钛基光催化材料的合成、改性及其光解水制氢催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是为人类提供能量的物质或物质运动,是人类活动的基础及人类社会发展的物质前提。与传统化石能源(如煤、石油)燃烧后造成环境污染相比,氢能是一种清洁能源,氢气可以从水中获得,完全燃烧后的产物是水,不会对环境造成任何污染,是世界上最干净的能源。半导体光催化是目前最理想的光解水制氢途径,而开发高效的光催化材料是半导体光催化的关键。传统TiO_2光催化剂和钙钛矿型光催化剂是目前的研究热点。
     本文以钙钛矿型光催化剂Sr_3Ti_2O_7和传统光催化剂TiO_2作为研究对象。具体内容如下:
     (1)使用聚合合成法(Polymerized Complex Method,PCM)制备组分化学计量比可控的多金属氧化物Sr_3Ti_2O_7作为光催化剂,进而负载不同质量比的Cu离子,制成ωCu/Sr_3Ti_2O_7催化剂(ω为质量百分比),以超纯水和甲醇牺牲剂体系的光催化分解水反应为探针,通过检测氢气生成速率来评价催化剂的光催化性能,并借助光电子能谱(XPS)、X射线衍射(XRD)分析、紫外-可见漫反射光谱(UV-Vis DRS)等手段对催化剂进行了表征。实验结果表明,Cu离子在催化剂中以多价态存在,Cu~+和吸附氧有利于光生电子的转移。ωCu/Sr_3Ti_2O_7催化剂较之纯Sr_3Ti_2O_7催化剂活性大大提高,采用气相色谱对产氢速率进行检测,发现Cu离子最佳负载量为1.5%时,产氢速率可稳定在550-600μmol·h~(-1)。H_2预还原后的1.5%Cu/Sr_3Ti_2O_7催化剂产氢速率最高可达1140.8μmol·h~(-1),约为已报道的NiO/Sr_3Ti_2O_7催化剂产氢速率164μmol·h~(-1)的7倍。
     本实验创新之处是:首次将具有多价态的过渡金属Cu(Cu~+、Cu~(2+))离子负载在钙钛矿型催化剂上,找到最佳Cu离子负载量,大大提高了光催化剂性能,并运用了多价态Cu离子负载能起到协同分离迁移载流子解释了这一现象,同时给出了反应式,并通过XPS测试Cu~+和吸附氧的含量证明了反应式的合理性。另外,选用同主族元素Ag离子负载在Sr_3Ti_2O_7上,考察Cu、Ag离子负载后的催化剂活性,发现1.5%Cu/Sr_3Ti_2O_7光催化分解水的最大产氢速率是1.5%Ag/Sr_3Ti_2O_7最大产氢速率的35.5倍。
     (2)使用溶胶-凝胶法,非离子型表面活性剂EO_(20)PO_(70)EO_(20)(P123)为模板剂、钛酸丁脂为钛源、稀土金属氧化物La_2O_3为促进剂,用温和的方式去除模板剂,即溶剂洗脱模板剂的方式,在低温下合成介孔锐钛矿相TiO_2。在钛酸丁脂量确定的前提下,改变模板剂和促进剂的量,能控制孔结构的有序性,改变催化剂的比表面积大小。XRD,BET,IR和HRTEM等表征表明,La_2O_3的掺杂量对TiO_2锐钛矿相的形成具有明显影响,当La_2O_3掺杂量为0.1%(摩尔分数)时,合成的TiO_2锐钛矿相晶型最好,且为介孔结构,孔径大小均一,比表面积达到367.7 m~2·g~(-1)。
     本实验创新之处是在制备介孔TiO_2的过程中引入稀土元素La,掺杂La_2O_3后,TiO_2的骨架强度增大,结构稳定性得到提高,同时,适量掺杂能促进锐钛矿相的形成,尤其是溶剂洗脱模板剂的同时,得到明显的锐钛矿晶型。研究La_2O_3对介孔TiO_2的结构、晶型、催化性能的影响。
     两组实验均确定了改性催化剂最适宜的过渡金属Cu离子或稀土金属氧化物La_2O_3的添加量。
Energy sources are materials or movements providing energy for human.They are the foundation for human activity and development of human society.Compared with traditional fossil fuels,such as coal and oil,bring destruction on the environment; Hydrogen is an alternative energy source with high efficiency and pollution free. Hydrogen can be produced from clean and renewable energy sources,and thus its life cycle is clean and renewable.The photocatalytic water-splitting into hydrogen using semiconductor is a potentially clean and renewable method which is of both theoretical and practical significance.Searching for highly reactive and functional photocatalyst is the key.TiO_2 as a traditional photocatalyst and another photocatalyst with perovskite-layered structure have drawn more and more attention.
