四苯基卟啉衍生物光诱导电子转移动力学及其敏化TiO_2可见光催化染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纺织染料工业的迅速发展,染料的品种和数量日益增加,印染废水已成为水系环境的重点污染源之一。亚甲基蓝作为印染废水中典型的有机污染物之一,是印染污水治理的重要对象。本论文针对这一严重的现实污染问题,选用最具有开发前途的环保型可见光光敏催化材料四苯基卟啉衍生物敏化纳米TiO_2作为降解亚甲基蓝的光催化剂,进行光催化降解的光电子转移动力学及催化氧化性能研究,为处理实际的印染废水提供理论基础及一种高效且经济可行的方法。
     本文合成并提纯得到了四苯基卟啉、四苯基金属(+2价)卟啉(锌、铜和镍)、四-对羧基苯基卟啉和四-对羧基苯基铜卟啉,以量子波包理论为基础的共振拉曼光谱技术研究卟啉激发态电子转移短时动力学,探明激发态分子最初几十飞秒以内的Franck-Condon区域的光诱导电子转移短时动力学,获得激发态电子转移的途径和通道;利用制备的卟啉化合物敏化TiO_2,制备可见光光敏催化剂,利用这些催化剂催化污水中的亚甲基蓝染料,获得了较多好的效果。
     (1)测得了四苯基卟啉在二氯甲烷溶液中的电子吸收光谱,结合TD-DFT计算和四轨道模型理论对电子吸收带进行了归属。研究结果表明,四苯基卟啉在二氯甲烷溶液中Franck-Condon区域的短时动力学具有多维性,主要沿着Cm-phenyl,苯环上C=C的对称伸缩振动、C_β=C_β伸缩振动、C_m=C_α对称及不对称伸缩振动,吡咯环呼吸振动,吡咯环变形振动,吡咯二分之一环振动以及吡咯四分之一环振动展开。对于共振拉曼光谱中非全对称模A2的出现,分析认为是由于各电子吸收带之间的振动耦合作用引起的,由此可以推断四苯基卟啉激发态的弛豫过程:基态分子光照受激后激发到激发态B_2,B_2与B_1发生振动耦合使得分子弛豫到B_1,弛豫时间很短,大概在几十飞秒左右,同样B_1带与Q_x带之间发生系间窜跃,B_1激发态向Qx态弛豫时间大约在100飞秒以内,然后又迅速地转变为三线态T的电子。
     (2)研究金属离子的引入对卟啉激发态的影响,共振拉曼光谱表明,四苯基锌卟啉、四苯基铜卟啉和四苯基镍卟啉Franck-Condon区域的短时动力学主要沿着苯环上C=C的对称伸缩振动、C_β=C_β伸缩振动、吡咯呼吸振动、变形振动和吡咯二分之一环振动展开。但与非金属卟啉相比,锌卟啉的共振拉曼光谱中没有发现非全对称模A_2的出现,是因为金属锌离子的引入不仅使得卟啉的对称性得到了提高,而且导致卟啉B带与Q带之间的能级差增大,激发态弛豫的时间增长到了1.5 ps;但在四苯基铜卟啉和四苯基镍卟啉的共振拉曼光谱中非全对称模A_2的出现,表明在激发态电子的跃迁过程中同样也出现了弛豫过程及单重态向三重态电子的转变过程。
     (3)测得了四-(对羧基苯基)卟啉和四-(对羧基苯基)铜卟啉在四氢呋喃溶液中激发波长为397.9nm、416nm和438.5nm共振拉曼光谱,并结合TD-DFT计算和四轨道模型理论对电子吸收带进行了归属。获得了共振拉曼光谱来研究金属离子的引入对卟啉激发态的影响,金属铜离子的引入不仅使得卟啉的对称性得到了提高,而且导致卟啉B带与Q带之间的能级差增大。在其共振拉曼光谱中出现了非全对称模A2,表明在激发态电子的跃迁过程中同样也出现了弛豫过程及单重态向三重态电子的转变过程。
     (4)合成了卟啉和金属卟啉敏化TiO_2光敏催化剂通过傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)和X射线光电子能谱(XPS)进行了表征;并利用其对水溶液中的亚甲基蓝光降解实验,分别对四苯基铜卟啉和四苯基镍卟啉,四-(对羧基苯基)卟啉和四-(对羧基苯基)铜卟啉的催化效果进行比较,发现配位金属对催化效果起重要作用。特别是对于铜离子的引入,导致铜离子参与了催化反应的氧化-还原反应。
     本论文从量子化学理论及光诱导电子转移动力学方面对卟啉以及金属卟啉敏化TiO_2光敏催化剂进行研究,获得了可见光光敏催化剂在光催化过程中的电子转移动力学机理以及催化降解水中亚甲基蓝的性能和机理,制成一种能够在可见光范围内得到响应的“有机-无机”复合光敏催化剂,通过这些催化剂对水溶液中亚甲基蓝(MB)的光降解效果比较分析,找出影响催化剂催化效果的因素,为开发研究能够真正应用在工业污水处理净化过程中的催化剂进行了有益的探索。
As the dye of the rapid developmem of the textile industry, dyes and the increasing number of varieties, printing aIld dyeing wastewater stream environment has become one of the key sources of po1lution. Methylene blue as dyeing wastewater in one of the typical organic pollutants, printing and dyeing is an important target of sewage treatment. This paper against the reality of this serious pollution problem, choose the most promising development of ervironment-friendly materials nano-photocatalytic TiO_2 as a degradation of methylene blue light catalyst, photocatalytic degradation of research, to deal with the actual printing and dyeing waste water to provide an efficient and economically feasible method. Research on relaxation dynamics of excited state of porphyrins contributes greatly to an understanding of the basic mechanism of photosynthesis. With the development and improvement of the theory and technique, scientists can explore the biological photosynthesis further than before, but the short-time dynamics during 0 to 50 fs in Franck-Condon region of the molecular excited state can not be still detected even by the most advanced femto-second ulfast time-resolved laser technique. Resonance Raman spectral techniques, based on Quantum wave packet theory , have a unique advantage on the research of short-time dynamics.
