Khafagi, R. E. Hammam, Synthesis of Cu2O nanocrystallites and their adsorption and photocatalysis behavior, Adv. Powder Technol 23 (2012) 298-304.
    [75]Y. L. Du, N. Zhang, C. M. Wang, Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals, Catal. Commun 11 (2010) 670-674.
    [76]W. Sun, W. D. Sun, Y. J. Zhuo, Y. Chu, Facile synthesisof Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties, J. Solid State Chem 184 (2011) 1638-1643.
    [77]宋继梅,张小霞,焦剑梅,雪峰,田玉鹏,立方状和球状氧化亚铜的制备及其光催化性质,27(2010)1328-1332。
    [78]熊良斌,冯杰,胡安正,闺楠楠,王辉,纳米TiO2/Cu2O复合物的可见光降解活性艳红和分解水制氢的机理,中国有色金属学报20(2010)1737-1743。
    [79]J. Y. Ho, M. H. Huang, Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity, J. Phys. Chem. C 113 (2009) 14159-14164.
    [80]C. H. Kuo, M. H. Huang, Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures, J. Phys. Chem. C 112 (2008) 18355-18360.
    [81]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkocd, A comprehensive review of ZnO materials and devices, J. Appl. Phys 98 (2005) 041301.
    [83]Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley and A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. Surface and bulk characterization, J. Phys. Chem. B 105 (2001) 1026-1033.
    [84]N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J Photoch. Photobio A:162 (2004) 317-322.
    [85]C. Hariharan. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles:Revisited, Appl. Catal. A-Gen 304 (2006) 55-61.
    [86]Z. Z. Han, L. Liao, Y. T. Wu, H. B. Pan, S. Shen, J.Z. Chen, Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures, J. Hazard. Mater 217-218 (2012) 100-106.
    [87]Y. X. Wang, X. Y. Li, N. Wang, X. Quan, Y. Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep. Purif. Technol 62 (2008) 727-732。
    [88]J. H. Sun, S. Y. Dong, Y. K. Wang, S. P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater 172 (2009) 1520-1526.
    [89]J. B. Zhong, J. Z. Li, Y. Lu, X. Y. He, J. Zeng, W. Hu, Y.C. Shen, Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance, Appl. Surface. Sci 258 (2012) 4929-4933。
    [90]P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method, Appl. Surface Sci 258 (2012) 8192-8198.
    [91]M. E. Aguirre, H. B. Rodriguez, E. S. Rom, A. Feldhoff, M. A. Grela, Ag@ZnO core-shell nanoparticles formed by the timely reduction of Ag+ ions and zinc Acetate hydrolysis in N, N-dimethylformamide:mechanism of growth and photocatalytic properties, J. Phys. Chem. C 115 (2011)24967-24974.
    [92]Y. H. Zheng, C. Q. Chen, Y. Y Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst:correlation between structure and property, J. Phys. Chem. C 112 (2008) 10773-10777
    [93]S. Sharma, M. Madou, A new approach to gas sensing with nanotechnology, Phil. Trans. R. Soc. A 370 (1967) 2448-2473.
    [94]X. Wang, W. P. Carey, S. S. Yee, Monolithic thin film metal oxide gas sensor arrays with application to monitoring of organic vapors. Sens. Actuat. B Chem 28 (1995) 63-70.
    [95]K. Mitsubayashi,, H. Matsunaga, G. Nishio, M. Ogawa, H. Saito, Biochemical gassensor (Bio-sniffer) for breath analysis after drinking, In SICE Annual Conf, Sapporo (2004) 97-100.
    [96]C. M. McEntegart, W. R. Penrose, S. Strathmann, J. R. Stetter, Detection and discrimination of coliform bacteria with gas sensor arrays, Sens. Actuat. B Chem 70(2000) 170-176.
    [97]K. Arshak, E. Moore, G. M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev 24(2004) 181-198.
    [98]Y. Huang, S. Tao, An optical fiber sensor probe using a PMMA/CPR coated bent optical fiber as a transducer for monitoring trace ammonia. J. Sens. Technol 21(2011) 29-35.