     The paper reports synthesis and modification of Sr_3Ti_2O_7 and TiO_2 semiconductor.The detailed contents are as follows:
     (1) Sr_3Ti_2O_7 photocatalyst with perovskite-layered structure was synthesized by polymerized complex method(PCM).Cu ion as an effective dopant was loaded onto Sr_3Ti_2O_7 catalyst,ωCu/Sr_3Ti_2O_7 catalyst was applied in the mixture of water and methanol,methanol was used as a sacrificial agent under ultra-violet irradiation,and the catalyst was characterized by XPS,XRD,and UV-Vis DRS.The results showed that Cu ion existed in several kinds of valence and the photocatalytic activity of Cu/ Sr_3Ti_2O_7 was superior to that of pure Sr_3Ti_2O_7.Cu~+ and adsorption oxygen can accelerate the interfacial electron transfer.When the amount of Cu ion was 1.5%(w), the best catalytic effect was obtained and the stable average hydrogen evolution rate was about 550-600μmol·h~(-1).TheωCu/Sr_3Ti_2O_7 after reduction attained the highest hydrogen evolution rate that was close to 1140.8μmol·h~(-1).The value was seven times of NiO/Sr_3Ti_2O_7 reported before.
     The paper reported that synthesis method of Sr_3Ti_2O_7 with perovskite-layered structure loaded with transition metal ion(Cu,Ag ion) with several valences.The optimal loading of Cu ion could enhance the photocatalytic activity greatly and that was explained by the mechanism that of loading Cu ion like such several valences can help semiconductor transferring charge and reaction.The content of Cu~+ and adsorption oxygen in photocatalyst tested by XPS characterization could testify the explanation.In addition,loading of the same main group Ag ion has been investigated. At the optimal loading of Cu ion,hydrogen production rate was enhanced as much as 35.5 times higher than loading of Ag ion.
     (2) Mesoporous TiO_2 nanocrystals with anatase phase and high specific surface area was synthesized by sol-gel process using nonionic surfactant EO_(20)PO_(70)EO_(20) as a structure-directing agent,C_(16)H_(36)Ti as Ti precursor,La_2O_3 as catalyst support and ethanol as an extraction agent.Then removed template in moderate condition that was washing by reagent.The results indicated that the amount of doped La_2O_3 greatly effected on the formation of TiO_2 with anatase phase,and the optimal content of doped La_2O_3 was 0.1%(mole fraction).The characterizations of XRD,BET,IR and HRTEM showed that an ordered mesostructure of TiO_2 with narrow pore size distribution and large surface area(~367.7 m~2·g~(-1)) was obtained under the synthesis conditions.
     In the paper,Mesoporous TiO_2 doped with rare earth was synthesized.The intensity of TiO_2 inorganic framework and the stability of the mesoporous structure were stronger than non-La_2O_3 doped.When the template was washed by boiling ethanol,anatase phase was formed.It indicated that doping La_2O_3 could accelerate the formation of anatase phase.Study on rare earth how to affect structure,crystal and photocatalytic activity.
     Both of two experiments have indicated the optimal loading of Cu or doping of La_2O_3 clearly.