     In this paper, meso-Tetraphenylporphine、meso-Tetra(p-aminophenyl)porphine、meso-Tetra(p-hydroxyphenyl)porphine、M(II) meso-Tetraphenylporphine(M= Zn、Cu and Ni) have been synthesized and the short-time dynamics of photo-induced Charge-Transfer of them have been investigated by the Resonance Raman spectra in combination with DFT calculation. Main contributions of the present work are summarized as follows.
     (1) The absorption spectrum of Tetraphenylporphine (TPP) in dichloromethane solution was acquired and explained on the basis of Gouterman’s four orbital model and electronic orbital calculations。Resonance Raman spectra were acquired for TPP in dichloromethane solvent with 397.9 nm、416 nm、435.7 nm and 514 nm excitation wavelengths. The resonance Raman spectra indicate that the short-time photo dynamics of TPP have significant multidimensional character distributed over a wide variety of vibrational modes such Cm-ph stretch,phenyl C=C stretch、the Porphin ring C_β=C_βstretch、the Porphin ring Cm=Cαstretch, Porphin ring breath, pyrrole deformation modes, pyrrole half-ring stretching modes and pyrrole quarter-ring stretching modes, while the vibrational modes in wavenumber and in description for different resonance Raman spectra are very similar, the intensity patterns are very different, it can be explained that the major short-time photo dynamics in the Franck-Condon region of the B band occurs mostly along the nominal Cm-ph stretch and the nominal Porphin ring C_β=C_βstretch, while for the photo dynamics of the Qx band occurs mainly along the nominal Porphin ring Cβ=Cβand the nominal Cm-ph stretch. The appearance of A2 non-total symmetry vibrational modeν71 [ν(CmCα)as stretch]andν73、ν74 [pyrrole quarter-ring stretching modes] indicate that while most of the excited state structural dynamics are along the total symmetry vibrational reaction coordinates, it also moves along the non-total symmetry reaction coordinate significantly, which means the existence of the Franck-Condon region vibronic coupling between the By、Bx and Qy electronic states. Reference to experimental results and literature, we have deduced the relaxation dynamics of porphyrin. In our model of relaxation process, the two higher singlet states undergo internal conversion to Qx within 100 fs.
     (2) We have also conducted the study of Zn(II) meso-Tetraphenylporphine, Cu(II) meso-tetraphenyl porphyrin(CuTPP) and Ni(II) meso-tetraphenyl porphyrin(NiTPP) . Compared with meso-Tetraphenylporphine, we found that although the main vibration modes in the resonance Raman spectra did not changed, the reaction coordinates or displacements also occured with Cm-ph stretch、phenyl C=C stretch、the Porphin ring Cβ=Cβstretch、the Porphin ring Cm=Cαstretch、Porphin ring breath、pyrrole deformation modes and pyrrole half-ring stretching modes. With the introduction of metal ion, the metal porphyrin not only have a higher symmetry, which cause the vanish of A2 non-total symmetry vibrational modes, but also make the energy gap larger, which result in 1.5 ps of relaxation time.
     (3) The Resonance Raman spectrum of Cu meso-tetra(4-carboxyphenyl)porphyrin(CuTCPP) and meso-tetra(4-carboxyphenyl) porphyrin(TCPP) in tetrahydrofuran solution was acquired and explained on the basis of Gouterman’s four orbital model and electronic orbital calculations.The resonance Raman spectra indicate that the short-time photo dynamics of CuTCPP and TCPP also have significant multidimensional character with the reaction coordinates or displacements occurring with Cm-ph stretch、phenyl C=C stretch)、the Porphin ring Cβ=Cβstretch、the Porphin ring Cm=Cαstretch、Porphin ring breath、pyrrole deformation modes、pyrrole half-ring stretching modes and pyrrole quarter-ring stretching modes.With the introduction of metal ion, the metal porphyrin not only have a higher symmetry, which cause the vanish of A2 non-total symmetry vibrational modes, but also make the energy gap larger.
     (4) Porphyrin-TiO_2 was synthesized and characterized by FT-IR、SEM、AFM、XRD and XPS spectroscopy. The photocatalytic activity of TiO_2 samples which are impregnated with porphyrins and metalloporphyrins as sensitizers have been investigated by carrying out the photo-degradation of methylene blue as a proaction in aqueous suspension and under visible light. Find the coordination of metal on catalytic is the key factor.
     In this paper, meso-Tetraphenylporphine、meso-Tetra(p-aminophenyl)porphine、meso-Tetra(p-hydroxyphenyl)porphine、M(II) meso-Tetraphenylporphine(Zn、Cu and Ni) have been synthesized and the short-time dynamics of photo-induced Charge-Transfer of them have been investigated by the Resonance Raman spectra in combination with DFT calculation. The Porphyrin-TiO_2 catalyst shows high photocatalytic degradation activity of MB in aqueous solution under visible light irradiation. The H2TCPP and/or CuTCPP are chemisorbed on the surface of TiO_2 through the O=C-O-Ti chemical bond, The formed O=C-O-Ti bond between H2TCPP or CuTCPP and TiO_2 can act as the electron transfer channel, accelerating the photoexcited sensitizer electron injection to conduction band of TiO_2. The introduction of metal ion makes the metallic porphyrin has a higher molecular symmetry and make the energy gap between B and Q electronic states larger, which further increases the photocatalysis efficiency of TiO_2. The visible light photocatalysis mechanism of the dye-sensitized TiO_2 was further discussed. The experimental results confirmed that it was significantly beneficial to the photodegradation of MB solution in the presence of Porphyrin-TiO_2 under visible light, which could provide a potential approach for an energy saving application in wastewater treatment.
引文
[1]张健俐.采用二级组合处理并回用印染废水的应用研究[J].水处理技术, 2003, 29(2): l17-l18.
    [2] Sheng H L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds[J]. Wat. Res., 2000, 34(3): 763-772.
    [3] Rozzi A. Textile wastewater reuse in Northern Italy(Como) [J]. Wat. Sci. Tech., 1999, 39(5): 121-128.
    [4] Rozzi M A. Membrane treatment of secondary textile efluents for direct reuse[J]. Water. Sci. Techno1., 1999, 40(4-5): 409-416.