    [99]J. W. Grate, E. T. Zellers, The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses, Anal. Chem 72(2000) 2861-2868.
    [100]J. Fouletier, Gas analysis for potentiometric sensors:a review. Sens. Actuat 3 (1982/83) 295-314.
    [101E. Bakker, E. Pretsch, Potentiometric sensors for trace-level analysis, Trends. Anal. Chem 24 (2005) 199-207.
    [102]K. S. Alber, J. A.Cox, P. J. Kulesza, Solid-state amperometric sensors for gas phase analytes:a review of recent advances, Electroanalysis 9 (1997) 97-101.
    [103]S. Basu, P. K. Basu, Nano crystalline metal oxides for methane sensors:role of noble metals. J. Sens.2009,1-20.
    [104]I. Simon, N. Barsan, M. Bauer, Micromachined metal oxide gas sensors:opportunities to improve sensor performance. Sens. Actuat B 73 (2001)1-26.
    [105]M. Madou, S. R. Morrison, Chemical sensing with solid state devices, New York, NY: Academic Press (1989).
    [106]Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu, ZnO nanowire field effect transistor and oxygen sensing property, Appl. Phys. Lett 85 (2004) 5932-5934.
    [107]Z. Zanolli, R. Leghrib, A. Felten, J. Pireaux, E. Llobet, J. C. Charlier, Gas sensing with Au-decorated carbon nanotubes, ACS Nano 6 (2011) 4592-4599.
    [108]L. A. Patil, A. R. Bari, M. D. Shinde, V. Deo, Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing, Sensor Review,30 (2010) 290-296
    [109]Y. Jia, X. Chen, Z. Guo, J. Y. Liu, F. L. Meng, T. Luo, M. Q. Li, J. H. Liu, In situ growth of tin oxide nanowires, nanobelts, and nanodendrites on the surface of iron-doped tin oxide/multiwalled carbon nanotube nanocomposites, J. Phys. Chem. C 113 (2009) 20583-20588.
    [110]E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett 81(2002) 1869-1871.
    [111]Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing characteristics of single crystalline SnO2 nano rods, Appl. Phys. Lett 87 (2005) 233503-233505.
    [112]Q. Wan, T. H. Wang, Single-crystalline Sb-doped SnO2 nanowires:synthesis and gas sensor application, Chem. Commun 30 (2005) 3841-3843.
    [113]Q. Wan, J. Z. Huang, T. H. Wang, E. N. Dattoli, W. Lu, Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application, Appl. Phys. Lett 92 (2008) 102101-102103.
    [114]W. X. Zhang, Z. X. Chen, Z. H. Yang, An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing, Phys. Chem. Chem. Phys 11 (2009) 6263-6268.
    [115]W. X. Zhang, C. Feng, Z. H. Yang, An inward replacement/etching route to controllable fabrication of zinc sulfide nanotube arrays for humidity sensing, Sensor. Actuators. B 165 (2012) 62-67.
    [116]W. X. Zhang, L. L. Chen, Z. H. Yang, J. Peng, An optical humidity sensor based on Li3PO4 hollow nanospheres, Sensor. Actuators. B 155 (2011) 226-231.
    [1]R. N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells 27 (1992) 361-368.
    [2]J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for sensitive gas sensors, Chem. Mater 18 (2006) 867-871.
    [3]B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel, Nano Lett 6 (2006) 2095-2098.
    [4]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.
    [5]C. H. Kuo, C. H. Chen, M. H. Huang, Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm, Adv. Funct. Mater 17(2007) 3773-3780.
    [6]H. L. Xu, W. Z. Wang, W. J. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties, J. Phys. Chem B 110 (2006) 13829-13834.
    [7]X. Q Wang, Z. P. Liu, Y. T. Qian, Synthesis, transformation to octahedron-like crystals, and gas sensing property of six-horned nanospheres of Cu2O, Cryst. Res. Technol 46 (2011) 967-972.