引文
[1]毛宗强.氢能-21世纪的绿色能源.北京:化学工业出版社,2005.
    [2]Fujishima A.,Honda K..Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,37:238-238.
    [3]Ou Y.,Lin J.D.,Fang S.M.,et al.MWNT-TiO_2:Ni composite catalyst:A new class of catalyst for photocatalytic H_2 evolution from water under visible light illumination[J].Chemical Physics Letters,2006,429:199-203.
    [4]郭新斌,乔庆东.太阳能光解水制氢催化剂研究进展[J].化工进展,2006,25(7):729-764.
    [5]Domen K.,Kondo J.N.,Hara M.,et al.Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts[J].Bulletin of the Chemical Society of Japan,2000,73(6):1307-1331.
    [6]Kudo A..Development of photocatalyst materials for water splitting with the aim at photon energy conversion[J].Journal of the Ceramic Society of Japan,2001,109(6):S81-S88.
    [7]Kudo A.,Kato H..Photocatalytic decomposition of water into H_2 and O_2 over novel photocatalyst K_3Ta_3Si 2O_(13) with pillared structure consisting of three TaO_6 chains[J].Chemistry Letters,1997,9:867-868.
    [8]Kudo A.,Kato H.,Nakagawa S..Water splitting into H_2 and O_2 on new Sr_2M_2O_7(M=Nb and Ta) photocatalysts with layered perovskite structures:Factors affecting the photocatalytic activity [J].Journal of Physical Chemistry B,2000,104(3):571-575.
    [9]Kudo A.,Okutomi H.,Kato H..Photocatalytic water splitting into H_2 and O_2 over K_2LnTa_5O_(15)powder[J].Chemistry Letters,2000,10:1212-1213.
    [10]Kudo A..Photocatalyst materials for water splitting.Catalysis Surveys from Asia,2003,7(1):31-38.
    [11]Kato H.,Kudo A..Water splitting into H_2 and O_2 on alkali tantalate photocatalysts ATaO_3(A=Li,Na,and K)[J].Journal of Physical Chemistry B,2001,105(19):4285-4292.
    [12]田蒙奎,上官文峰,欧阳自远等.光解水制氢半导体光催化材料的研究进展[J].功能材料,2005,10(36):1489-1500.
    [13]Kakihana M.,Yoshimura M..Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method[J].Bulletin of the Chemical Society of Japan,1999,72(7):1427-1443.
    [14]Linsebigler A.L.,Lu G.Q.,John T.,et al.Photocatalysis on TiO_n surfaces:principles,mechanisms,and selected results[J].Chemical Reviews,1995,95(3):735-758.
    [15]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [16]王振阳,何洪,戴洪兴等.稀土掺杂TiO_2光催化的研究进展[J].中国稀土学报,24(z2):94-99.
    [17]Kapoor M.P.,Ichihasii Y.,Kuraoka K.,et al.Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide[J].Journal of Molecular Catalysis A:Chemical,2003,198:303-308.
    [18]Alexander V.V.,Evgueni N.S.,Jin Z.S..Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,125:113-117.
    [19]Kang M.G.,Han H.E.,Kim K.J..Enhanced photodecomposition of chlorophenol in aqueous solution by deposition of CdS on TiO_2[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,125:119-125.
    [20]Vogel R.,Hoyer P.,Weller H..Quantum-sized PbS,CdS,Ag_2S,Sb_2S_3,and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J].Journal of Physical Chemistry,1994,98(12):3183-3188.
    [21]Asahi R.,Morikawa T.,Ohwaki T.,et al.Photocatalysts sensitive to visible light-Response [J].Science,2002,295(5555):627-627.
    [22]Karakitsou K.E.,Verykios X.E..Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage[J].Journal of Physical Chemistry,1993,97:1184-1189.
    [23]Litter M.I..Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems[J].Applied Catalysis B:Environmental,1999,23:89-114.