    [5] Bottino A. Membrane processes for textile wastewater treatment aimed at its reuse[C]. Proc. 8th World Filtration Congress, Symposium and Exhibition, Bnighton, UK, 2000.521-524.
    [6] Marcueei M.Treatment and reuse of textile efluents based on new uhrafiltration and other memb rane technologies[J]. Desalination. 2001, 138: 75-82.
    [7] Rozzi A. Membrane treatment of secondary textile efluents for direct reuse[J]. Wat. Sci. Teeh., 1999, 40(4-5): 409-416.
    [8] Jadwiga S L. Membrane filtration of textile dyehouse wastewater for technological water reuse[J]. Desalination, 1998, 119:1-10.
    [9]张万有,刘景明,吕洪滨.新型好氧生物膜过滤器的应用研究[J].工业水处理, 2002, 22(11): 28-30.
    [10]肖利,刘振鸿,陈季华.缺氧-好氧-压滤-富氧生物炭工艺处理印染废水[J].环境工程, 2002, 20(8): 33-34.
    [11]李勇.电解絮凝一生物炭滤池法处理印染废水[J].环境污染治理技术与设备, 2003, 4(2): 29-32.
    [12]穆瑞林,陈琦,彭宗磊.利用生物炭滤池对胶丝染色废水进行深度处理[J].给水排水, 2000, 26(3): 41-42.
    [13]龚铭祖.纺织工业废水治理[M].北京:中国环境科学出版社. 1990, 150-156.
    [14] Gianluea C. The treatment and reuse of wastewater in the textile industry by means of ozonation an d eleetroflocculation[J]. Wat Res., 2001, 35(2):567-572.
    [15] Fang S, Chang H M. Coagulation of textile secondary effluents Fenton reagent[J]. Wat. Sci. Tech., 1997, 36(12): 215-222.
    [16] Lin S H, Chen M L. Purification of textile wastewater effluents by a comb ined Fenton process and ion exchange[J]. Desalination, 1997, 109: 121-130.
    [17] Kim H. Pilot scale treatment of textile wastewater by comb ined process(fluidized bioflm process-chemical coagulation electrochemieal oxidation)[J]. Wat. Res., 2002, 36:3 979-3988.
    [18] Lin H, Chen M L. Purification of textile wastewater efluents by a comb ined Fenton process and exchange[J]. Desalination, 1997, 109: 121-130.
    [19]赵录庆. UV/Fenton试剂法处理含偶氮蓝染料模拟废水的研究[J].河南师范大学学报(自然科学版), 2002, (2): 17-20.
    [20]杨岳平.印染废水的UV-Fenton氧化处理研究[J].高校化学工程学报, 2001, 15(3): 242-247.
    [21]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报, 2O00,20(3):139-144.
    [22] Benoit Marquie F, Wilkenhoner U,Simon V.VOC Photo-degradation at the gas-solid interface of a TiO2 photocatalyst part I: 1-butanol and 1-butylamine[J].Photochemistry and Photobiology A:Chemistry,2000,132:225-232.
    [23]刘春,张安龙,文志贵.光催化氧化技术处理制浆造纸漂白废水[J].江苏造纸,2009,2:43-46.
    [24]孙广垠. TiO2光催化氧化法深度处理印染废水的研究[J].工业水处理,2009,29(8):25-27.
    [25]王星敏,陈胜福.印染废水的光催化氧化处理新进展[J].重庆工商大学学报:自然科学版,2004,21(3):229-232.
    [26] Sung Suh H M,Choi J R,Hah H J.Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J]. Journalof Photochemistry and Photobiology A:Chemistry,2004,163(1~2): 37-44.
    [27] Zhu J F, Zheng W . Characterization of FeTiO2 photo-catalysis synthesized by hydrothermal method and their photocatalytm reactivity for photodegradation of XRG dye diluted in water[J].Journal of Molecular Catalysis A: chemical, 2004, 216: 35-43.
    [28]李耀中.光催化降解三类难降解有机工业废水[J].中国给水排水, 2003, 19(1): 5-8.
    [29]刘纯新.光催化处理印染废水的中试研究[J].给水排水,2003,29(2):38-41.
    [30]谭湘萍.载银TiO2半导体催化剂对印染废水的光降解研究[J].环境污染与防治,1995,16(5):5-7.
    [31]蒋伟川.载银TiO2半导体催化剂对染料水溶液的研究[J].环境科学,1995,16(2):15-18.
    [32]陈桂娟,赵先治,崔鹏.超声场协同光催化氧化降解苯酚的研究[J].化学与生物工程,2008,25(2):22-25.
    [33] Rothemund P.A new porphyrin synthesis: The synthesis of porphin [J].J Am Chem Soc, 1936, 58: 625-627.
    [34]王杳乔,高爽,于连香,等.卟啉纳米材料的新法合成[J].高等学校化学学报, 1998, 19 (6), 854-857.
    [35] Spiro T G, Li X Y. Biological Application of Raman Spectroscopy, Vol.Ⅲ,New York:Wiley-Interscience,1988:Chaptert.
    [36] Yu N T, Spiro T G. Biological Application of Raman Spectroscopy, Vol.Ⅲ,New York:Wiley-Interscience,1988:Chapter.
    [37]陈东明,李晓原,尤乃亭.类金属卟啉化合物的共振拉曼光谱与分子振动[J].光散射学报:1998,10:151-153.
    [38]冯娟,张慧娟,向俊锋,等.锌卟啉的轴向配位对其激发态光物理性质的影响[J].中国科学:B辑,2003,33(1):8-13.
    [39] Song H E, Julie A C, Thomas P V, et al. Photophysics of Reduced Silicon Tetraphenylporphyrin[J], J Phys Chem B,2007,111 (9):2138-2142.
    [40] Tait C D, Dewey H, Martin G. Picosecond photolysis of axial ligands on cobalt(II) and cobalt(III) porphyrins[J].J Am Chem Soc,1984,106(22):6653-6659.
    [41] Steven E B, Ronald E H, et a1. Resonance Raman Spectroscopy of Triplet States of Free-Base Tetraphenylporphyrin and six of Its Isotopomers[J] J Phys Chem.1995,99, 3959-3964.