    [8]L. F. Gou, C. J. Murphy, Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3 (2003) 231-234.
    [9]Y. Q. Wang, W. S. Liang, A. Satti, K. Nikitin, Fabrication and microstructure of Cu2O nanocubes, J. Cryst. Growth 312 (2010) 1605-1609.
    [10]Y. Xu, H. Wang, Y. F. Yu, L. Tian, W. W. Zhao, B. Zhang, Cu2O nanocrystals:surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities, J. Phys. Chem. C 115 (2011) 15288-15296.
    [11]Y. L. Du, N. Zhang, C. M. Wang, Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals, Catal. Commun 11 (2010) 670-674.
    [12]M. Saquiba, M.A. Tariqa, M. Faisala, M. Muneer, Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide, Desalination 219 (2008) 301-311.
    [13]M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments 77 (2008) 327-334.
    [14]I. K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations-A review, Appl. Catal. B:Environ.49 (2004) 1-14.
    [15]V. Augugliaro, C. Baiocchi, A. Bianco-Prevot, E. Garcia-Lopez, V. Loddo, S. Malato, G. Marci, L. Palmisano, M. Pazzi, E. Pramauro, Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation, Chemosphere 49 (2002) 1223-1230.
    [16]M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet) in aqueous suspensions, Dyes Pigments 56 (2003) 37-49.
    [17]S. C. G. Huling, R. G. Arnold, R. A. Sierka, P. K. Jones, D. D. Fine, Contaminant adsorption and oxidation via Fenton reaction, J. Environ. Eng 126 (2000) 595-600.
    [18]W. X. Zhang, Z. X. Chen, Z. H. Yang, An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing, Phys. Chem. Chem. Phys 11(2009) 6263-6268.
    [19]K. B. Dhanalakshmi, S. Anandan, J. Madhavan, P. Maruthamuthu, Photocatalytic degradation of phenol over TiO2 powder:The influence of peroxomonosulphate and peroxodisulphate on the reaction rate, Mater. Solar Cells 92 (2008) 457-463.
    [20]O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Solid State Chem 32 (2004) 33-177.
    [21]H. R. Zhang, C. M. Shen, S. T. Chen, Z. H. Xu, F. S. Liu, J. Q. Li, H. J. Gao, Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template, Nanotechnology 16 (2005) 267-272.
    [22]Q. D. Chen, X. H. Shen, H. C. Gao, Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons, J. Colloid. Interf. Sci 312 (2007) 272-278.
    [23]U. G. Akpan, B. H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review, J. Hazard. Mater 170 (2009) 520-529.
    [24]J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-Assembly of CuO nanocrystals, Langmuir 22 (2006) 7369-7377.
    [25]J. M. Hermann, Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 53 (1999) 115-129.
    [26]M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet) in aqueous suspensions, Dyes. Pigments 56 (2003) 37-49.
    [27]N. Shimizu, C. Ogino, M. F. Dadjour, T. Murata, Sonocatalytic degradation of methylene blue with TiO2 pellets in water, Ultrason. Sonochem 14 (2007) 184-190.
    [28]H. M. Coleman, V. Vimonses, G. Leslie, R. Amal, Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater 146 (2007) 496-501.
    [29]V. Kavitha, K. Palanivelu, Destruction of cresols by Fenton oxidation process. Water Res 39 (2005) 3062-3072.
    [30]L. Huang, F. Peng, H. Yu, H. J. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci 11(2009)129-138.
    [31]M. A. Shoeib, O. E. Abdelsalam, M. G. Khafagi, R. E. Hammam, Synthesis of Cu2O nanocrystallites and their adsorption and photocatalysis behavior, Adv. Powder Technol 23 (2012) 298-304.
    [32]Y. Tang, Z. Chen, Z. Jia, L. Zhang, J. Li, Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films, Mater. Lett 59 (2005) 434-438.
    [1]S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot-plant scale: an overview, Appl. Catal. B Environ 37 (2002) 1-15.