    [24]Hoffmann M.R.,Martin S.T.,Choi W.,et al.Environmental application of semiconductor photocatalysis[J].Chemical Reviews,1995,95:69-96.
    [25]IUPAC manual of symbols terminology[J].Pure and Applied Chemistry,1972,31:578-638.
    [26]Krege C.T.,Lenonowicz M.E.,Roth W.J.,et al.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(6397):710-712.
    [27]Beck J.S.,Vartuli J.C.,Roth W.J.,et al.A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J].Journal of the American Chemical Society,1992,114(27):10834-10843.
    [28]Kresge C.T.,Leonowicz M.E.,Roth W.J.,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712.
    [29]He X.,Antonelli D..Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J].Angewandte Chemic Internation Edition,2002,41(2):214-229.
    [30]SolerIllia G.J.D.,Sanchez C.,Lebeau B.,et al.Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J].Chemical Reviews,2002,102(11):4093-4138.
    [31]Barnard K.R.,Foger K.,Turney T.W.,et al.Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors[J].Journal of Catalysis,1990,125(2):265-275.
    [32]李晓娥,祖庸.溶胶-凝胶法制备超细二氧化钛[J].化工新型材料,1997,10:28-29.
    [33]Monnier A.,Schuth F.,Huo Q.S.,et al.Cooperative formation of inorganic-organic interfaces in the synthesus of silicate mesostructures[J].Science,1993,261:1299-1303.
    [34]Huo Q.S.,Margolese D.I.,Ciesla U.,et al.Generalized synthesis of periodic surfactant inorganic composite materials[J].Nature,1994,368:317-321.
    [35]Huo Q.S.,Margolese D.I.,Ciesla U.,et al.Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J].Chemical Material,1994,6:1176-1191.
    [36]Inagaki S.,Fukushima Y.,Kuroda K..Synthesis of highly ordered mesoporous materials from a layered polysilicate[J].Journal of the Chemical Society,Chemical Communications,1993:680-682.
    [37]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附,2003,19(4):374-384.
    [38]高西汉.钙钛矿结构[J].压电与声光,1994,16(4):44-48.
    [39]Goldschmidt V.M..Skrifer Norske Videnskaps-Akad.Oslo,I.Mat.-Nat.KI.,1926,8
    [40]Li Z.R.,Xue Q.,Dang H.S.,et al.Perovskite phase stabilization and dielectric properties of Pb(Zn_(1/3)Ta_(2/3))O_3-BaTiO_3 ceramics[J].Materials Letters,2006,60:1603-1606.
    [41]Shannon R.D..Synthesis of some new perovskites containing indium and thallium[J].Inorganic Chemistry,1967,6:1474-1478.
    [42]Zhou Q.D.,Kennedy B.J..High-temperature powder synchrotron diffraction studies of synthetic cryolite Na_3AlF_6[J].Journal of Solid State Chemistry,2004,177:654-659.
    [43]Gonzalez P.R.,Furetta C.,Zaragoza E.C..The thermoluminescent(TL) kinetics parameters of the perovskite-like KMgF_3 activated by lutetium impurities[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,243:349-353.
    [44]Demetriou D.Z.,Catlow C.R.A.,Chadwick A.V.,et al.The anion disorder in the perovskite fluoride KCaF_3[J].Solid State Ionics,2005,176:1571-1575.
    [45]Chi L.S.,Swainson I.,Cranswick L.,et al.The ordered phase of methylammonium lead chloride CH_3Nd_3PbCl_3[J].Journal of Solid State Chemistry,2005,178:1376-1385.
    [46]Pechini M.P..Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,US Patent 3.330.697,1967.
    [47]Kakihana M.,Okubo T.,Arima M.,et al.Polymerized coplex route to the synthesis of pure SrYiO_3 at reduced temperatures:Implication for formation of Sr-Ti heterometallic citric acid complex[J].Journal of Sol-Gel Science and Technology,1998,12(2):95-109.