    [42] Motoko A S, Katsuhiro A ,Teizo K. Time-resolved resonance Raman spectra of octaethylporphinato copper(II) in the lowest excited triplet state[J]. Chemical Physics Letters,1996,257:492-498.
    [43] Seiji A,Tomoko Y, Iwao Y, Atsuhiro O. Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy[J]. Chemical Physics Letters,1999,309:177-182.
    [44] Groves J T,Nemo T E,Myers R. Hydroxylation and epoxidation catalyzed by iron-porphine complexes.Oxygen transfer from iodosylbenzen[J]. J.Am.Chem.Soe , 1979 ,V101(4):1032-1033
    [45] Lai T.S,Zhang R,Cheung K.K,et al. Aerobic enantioseleetive alkene epoxidation by a chiral trans-dioxo(D4-Porphyrinato)ruthenium(VI) complex[J]. Chem.Commun,1998,V15:1583-1584
    [46] Tsuchiya S. Novel Synthetic Method of Phenol from Benzene Catalysed by Perfluorinated Hemin[J]. Chem.Lett,1989,V18(2):263-265
    [47] Rosenthal J,Pistorio B.J,ChngL.L,et al. Aerobic Catalytic Photooxidation of Olefins by an Eleetron-Defieient Pacman Bisiron(Ш)μ-Oxo Porphyrin[J]. J. Org. Chem,2005,V70(5):1885-1888 [48」Rosenthal J,Luekett T.D,Hodgkiss J.M,et al,Photoeatalytic Oxidation of Hydrocarbons by a Bis-iron(Ш)-μ-Oxo Pacman Porphyrin Using O2 and Visible Light[J]. J. Am. Chem.Soc,2006,V128(20):6546-6547
    [49] ChanY.H,Schuekman A.E,Perez L.M,et al. Synthesis and Charaeterization of a Thiol-Tethered Tripyridyl Porphyrin on Au(111)[J]. J. Phys. Chem. C,2008,112 (15):6110-6118
    [50] Bearinger J. P,Stone G,Hiddessen A.L,et al. Phototocatalytic Lithography of Poly(propylene sulfide)Block CoPolylners: Toward High-Throughput Nanolithography for Biomolecular Arraying Applications[J]. Langmuir,2009,25(2):1238-1244
    [51] Wang Z.C,Li Z.Y,Medforth C.J,et al. Self-Assembly and Self-Metallization of Porphyrin Nanosheets[J]. J.Am.Chem.Soe,2007,129(9):2440-2441
    [52] Roehford J,Galoppini E. Zine(Ⅱ) Tetraarylporphyrins Anchored to TiO2,ZnO,and ZrO2 Nanoparticle Films through Rigid-Rod Linkers[J]. Langmuir,2008 (10):5366-5374
    [53] Kim W,Park J,Jo H,et al. Visible Light Photocatalysts Based on Homogeneous Heterogenized Tin Porphyrins[J]. J.Phys.Chem.C,2008,112(2):491-99
    [54] Huijse R A,Suijkerbuijk B.M,Robertus J. M, et al. Effieient Exeiton Transport in Layers of Self-Assembled Porphyrin Derivatives[J]. J.Am.Chem.Soe,2008,130 (8):2485-2492
    [55] Jang J H,Jeon K S,Oh S,et al. Synthesis of Sn-Porphyrin-Interealated Trititanate Nanofibers: Optoelectronic Properties and Photocatalytic Aetivities[J]. Chem.Mater,2007,19(8):1984-1991
    [56] Yamada Y,Nakamura T,Yano K. Optical Response of Mesoporous Synthetic Opals to the Adsorption of Chemieal Species[J]. Langmuir,2008,24(6):2779-2784
    [57] Ghosh S K , Patra R, Rath S P. Remarkably Bent , Ethane-Linked , Diiron(III)μ-Oxobisporphyrin: Synthesis,Structure,Conformational Switching,and Photocatalytic Oxidation[J]. Inorg.Chem,2008,47(22):10196-10198
    [58] Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode. Nature, 1972, 238:53-58.
    [59] Hiroshi Imahori, Shinya Hayashi, Hironobu Hayashi, Akane Oguro, Seunghun Eu, Tomokazu Umeyama and Yoshihiro Matano. Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells, J. Phys. Chem. C, 2009, 113 (42): 18406-18413
    [60] Tu W W, Dong Y T, Lei J P, and Ju H X. Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles, Anal. Chem., 2010, 82 (20): 8711-8716
    [61] Gerrit K. Boschloo and Albert Goossens. Electron Trapping in Porphyrin-Sensitized Porous Nanocrystalline TiO2 Electrodes, J. Phys. Chem., 1996, 100 (50): 19489-19494
    [62] Jack Jasieniak, Martin Johnston, and Eric R. Waclawik. Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell, J. Phys. Chem. B, 2004, 108 (34): 12962-12971
    [63] Seunghun Eu, Shinya Hayashi, Tomokazu Umeyama, Akane Oguro, Mitsuo Kawasaki, Naoki Kadota, Yoshihiro Matano, and Hiroshi Imahori. Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells, J. Phys. Chem. C, 2007, 111 (8): 3528-3537
    [64] Rob B. M. Koehorst, Gerrit K. Boschloo, Tom J. Savenije, Albert Goossens, and Tjeerd J. Schaafsma. Spectral Sensitization of TiO2 Substrates by Monolayers of Porphyrin Heterodimers J. Phys. Chem. B, 2000, 104 (10): 2371-2377
    [65] Suman Cherian and Carl C. Wamser. Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2, J. Phys. Chem. B, 2000, 104 (15):3624-3629
    [66] David F. Watson, Andras Marton, Arnold M. Stux, and Gerald J. Meyer. Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2, J. Phys. Chem. B, 2004, 108 (31): 11680-11688
    [67] Li W B, Naveen Gandra, Erick D. Ellis, Shavelle Courtney, Shufang Li, Ebonie Butler and Ruomei Gao. pH-Responsive, TiO2-Attached Porphyrin for Singlet Oxygen Production in an Aqueous Solution, ACS Appl. Mater. Interfaces, 2009, 1 (8): 1778-1784
    [68] Attila J. Mozer, Matthew J. Griffith, George Tsekouras, Pawel Wagner, Gordon G. Wallace, Shogo Mori, Kenji Sunahara, Masanori Miyashita, John C. Earles, Keith C. Gordon,Luchao Du, Ryuzi Katoh, Akihiro Furube and David L. Officer. Zn?Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting, J. Am. Chem. Soc., 2009, 131 (43): 15621-15623