    [2]J. H. Carey, J. Lawrence, H. M. Tosine, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions, Bull Environ Contam Toxicol 16 (1976) 697-701.
    [3]C. M. Cullagh, N. Skillen, M, Adams, P. K. J. Robertson, Photocatalytic reactors for environmentalre mediation:a review, J Chem Technol Biotechnol 86 (2011) 1002-1017.
    [4]M. A. Fox, M. T. Dulay, Heterogeneous photocatalysis, Chem. Rev 93 (1993) 341-357.
    [5]B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructure, Chem. Mater 9 (1997) 2544-2550.
    [6]K. Hara, T. Horiguchi, T. Kinoshita, Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells, Sol. Energy Mater. Sol. Cell 64 (2000) 115-134.
    [7]J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater 4 (2005) 173-179.
    [8]S. Ikeda, T. Takata, T. Kondo, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, A. Tanaka, Mechano-catalytic overall water splitting. Chem Commun (1998) 2185-2186.
    [9]Y. Okamoto, S. Ishizuka, S. Kato, T. Sakurai, Passivation of defects in nitrogen-doped polycrystalline Cu2O thin films by crown-ether cyanide treatment, Appl. Phys. Lett 82(2003) 1060-1062.
    [10]L. Zhang, J. Li, Z. Chen, Y. Tang, Y. Yu, Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites, Appl. Catal. A Gen 299 (2006) 292-297.
    [11]熊良斌,冯杰,胡安正,闺楠楠,王辉,纳米Ti02/Cu20复合物的可见光降解活性艳红和分解水制氢的机理中国有色金属学报20(2010)1737-1742。
    [12]Y. L. Du, N. Zhang, C. M. Wang, Photocatalytic degradation of trifluralin by SnO2-doped Cu2O crystals, Catal Commun 11 (2010) 670-674.
    [13]L. O'Reilly, O. F. Lucas, P. J. McNally, A. Reader, etc, Room-temperature ultraviolet luminescence fromy-CuCl grown on near lattice-matched silicon. J. Appl. Phys 98 (2005) 113512-113516.
    [14]A. Brune, J. B. Wagner, The electrical conductivity of single and polycrystalline copper (I) chloride Mater. Res. Bull 30 (1995) 573-579.
    [15]F. O. Lucas, L. O'Reilly, G. Natarajan, P. J. McNally, S. Daniels, A. Mitra, L. Bradley, D. Cameron, D. M. Taylor, Encapsulation of the heteroepitaxially grown of wide band gap -CuCl on silicon substrates, J. Cryst. Growth 287 (2006) 112-117.
    [16]Y. Zhang, I. J. Drake, A. T. Bell, Characterization of Cu-ZSM-5 prepared by solid-state Ion exchange of H-ZSM-5 with CuCl, Chem. Mater 18 (2006) 2347-2356.
    [17]T. Xie, M. Gong, Z. Niu, S. Li, X. Yan, Y. Li, Shape-controlled CuCl crystallite catalysts for aniline coupling, Nano Res 3 (2010) 174-179.
    [18]K. Edamatsu, G. Oohata, R. Shimizu, T. Ltoh, Generation of ultraviolet entangled photons in a semiconductor, Nature 431 (2004) 167-170.
    [19]R. Yousefi, F. J. Sheini, Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures, Ceram. Int.38 (2012) 5821-5825.
    [20]B. D. Cullity, Elements of X-Ray diffraction, (Addisson-Wesley, Reading, MA,1978, Pp554)
    [21]大连理工大学无机化学教研室编,无机化学(第五版),高等教育出版社,2010年出版。
    [22]G. Deroubaix, P. Marcus, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides, Surf. Interface Anal 18 (1992) 39-46.
    [23]A. Ahmed, N. S. Gajbhiye, A. G. Joshi, Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature, J. Solid State Chem 184 (2011) 2209-2214.
    [24]H. M. Yang, J. Ouyang, A. D. Tang, Y. Xiao, X. W. Li, X. D. Dong, Y. M. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull 41 (2006)1310-1318.