    [48]Yamamoto S.,Kakihana M.,Kato S..A polymer complex solution route to the lowtemperature synthesis of tetragonal Zr_(0.88)Ce_(0.12)O_2 with a reduced amount of organic substance[J].Journal of alloys and compounds,2000,297(1-2):81-86.
    [49]Jeong H.,Kim T.,Kim D.,et al.Hydrogen production by the photocatalytic overall water splitting on NiO/Sr_3Ti_2O_7:Effect of preparation method[J].International Journal of Hydrogen Energy,2006,31(9):1142-1146.
    [50]Ni M.,Leung M.K.H.,Leung D.Y.C.,et al.A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J].Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [51]Zalas M.,Laniecki M..Photocatalytic hydrogen generation over lanthanides-doped titania[J].Solar Energy Materials and Solar Cells,2005,89(2-3):287-296.
    [52]Zou Z.G.,Arakawa H..Direct water splitting into H_2 and O_2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts[J].Journal of Photochemistry and Photobiology A:Chemistry,2003,158(2-3):145-162.
    [53]Kato H.,Kobayashi H.,Kudo A..Role of Ag~+ in the Band Structures and Photocatalysis Properties of AgMO_3(M:Ta and Nb) with the Perovskite Structure[J].Journal of Physical Chemistry B,2002,106(48):12441-12447.
    [54]Kato H.,Kudo A..New tantalite photocatalysis for water decomposition into H_2 and O_2[J].Chemical Physics Letters,1998,295(5-6):487-492.
    [55]Kato H.,Kudo A..Water Splitting into H_2 and O_2 on Alkali Tantalate Photocatalysts ATaO_3(A=Li,Na,and K)[J].Journal of Physical Chemistry B,2001,105(19):4285-4292.
    [56]Kato H.,Asakura K.,Kudo A..Highly efficient water splitting into H_2 and O_2 over Lanthanum-doped NaTaO_3 photocatalysts with high crystallinity and surface nanostructure[J].Journal of American Chemistry Society,2003,125(10):3082-3089.
    [57]Kato H.,Kudo A..Visible-light-response and photocatalytic activities of TiO_2 and SrTiO_3photocatalysts codoped with antimony and chromium[J].Journal of Physical Chemistry B,2002,106:5029-5034.
    [58]Kudo A.,Tanaka A.,Domen K.,et al.Photocatalytic decomposition of water over NiO-K_4Nb_6O_(17) catalyst[J].Journal of Catalysis,1988,111(1):67-76.
    [59]Kudo A.,Sayama K.,Tanaka A.,et al.NicHe-loaded K_4Nb_6O_(17) photocatalyst in the decomposition of H_2O into H_2 and O_2:structure and reaction mechanism[J].Journal of Catalysis,1989,120(2):337-352.
    [60]Ikeda S.,Fubuki M.,Takahara Y.K.,et al.Photocatalytic activity of hydrothermally synthesized tantalite pyrochlores for overall water splitting[J].Applied Catalysis A:General,2006,300(2):186-190.
    [61]Hwang D.W.,Kim H.G.,Jang J.S.,et al.Photocatalytic decomposition of water-methanol solution over metal-doped layered perovskites under visible light irradiation[J].Catalysis Today, 2004,93-95:845-850.
    [62]Takata T.,Shinohara K.,Tanaka A.,et al.A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,106(1-3):45-49.
    [63]Kudo A.,Sekizawa M..Photocatalysis H_2 evolution under visible light irradiation on Zn_(1-x)Cu_xS solid solution[J].Catalysis Letters,1999,58(4):241-243.
    [64]Reber J.F.,Rusek M..Photochemical hydrogen production with platinized suspensions of cadmium-sulfide and cadmium zinc-sulfide modified by silver sulfide[J].Journal of Physical Chemistry,1986,90(5):824-834.
    [65]Tanaka H.,Misono M..Advances in designing perovskite catalysts[J].Current Opinion in Solid State and Materials Science,2001,5(5):381-387.