    [69] Yuanmin Wang, Xuefei Wang, Sujit Kumar Ghosh and H. Peter Lu. Probing Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles, J. Am. Chem. Soc., 2009, 131 (4): 1479-1487
    [70] K. Wagner, M. J. Griffith, M. James, A. J. Mozer, P. Wagner, G. Triani, D. L. Officer, and G. G. Wallace. Significant Performance Improvement of Porphyrin-Sensitized TiO2 Solar Cells under White Light Illumination, J. Phys. Chem. C, 2011, 115 (1): 317-326
    [71] Norma R. de Tacconi, Wilaiwan Chanmanee, Krishnan Rajeshwar, Jonathan Rochford and Elena Galoppini. Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2009, 113 (7): 2996-3006
    [72] Atsushi Ikeda, Youichi Tsuchiya, Toshifumi Konishi, Shin Ogasawara, and Jun-ichi Kikuchi. Photocurrent-Boosting by Intramembrane Electron Mediation between Titania Nanoparticles Dispersed into Nafion?Porphyrin Composites, Chem. Mater., 2005, 17 (15): 4018-4022
    [73] Teresa M. R. V, Graham Hungerford, and Maria Isabel C. Ferreira. Optical and Photophysical Studies on Porphyrin Doped TiO2 Matrixes, J. Phys. Chem. B, 2002, 106 (8): 1853-1861
    [74] Alicia B , Goojin J , Paul A. Liddell, Tadashi Sotomura, Thomas A. Moore, Ana L. Moore, and Devens Gust. Porphyrin-Sensitized Nanoparticulate TiO2 as the Photoanode of a Hybrid Photoelectrochemical Biofuel Cell, Langmuir, 2004, 20 (19): 8366-8371
    [75] Jong Kang Park, Hye Ryun Lee, Jinping Chen, Hiroshi Shinokubo, Atsuhiro Osuka and Dongho Kim. Photoelectrochemical Properties of Doublyβ-Functionalized Porphyrin Sensitizers for Dye-Sensitized Nanocrystalline-TiO2 Solar Cells, J. Phys. Chem. C, 2008, 112 (42): 16691-16699
    [76] Cai J.H, Huang J.W, Zhao P, et al. Photodegradation of l,5-dihydroxynaphthalene catalyzed by meso-tetra(4-sulfonatoPhenyl)Porphyrin in aeratedaqueous solution[J]. J.Mol.Catal. A:Chem, 2008, 292:49-53.
    [77] Gao Y. N, Zhang X. M, Ma C. Q, et al. Morphology-Controlled Self-Assembled Nanos True-tures of 5,15-Di[4-(5-acetylsulfanylPentyloxy)Phenyl] Porphyrin Derivatives. Effeet of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction[J]. J.Am.Chem.Soc,2008,V130(50):17044-17052.
    [78] Granados O G, Paez M A, Ortega F M. Degradation of atrazine using Metalloporphyrins supported on TiO2 under visible light irradiation[J].APPI.Catal.B: Environ,InPress,2009.
    [79] Mele G, Garcia L E, Palmisano L, et al. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Lanthanide Double-Decker Phthalocyanine ComPlexes[J].J.Phys.Chem.C, 2007, I11 (17):6581-6588.
    [80] Chang M.Y, Hsieh Y.H, Cheng T C. Photocatalytic degradation of 2,4-dichlorophenol waste water using porphyrin-TiO2 complexes activated by visible light[J].Thin Solid Films, In Press, 2009.
    [81] Li D, Dong W J, Sun S M, et al. Photocatalytic Degradation of Acid Chrome Blue K with Porphyrin-Sensitized TiO2 under Visible Light [J]. J.Phys.Chem.C, 2008, 112(38): 14878-14882.
    [82]凡素华,王科志.钉配合物基太阳能电池光敏剂分子设计的最新研究进展[J].无机化学学报, 2008, 24(2):1206-1212.
    [83] Nazerruddin M K, Zakeeruddin S M, Lagref J J, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell[J]. Coord.Chem. Rev, 2004, 248(13-14):1317-1328.
    [84] Hasobe T, Hattori S, Kamat P V, et al. Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivatives on TiO2 nanoparticles for light energy conversion[J].Chem.phys, 2005, 319(1-3):243-252.
    [85] Mele G, Sole R. D, Vasapollo G, et al. 4-Nitrophenol photodegradation TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-Nntrophenol photodegradation in aqueous suspension[J]. J. Phys. Chem. B, 2005, 109 (25):12347-12352
    [86] Hilal H S, Majjad L Z, Zaatar N A. Dye-effect in TiO2 catalyzed contaminant photo-degradation: Sensitization vs charge-transfer formalism[J]. Solid. State. Sci, 2007, 9:9-15
    [87] Choy W K, Chu W. Destruction of o-Chloroaniline in UV/TiO2 Reaction with Photosensitizing Additives[J]. Ind. Eng. Chem. Res, 2005, 44(22):8184-8189
    [88] Toshiyuki O, Akio A, Satoshi H, et al. Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation[J]. Sol. Energy, 2004, 77(5):525-532
    [89] Chen F, Deng Z G, Li X P, et al. Visible light detoxification by 2, 9, 16, 23 -tetracarboxyl phthalocyanine copper modified amorphous titania[J]. Chem. Phys. L, 2005, 415(1-3):85-88
    [90] Ranjit K.T, Winner I, Bossmann S, et al. Iron(III) Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. J. Phys. Chem. B, 1998, 102(47):9397-9403
    [91] Michikazu H, Takeshi K, Mutsuko K, et al. Cu2O as a photocatalyst for -overall water splitting under visible light irradiation[J]. Chem. Commun (Cambridge), 1998, 3:357-358
    [92] Reddy E P, Sun B, Smirniotis P G. Transition Metal Modified TiO2-Loaded MCM-41 Catalysts for Visible- and UV-Light Driven Photodegradation of Aqueous Organic Pollutants[J]. J.Phys. Chem. B, 2004, 108(44):17198-17205
    [93] Zhao J. C, Chen C. C, Ma W. H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal, 2005, 35(3}):269-278
    [94] Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J. Photochem. Photobiol. C: Photochem. Rev, 2008, 9(1):1-12
    [95]张建成,王夺元.《现代光化学》[M],北京:化学工业出版社, 2006.