    [25]J. Ghijsen, L. H. Tjeng, J. van Elp, H. Esks, J. Westerink, G. A. Sawatzky, Electronic structure of Cu2O and CuO, Phys. Rev. B 38 (1988) 11322-11330.
    [26]C. D. Wagner, Faraday Discuss. Chem. SOC 60 (1975) 291-300.
    [27]K. Y. Jung, S. B. Park, Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Appl. Catal. B:Environ 25 (2004) 249-256.
    [28]R. G. Chen, J. H. Bi, L. Wu, Z. H. Li, X. Z. Fu, Orthorhombic Bi2GeO5 nanobelts:synthesis, characterization, and photocatalytic properties, Cryst. Growth Des 9 (2009) 1775-1779.
    [1]Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley, A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. surface and bulk characterization J. Phys. Chem B 105 (2001) 1026-1033.
    [2]N. Daneshvar, D. Salari, A. R. Khataee. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photoch. Photobio. A 162 (2004) 317-322.
    [3]C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles:Revisited. Appl. Catal. A-Gen 304 (2006) 55-61.
    [4]Y. X. Wang, X. Y. Li, N. Wang, X. Quan, Y. Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep. Purif. Technol 62 (2008) 727-732.
    [5]Jun bo Zhong, Jian zhang Li, Yan Lu, Xi yang He, Jun Zeng, Wei Hu, Yue cheng Shen, Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance, Appl. Surf. Sci 258 (2012) 4929-4933。
    [6]Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst:correlation between structure and property, J. Phys. Chem. C 112 (2008) 10773-10777.
    [7]W. X. Zhang, Z. X. Chen, Z. H. Yang, An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing, Phys. Chem. Chem. Phys.11 (2009) 6263-6268.
    [8]L. A. Patil, A. R. Bari, M. D. Shinde. V. Deo, Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing, Sens. Rev 30 (2010) 290-296.
    [9]A. Galdikas, A. Mironas, V. Strazdiene, A. S'etkus, I. Ancutiene, V. Janickis, Room-temperature-functioning ammonia sensor based on solid-state CuxS films, Sens. Actuators. B 67 (2000)76-83.
    [10]W. X. Zhang, C. Feng, Z. H Yang, An inward replacement/etching route to controllable fabrication of zinc sulfide nanotube arrays for humidity sensing, Sens. Actuators. B 165 (2012) 62-67.
    [11]Z. H. Yang, C. Y Luan, W. X. Zhang, A. P. Liu, S. P..Tang, Fabrication and optical properties of ZnO nanostructure thin films via mechanical oscillation and hydrothermal method, Thin Solid Films 516 (2008)5974-5980.
    [12]M. Anpo, I. Tanahashi, Y. Kubokawa, Photoluminescence and photoreduction of vanadium pentoxide supported on porous Vycor glass, J. Phys. Chem 84 (1980) 3440-3443.
    [13]M. Iwamoto, H. Furukawa, K. Matsukami, T. Takenaka, S. Kagawa, Diffuse reflectance infrared and photoluminescence spectra of surface vanadyl groups, direct evidence for change of bond strength and electronic structure of metal-oxygen bond upon supporting oxide, J. Am. Chem. Soc 105 (1983) 3719-3720.
    [14]X. Z. Li, F. B. Li, Study of Au/Au3+-Ti02 photo-catalysts toward visible photo-oxidation for water and wastewater treatment, Environ. Sci. Technol 35 (2001) 2381-2387。
    [15]J. C. Yu, J. G. Yu, K. W. Ho, Z. T. Jiang, L. Z. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of manocrystalline TiO2 powders, Chem. Mater 14 (2002) 3808-3816.
    [16]J. G. Yu, H.G. Yu, B. Chen, X. J. Zhao, J. C. Yu, W. K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition J. Phys. Chem. B 107 (2003) 13871-13879.
    [17]X. Z. Li, F. B. Li, C.L. Yang, W. K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol. A 141 (2001) 209-217.