    [66]Zou Z.G.,Ye J.H.,Sayama K.,et al.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,414(6864):625-627.
    [1]Kakihana M.,Yoshimura M..Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method[J].Bulletin of the Chemical Society of Japan,1999,72:1427-1443.
    [2]Milanova M.M.,Kakihana M.,Arima M.,et al.A simple solution route to the synthesis of pure La_2Ti_2O_7 and Nd_2Ti_2O_7 at 700~800℃ by polymerized complex method[J].Journal of Alloys and Compounds,1996,242:6-10.
    [3]Cho W.S.,Hamada E..Planar defects and luminescence of BaTiO_3 particles synthesized by a polymerized complex method[J].Journal of Alloys and Compounds,1998,268:78-82.
    [4]Ito M.,Nagira T.,Furumoto D.,et al.Synthesis of Na_xCo_2O_4 thermoelectric oxides by the polymerized complex method[J].Scripta Materialia,2003,48:403-408.
    [5]Ito M.,Nagira T.,Hara S..Thermoelectric properties of NaxCo_2O_4 with rare-earth metals doping prepared by polymerized complex method[J].Journal of Alloys and Compounds,2006,408-412:1217-1221.
    [6]Ryu J.H.,Lim C.S.,Auh K.H..Synthesis of ZnWO_4 nanocrystalline powders by the polymerized complex method[J].Materials Letters,2003,57:1550-1554.
    [7]Popa M.,Frantti J.,Kakihana M..Lanthanum ferrite LaFeO_(3+d) nanopowders obtained by the polymerizable complex method[J].Solid State Ionics,2002,154-155:437-445.
    [8]He C.H.,Yang O.B..Hydrogen evolution by photocatalytic decomposition of water under UV irradiation over K[Bi_3PbTi_5O_(16)]perovskite:effect of cerium species[J].Industrial and Engineering Chemistry Research,2003,42:419-425.
    [9]邓积光,王国志,张玉娟等.钙钛矿型氧化物的制备与光催化性能研究进展[J].中国稀土学报,2006,24:80-93.
    [10]Ikeda S.,Hara M.,Kondo J.N.,et al.Preparation of a high active photocatalyst,K_2La_2Ti_3O_(10),by polymerized complex method and its photocatalytic activity of water splitting[J].Journal of Materials Research,1998,13(4):852-855.
    [11]Sarma D.D.,Chainani A..Electronic structure of pervoskite oxides LaMO_3(M=Ti-Ni),from high-energy electron spectroscopic investigations[J].Journal of Solid State Chemistry,1994,111:208-216.
    [12]Pari G.,Mathi J.S.,Subrumoniam G.,et al.Density-functional description of the electronic structure of LaMO_3(M=Sc,Ti,V,Cr,Mn,Fe,Co,Ni)[J].Physical Review B,1995,51(23):16575-16581.
    [13]牛新书,曹志民.钙钛矿型复合氧化物光催化研究进展[J].化学研究与应用,2006,18(7):770-775.
    [14]白树林,傅希贤,桑丽霞等.钙钛矿(ABO_3)型复合氧化物的光催化活性变化趋势与分析[J].高等学校化学学报,2001,22(4):663-665.
    [15]Ni M.,Leung M.K.H.,Leung D.Y.C.,et al.A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J].Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [16]靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化,2004,18(4):310-320.
    [17]Jeong H.,Kim T.,Kim D.,et al.Hydrogen production by the photocatalytic overall water splitting on NiO/Sr_3Ti_2O_7:effect of preparation method[J].International Journal of Hydrogen Energy,2006,31(9):1142-1146.
    [18]Wu S.X.,Ma Z.,Qin Y.N.,et al.XPS study of copper doping TiO_2 photocatalyst[J].Acta.Phys.-Chim.Sin.,2003,19(10):967-969.