    [96]梁文平,杨俊林,陈拥军,等.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社, 2004.
    [97] Whittle E, Dows D A, Pimentel G C. Matrix Isolation Method for the Experimental Study of Unstable Species [J]. J Chem Phys,1954, 22:1943-1945.
    [98] Nelson L Y, Pimentel G C. Infrared detection of xenon dichloride [J]. Inorg Chem, 1967, 6: 1758-1759.
    [99] Ashfold M N R , Baggot J E. Molecular Photodissociation Dynamics [M]. The RoyalSociety of Chemstry, 1987.
    [100] Mons M, Dimicoli I. State selective kinetic distribution of photofragments [J].Chem Phys Lett, 1986,131: 298-302.
    [101] Hwung H, Mostafa A. Determination of kinetic energy release for direct photodissociation process by one-dimensional TOF photofragment translational spectroscopy [J].Chem Phys Lett, 1990,170:161-166.
    [102]莫华平.用时间飞行质谱研究亚硝酸甲脂的光解动力学[D],中国科学院大连化学物理研究所,1994.
    [103] Wilson K R, Herschbach D R. Correlation of Sodium Atom Reaction Rates with Electron Capture Cross-sections [J]. Nature, 208: 182–183.
    [104] Lee Y T. Molecular Beam Studies of Elementary Chemical Processes [J]. Science, 1987, 236: 793-798.
    [105] Shobatakee K, Parson J M, Lee Y T, et al. Unimolecular decomposition of long-lived complexes of fluorine and substituted mono-olefins, cyclic olefins, and dienes [J]. J Chem Phys , 1973, 59: 1416-1426.
    [106] Farrar J M, Lee Y T. Crossed molecular beam synthesis of a new compound, methyl fluoride iodide (CH3IF) [J]. J Am Chem Soc, 1974, 96: 7570-7572.
    [107] Greene C H, Zare R N. Determination of product population and alignment using laser-induced fluorescence [J]. J Chem Phys, 1983, 78: 6741-6753.
    [108] Kummel A C, Sitz G O, Zare R N. Determination of orientation of the ground state using two-photon nonresonant excitation[J]. J Chem Phys, 1988, 88: 6707-6732.
    [109] Dubs M , Bruhlmann U , Huber J R. Sub-Doppler laser-induced fluorescence measurements of the velocity distribution and rotational alignment of NO photofragments [J]. J Chem Phys, 1986, 84: 3106-3119.
    [110] Bruhlmann U , Dubs M , Huber J R. Photodissociation of methylnitrite: State distributions, recoil velocity distribution, and alignment effects of the NO photofragment [J]. J Chem Phys ,1987, 86: 1249-1257.
    [111] Bsdes M G., Brand L. [J].Methods Enzymol, 1971, 61: 378-385.
    [112] O’Connor D V , Phillips D. Time-Correlated Single Photon Counting [M]. London: Academic Press , 1984, 36-54.
    [113] Jas G S, Wan C Z, Johnson C K. Picosecond Time-Resolved Fourier Transform Raman Spectroscopy of 9,10-Diphenylanthracene in the Excited Singlet State [J]. Appl Spectrosc, 1995, 49: 645-649.
    [114]虞群,叶建平,寿涵森.激光闪光光解技术简介[J].化学通报. 1989, 5:53-55.
    [115] Rimai L, Kaiser E W, Schwab E. Application of time-resolved infrared spectral photography to chemical kinetics [J]. Appl Opt, 1992, 31: 350-356.
    [116] Montingy F, Brondeau J, Canet D. Analysis of time-domain NMR data by standard non-linear least-squares [J]. Chem Phys Letts, 1990, 170:175-180.
    [117] Zheng X M, Phillips D L. Effect of geometrical conformation on the short-time photodissociation dynamics of 1-iodopropane in the A-band absorption [J]. J Chem Phys, 1998, 108: 5772-5783.
    [118] Zheng X M, Fang W H, Phillips D L. Transient resonance Raman spectroscopy and density functional theory investigation of iso-polyhalomethanes containing bromine and/or iodine atoms [J]. J Chem Phys, 2000,113:10934-10946.
    [119] Phillips D L, Fang W H, Zheng X M. Isodiiodomethane Is the Methylene Transfer Agent in Cyclopropanation Reactions with Olefins Using Ultraviolet Photolysis of Diiodomethane in Solutions: A Density Functional Theory Investigation of the Reactions of Isodiiodomethane, Iodomethyl Radical, and Iodomethyl Cation with Ethylene [J]. J Am Chem Soc, 2001, 123: 4197- 4203.
    [120] Fujishima A, Honda K. Electrochemical Photolysis of water at a Semiconductor Eiectrode[J]. Nature, 1972, 238: 37-38.
    [121] S. Kurinobu, K. Tsurusaki, Y. Natui, M. Kimata, M. Hasegawa. Decomposition of pollutants in wastewater using magnetic photocatalyst panicles[J]. Joumal of Magnetism and Magnetic Materials, 310(2007): 1025-1027.
    [122] Sylwia Mozia, Masahiro Toyoda, Michio Inagakj, Beata Tryba,Amoni W. Morawski. Applicatjon of Carbon-coated Ti02 for decomposition of methylene blue in a photocatalytic membrane reactor[J]. Joumal of Hazardous Materials, 140(2007): 369-375.
    [123] vorontson AV, Savinov EV, Davydo VL, et a1. Environmetal applications of semiconductor photocatalysis[J]. ApplCatal B: Environmental, 200l, 32: 11-24.
    [124] Hofhnall M R, Martin S T, Choi W, et a1. Environmental applications of semiconductorphotocatalysis[J]. Chem Rev, 1995(1): 95-96.