    [18]L. Q. Jing, F. L. Yuan, H. G. Hou, B. F. Xin, W. M. Cai, H. G. Fu, Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles, Sci. Chin. Ser. B 48 (2005) 25-30.
    [19]W. F. Zhang, M. S. Zhang, Z. Yin, Q. Chen, Photoluminescence in anatase titanium dioxide nanocrystals, Appl. Phys. B 70 (2000) 261-265.
    [20]L. Q. Jing, X. J. Sun, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu, The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J. Phys. Chem. Solids 64(2003)615-623.
    [21]L.Q.Jing,Y. C. Qu, B.Q.Wang, S.D.Li, B.J.Jiang, L. B. Yang, W. Fu, H. G. Fu, J. Z. Sun, Review of photoluminescence performance of nano-sized semiconductor materials and itsrelationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells 90 (2006) 1773-1787
    [22]C. Landes, C. Burda, M. Braun and M. A. El-sayed, Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor:n-butylamin, J. Phys.Chem. B 105 (2001) 2981-2986.
    [23]I. S. Liu, H. H. Lo, C. T. Chien, Y. Y. Lin, C. W. Chen, Y. F. Chen, W. F. Su, S. C. Liou, Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands, J. Mater. Chem 18 (2008) 675-682.
    [24 S. F. Wuister, C. D. M. Doneg and A. Meijerink, Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots, J. Phys. Chem. B 108 (2004) 17393-17397.
    [1]X. G. Wen, Y. T. Xie, W. C. Mak, K. Y. Cheung, X. Y. Li, R. Renneberg, S. H. Yang, Dendritic nanostructures of silver:facile synthesis, structural characterizations, and sensing applications, Langmuir 22 (2006) 4836-4842.
    [2]M. H. Rashid, T. K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C 111 (2007) 16750-16760.
    [3]Y. C. Han, S. H. Liu, M. Han, J. C. Bao, Z. H. Dai, Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route, Cryst. Growth Des 9 (2009) 3941-3947.
    [4]M. A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res 34 (2001) 257-264.
    [5]T. N. Huan, T. Ganesh K. S. Kim, S. Kim, S. H. Han, H. Chung, A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing, Biosens. Bioelectron 27 (2011) 183-186.
    [6]H. G. Liao, Y. X. Jiang, Z. Y. Zhou, S. P. Chen, S. G. Sun, Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angew. Chem. Inter. Edit 120 (2008) 9100-9103.
    [7]L. Wang, Y. Yamauchi, Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst, Chem. Mater 21 (2009) 3562-3569.
    [8]Z. H. Lin, M. H. Lin, H. T. Chang, Facile synthesis of catalytically active platinum nanosponges, nanonetworks and nanodendrites. Chem. Eur. J 15 (2009) 4656-4662.
    [9]B. Wiley, Y. Sun, Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Ace. Chem. Res 40 (2007) 1067-1076.
    [10]S. M. Prokes, S. Wang, Medical materials for the next millennium, MRS Bull 24 (1999) 13-19.
    [11]B. Wiley, Z. Wang, J. Wei, Y. Yin, D. Cobden, Y. Xia, Synthesis and electrical characterization of silver nanobeams, Nano Lett 6 (2006) 2273-2278.
    [12]K. L. Kelly, E. Coronado, L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles:□ the Influence of size, shape, and dielectric environment, J. Phys. Chem. B 107 (2003) 668-677.
    [13]G. C. Schatz, Theoretical studies of surface enhanced Raman scattering, Ace. Chem. Res 17 (1984)370-376.
    [14]X. Q. Wang, H. Itoh, K. Naka, Y. Chujo, Tetrathiafulvalene-assisted formation of silver dendritic nanostructures in acetonitrile, Langmuir 19 (2003) 6242-6246.
    [15]X. Wang, X. H. Liu, X. Wang, Self-assembled synthesis of Ag nanodendrites and their applications to SERS, J. Mol. Struct 997 (2011) 64-69.
    [16]W. X. Zhang, Z. X. Cheng, Z. H. Yang, An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing, Phys. Chem. Chem. Phys 11 (2009) 6263-6268.