    [19]方舒玫,欧延,林敬东等.Cu/Sr_3Ti_2O_7的制备及其光催化分解水制氢的活性研究[J].物理化学学报,2007,23(4):601-604.
    [20]Linsebigler A.L.,Lu G.Q.,John T.,et al.Photocatalysis on TiO_n surfaces:principles,mechanisms,and selected results[J].Chemical Reviews,1995,95(3):735-758.
    [21]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:40-41.
    [1]范晓星,于涛,邹志刚.介孔TiO_2的材料合成及其在光催化领域的应用[J].功能材料,2006,37(1):6-9.
    [2]杨万秀.铌掺杂二氧化钛介孔分子筛的合成及光催化性能研究[D].安徽理工大学,2005,4.
    [3]郑金玉,丘坤元,危岩.有机小分子模板法合成二氧化钛中孔材料[J].高等学校化学学报,2000,21(4):647-649.
    [4]On D.T..A simple route for the synthesis of mesostructure lamellar and hexagonal phosphorus-free titania(TiO_2)[J].Langmuir,1999,15(25):8561-8564.
    [5]Saul C.,Jamal E.H.,Aurelio B.,et al.Enhanced surface area in thermally stable pure mesoporous TiO_2[J].Solid State Sciences,2000,2:513-518.
    [6]Antonelli M.,Ying J.Y..Synthesis of hexagonally packed mesoporous TiO_2 by a modified sol-gel method[J].Angewandte Chemie International Edition,1995,34(18):2014-2017.
    [7]Kresge C.T.,Leonowicz M.E.,Roth W.J.,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-710.
    [8]Huo Q.S.,Margolese D.I.,Ciesla U.,et al.Generalized synthesis of periodic surfactant inorganic composite materials[J].Nature,1994,368:317-321.
    [9]宋春敏,阎子峰.介孔分子筛研究新进展[J].化学研究与应用,2004,16(5):601-606.
    [10]乐英红,马臻,华伟明等.二氧化钛介孔分子筛的合成和表征[J].化学学报,2000,58(7):777-780.
    [11]Calleja G.,Serrano D.P.,Sanz R.,et al.Study on the synthesis of high-surface-area mesoporous TiO_2in the presence of nonionic surfactants[J].Industrial and Engineering Chemistry Research,2004,43:2485-2492.
    [12]Wang Y.D.,Ma C.L.,Sun X.D.,et al.Neutral templating route to mesoporous structured TiO_2[J].Materials Letters,2002,54:359-363.
    [13]Antonelli M..Synthesis of phosphourus-free mesoporous yitania via templating with amine surfactants[J].Microporous and Mesoporous Materials,1999,30(1):315-322.
    [14]张雪红,罗来涛.室温水解法制备介孔二氧化钛的表征及应用[J].感光科学与光化学,2005,23(1):14-20.
    [15]Yoshitake H.,Sugihara T.,Tatsumi T..Preparation of wormhole-like mesoporous TiO_2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition[J].Chemistry of Materials,2002,14(3):1023-1029.
    [16]张俊平,王艳,戚慧心.铕、铈、钇离子对TiO_2催化剂的改性作用[J].中国稀土学报,2002,20(5):478-480.
    [17]Calleja G.,Serrano D.P.,Sanz R.,et al.Study on the synthesis of high-surface-area mesoporous TiO_2in the presence of nonionic surfactants[J].Industrial and Engineering Chemistry Research,2004,43(10):2485-2492.
    [18]井立强,张新,屈宜春等.掺杂镧的TiO_2纳米粒子的光致发光及其光催化性能[J].中国稀土学报,2004,22(6):746-750.
    [19]陈诵英,孙予罕,丁云杰等.吸附与催化[M].郑州:河南科学技术出版社,2001.
    [20]Yin J.B.,Zhao X.P..Preparation and electrorheological activity of mesoporous rare-earth-doped TiO_2[J].Chemistry of Materials,2002,14(11):4633-4640.
    [21]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:北京工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700