    [125] Glaze W, Kenneke J, Ferry J L. Chloronated by products from the TiO2-mediated photodegradtion of trichloroetllyleneand tetrachloroethylene in water[J]. Environ Sci Technol, 1993(27): l77-180.
    [126]祝万鹏,王利,杨志华,等.光催化氧化法处理染料中间体H酸水溶液[J].环境科学.1996,17:7-9.
    [127]朱春媚,陈双全,杨曦,等.几种难降解有机废水的光化学处理研究[J].环境科学,1997,18:27-30.
    [1] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98(7), 5648-5652.
    [2] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [J]. J. Phys.Chem., 1994, 98(45), 11623-11627.
    [3] Runge E, Gross EKU. Density-Functional theory for Time-Dependent systems [J]. Phys. Rev. Lett., 1984, 52, 997-1000.
    [4] Deb B M, Chosh S K. Schr?dinger. fluid dynamics of many-electron system in a time-dependent density-functional framework [J]. J. Chem. Phys, 1982, 77(1): 342-348.
    [5] Bartolotti L J. (A)Time-dependent extention of the Hohenberg-Kohn-Levy energy-density functional theory. [M]. 1982(A26), 2243-2244;(B) Velocity form of the Kohn-Sham frequency-dependent polarizability equation [M]. 1987(A36): 4492-4493.
    [6] Etersilka M, Grossmann U J, Gross EKU. Excitation Energies from Time- Dependent Density-Functional Theory [J]. Phys. Rev. Lett, 1996, 76: 12121215.
    [7]郑顺旋,“激光拉曼光谱学”,上海科学技术出版社,1985. 6.
    [8] Gerrard D L. Raman Spectroscopy [J]. Anal. Chem., 1994 66(12), 547-557.
    [9] (A) Myers A B. Resonance Raman Intensities and Charge-Transfer Reorganization Energies. [J].Chem. Rev., 1996, 96(3), 911-926; (B) Siders P, Marcus R A. Quantum effects in electron-transfer reactions [J]. J. Am. Chem. Soc, 1981, 103(4), 741-747.
    [10] (A) Lee S Y, Heller E J. Time-dependent theory of Raman scattering [J]. J. Chem. Phys, 1979, 71(12), 4777-4788; (B) Myers A B, Mathies R A.. In Biological Applications of Raman Spectroscopy [M], edited by T. G. Spiro (Wiley, New York, 1987(2).
    [11] Brill T B, James K J.. In: NTIS No. AD-A279600, Silver Platter Information. [M]. Inc., Newton Hower Falls, MA (1994).
    [12] Okabe C, Nakabayashi T, Inokuchi Y , et al. Ultrafas excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy [J]. J. Chem. Phys., 2004, 121(19), 9436-9442.
    [13] Gostev F E, Koltsova L S, Petrukhin A N, et al. Spectral luminescent properties and dynamics of intramolecular processes in 2,4,5-triarylimidazoles [J]. J. Photochem. Photobio., A: Chemistry, 2003, 156(1-3), 15-22.
    [14] Flegel M, Lukeman M, Huck L, et al. Photoaddition of Water and Alcohols to the Anthracene Moiety of 9-(2'-Hydroxyphenyl)anthracene via Formal Excited State Intramolecular Proton Transfer [J]. J. Am. Chem. Soc.2004, 126 (25), 7890 -7897.
    [1] Dupuis P, Roberge R, Sandorfy C. The very low ionization potentials of porphyrins and the possible role of rydberg states in photosynthesis[J] Chemical Physics Letters, 1980, 75(3), 434-437
    [2] Saini G.S.S. Resonance Raman study of free-base tetraphenylporphine and its dication[J]Spectrochimica Acta Part A. 64 (2006) 981-986
    [3] Stuart J, Tulinsky S A,. The crystal and molecular structure of triclinic tetraphenylporphyrin[J], J. Am. Chem. Soc., 1967, 89 (13),3331-3337
    [4] Gouterman M. Spectra of Porphyrins[J] Journal Of Molecular Spectroscopy, 196,16, 138-163
    [5] Gouterman M, Georges H W. Spectra of Porphyrins Part II. Four Orbital Model[J], Journal Of Molecular Spectroscopy, 1963,11, 108-127
    [6] Xiao Y L, Marek Z Z. Porphine Force Field: In-Plane Normal Modes of Free-Base Porphine. Comparison with Metaltoporphines and Structural Implications[J], J. Phys. Chem. 1991,95, 4268-4287
    [7]章应辉,阮文娟,吴扬.密度泛函方法研究meso-四苯基卟啉(H2TPP)分子的拉曼光谱[J]南开大学学报(自然科学版), 2005, 38(5),56-61
    [8] Jonas Petersson, Mattias Eklund, Jan Davidsson, and Leif Hammarstrm. Ultrafast Electron Transfer Dynamics of a Zn(II)porphyrin?Viologen Complex Revisited: S2 vs S1 Reactions and Survival of Excess Excitation Energy[J], J. Phys. Chem. B, 2010, 114 (45): 14329-14338
    [9] Erik Gransson, Julien Boixel, Cyrille Monnereau, Errol Blart, Yann Pellegrin, Hans-Christian Becker, Leif Hammarstrm, and Fabrice Odobel. Photoinduced Electron Transfer in Zn(II)porphyrin-Bridge-Pt(II)acetylide Complexes: Variation in Rate with Anchoring Group and Position of the Bridge, Inorganic Chemistry, 2010, 49 (21): 9823-9832
    [10] Beth Anne McClure, Eric R. Abrams and Jeffrey J. Rack. Excited State Distortion in Photochromic Ruthenium Sulfoxide Complexes, J. Am. Chem. Soc., 2010, 132 (15): 5428-5436
    [11] Jonas Petersson, Mattias Eklund, Jan Davidsson and Leif Hammarstrm. Variation of Excitation Energy Influences the Product Distribution of a Two-Step Electron Transfer: S2 vs S1 Electron Transfer in a Zn(II)porphyrin-Viologen Complex, J. Am. Chem. Soc., 2009 131 (23): 7940-7941