    [17]W. X. Zhang, L. L. Chen, Z. H. Yang, J. Peng, An optical humidity sensor based on Li3PO4 hollow nanospheres, Sens. Actuators B 155 (2011) 226-234.
    [18]W. X. Zhang, C. Feng, Z. H. Yang, An inward replacement/etching route to controllable fabrication of zinc sulfide nanotube arrays for humidity sensing, Sens. Actuators. B 165 (2012) 62-67.
    [19]T. A. Written, L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.47 (1981) 1400-1403.
    [20]O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, A. O. Pinchuk, Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica, Phys. Rev. B 79 (2009) 235438-235415.
    [21]B. Lim, Y. N. Xia, Metal nanocrystals with highly branched morphologies, Angew. Chem. Int. Ed 50 (2011)76-85.
    [22]W. Jin, G. Stewarr, B. Culshaw, Source noise limitation in fiber-optic methane sensors, Appl Optics 34 (1995) 2345-2349.
    [23]J. Dian, T. Chvojka, V. Vrkoslav, I. Jelinek, Photoluminescence quenching of porous silicon in gas and liquid phases-the role of dielectric quenching and capillary condensation effects, Phys. Stat. Sol. (c) 2 (2005) 3481-3485.
    [24]J. Dian, T. Holec, I. Jelinek, J. JindrIch, J. Valenta, I. Pelant, Time evolution of photoluminescence response from porous silicon in hydrocarbon Gas Sensing, Phys. stat. sol. (a) 82 (2000) 485-488.
    [25]J. Kunzelman, B. R. Crenshaw, C. Weder, Self-assembly of chromogenic dyes-a new mechanism for humidity sensors, J. Mater. Chem 17(2007) 2989-2991.
    [26]Z. Wang, A. R. McWilliams, C. E. B Evans, X. Lu, S. Chung, M. A. Winnik, I. Manner, Covalent attachment of Ru(II) phenanthroline complexes to polythionylphosphazenes:The development and Evaluation of single-component polymeric oxygen sensors, Adv. Funct. Mater 12 (2002)415-419.
    [27]B. H. King, A. Gramada, J. R. Link, M. J. Sailor, Internally referenced ammonia sensor based on an electrochemically prepared porous SiO2 photonic crystal, Adv. Mater.19 (2007) 4044-4048.
    [28]Y. Zhang, J. P. Li, G. M. An, X. L. He, Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties, Sens. Actuators. B 144 (2010) 43-48.
    [29]P. Lv, Z. A. Tang, J. Yu, F. T. Zhang, G. F. Wei, Z. X. Huang, Y. Hu, Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection, Sens. Actuators. B 132 (2008) 74-80.
    [30]T. Chen, Q. J. Liu, Z. L. Zhou, Y. D. Wang, The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity, Sens. Actuators. B 131 (2008) 301-305.
    [31]S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetten, Gold nanoelectrodes of varied size:transition to molecule-like charging, Science 280 (1998) 2098-2101.
    [32]P. Apell, R. Monreal, S. Lundqvist, Photoluminescence of noble metals, Phys. Scr.38 (1988) 174-179.
    [33]A. P. Zhang, J. Z. Zhang, Y. Fang, Photoluminescence from colloidal silver nanoparticles, J. Lumin 128 (2008) 1635-1640.
    [34]M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, The'lightning'gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett 317 (2000)517-523.
    [35]O. A. Yeshchenko, I. M. Dmitruk, A. M. Dmytruk, A. A. Alexeenko, Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix, Mater. Sci. Eng. B 137 (2007) 247-254.
    [36]Q. Darugar, W. Qian, M. A. El-Sayed, M. P. Pileni, Size dependent electronic energy relaxation and enhanced fluorescence of copper nanoparticles, J. Phys. Chem. B 110 (2006) 143-149.
    [37]D. Basak, S. Karan, B. Mallik, Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method, Chem. Phys. Lett 420(2006)115-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700