    [12] Albert N. Okhrimenko, Alexey V. Gusev, and Michael A. J. Rodgers. Excited State Relaxation Dynamics of the Zinc(II) Tetraphenylporphine Cation Radical, J. Phys. Chem. A, 2005, 109 (34): 7653-7656
    [13] Julio C. de Paula, Valerie A. Walters, Brian A. Jackson, Kevin Cardozo. Transient resonanceRaman spectroscopy of copper(II) complexes of meso-tetraphenylporphine and meso- tetraphenylchlorin, J. Phys. Chem., 1995, 99 (13): 4373-4379
    [14] Vladimir S. Chirvony, Michel Négrerie, Jean-Louis Martin, and Pierre-Yves Turpin. Picosecond Dynamics and Mechanisms of Photoexcited Cu(II)-5,10,15,20-meso-tetrakis (4-N-methylpyridyl) porphyrin Quenching by Oxygen-Containing Lewis-Base Solvents, J. Phys. Chem. A, 2002, 106 (24): 5760-5767
    [15] Sergei G. Kruglik, Peter Mojzes, Yasuhisa Mizutani, Teizo Kitagawa, and Pierre-Yves Turpin. Time-Resolved Resonance Raman Study of the Exciplex Formed between Excited Cu-Porphyrin and DNA, J. Phys. Chem. B, 2001, 105 (21): 5018-5031
    [16] Motoko Asano-Someda and Youkoh Kaizu. Highly Efficient Triplet?Triplet Intramolecular Energy Transfer and Enhanced Intersystem Crossing in Rigidly Linked Copper(II) Porphyrin-Free Base Porphyrin Hybrid Dimers, Inorganic Chemistry, 1999, 38 (10): 2303-2311
    [17] Charles Michael Drain, Steve Gentemann, James A. Roberts, Nora Y. Nelson, Craig J. Medforth, Songling Jia, M. Cather Simpson, Kevin M. Smith, Jack Fajer, John A. Shelnutt, and Dewey Holten. Picosecond to Microsecond Photodynamics of a Nonplanar Nickel Porphyrin: Solvent Dielectric and Temperature Effects, J. Am. Chem. Soc., 1998, 120 (15): 3781-3791
    [18] Tatsuaki Nakanishi, Kei Ohkubo, Takahiko Kojima and Shunichi Fukuzumi. Reorganization Energies of Diprotonated and Saddle-Distorted Porphyrins in Photoinduced Electron- Transfer Reduction Controlled by Conformational Distortion, J. Am. Chem. Soc., 2009, 131 (2): 577-584
    [19] Everly B. Fleischer. Structure of porphyrins and metalloporphyrins, Acc. Chem. Res., 1970, 3 (3): 105-112
    [20] Xiao Yuan. Li, Roman S. Czernuszewicz, James R. Kincaid, Y. Oliver. Su, Thomas G. Spiro. Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance Raman and infrared spectra and isotope shifts, J. Phys. Chem., 1990, 94 (1): 31-47
    [21] Chen S C, Ching H C, Yu L, Liau B C, et al. Metal Complexes of N-p-Nitrobenzoylamido- meso-tetraphenylporphyrin: cis-Acetato-N-p-nitrobenzoylimido-meso- tetraphenylporphyrinatothallium(III) and N-p-Nitrobenzoylimido-meso- tetraphenyl porphyrin atonickel(II), Inorganic Chemistry, 2001, 40(12): 2905-2909
    [22] Bernard Chevrier, Raymond Weiss. Unusual metalloporphyrin derivative. Insertion of an ethoxycarbonylcarbene fragment into a nickel-nitrogen bond of nickel(II) meso-tetraphenyl porphine. Crystal and molecular structure of the complex, J. Am. Chem. Soc., 1976, 98 (10): 2985-2990
    [1] Gouterman M. Spectra of Porphyrins[J].Journal Of Molecular Spectroscopy, 1966, 16: 138-163.
    [2] Gouterman M, Georges H W. Spectra of Porphyrins Part II.Four Orbital Model[J], Journal of Molecular Spectroscopy,1963,11:108-127.
    [3] Yamamoto Y, Takeshi N, Kimio O. Ab initio CI calculations on free-base porphin[J], International Journal of Quantum Chemistry,1992,42: 1563-1575.
    [4] Baskin J S, Yu H Z, Zewail A H. Ultrafast Dynamics of Porphyrins in the Condensed Phase:I.Free Base Tetraphenyl porphyrin[J].J Phys Chem A,2002, 106: 9837-9844
    [5] Kr?hl O,Malsch K,Swiderek P.The electronic states of nitrobenzene:electron-enery-loss spectroscopy and CASPT2 calculations[J], Chem Phys, 2000, 2:947-953.
    [6] Ohkuho K, Sintic P J, Tkachenko N V, et a1. Photoinduced Electron-transfer Dynamics and Long-lived CS States of Donor-acceptor Linked Dyads and a Triad Containing a Gold Porphyrin in Nonpolar Solvents[J].Chemical Physics, 2006,3 26:3-14.
    [7] Guldi D M, Imahori H, Tamaki K, et a1. A Molecular Tetrad Allowing Effident Energy Storage flor 1.6s at 163K[J]. J Phys Chem A, 2004,108(4):541-548.
    [8] Song Hee E, Julie A C, Thomas P V, Dewey H. Photophysics of Reduced Silicon Tetraphenylporphyrin[J], J Phys Chem B, 2007,111 (9):2138-2142.
    [9] Motoko A S, Katsuhiro A, Teizo K. Time-resolved resonance Raman spectra of octaethylporphinato copper(II) in the lowest excited triplet state[J], Chemical Physics Letters, 1996, 257:492-498.
    [10] Drew C T, Dewey H , Gouterman M. Picosecond photolysis of axial ligands on cobalt(II) and cobalt(III) porphyrins[J], J Am Chem Soc, 1984, 106(22):6653–6659.
    [1] Spiro T G, Li X Y, InSpiro T G. Biological Application of Raman Spectroscopy, Vol.Ⅲ, New York:Wiley-Interscience, 1988
    [2] Yu N T, InSpiro T G. Biological Application of Raman Spectroscopy,Vol.Ⅲ,New York:Wiley-Interscience,1988
    [3]陈东明,李晓原,尤乃亭.类金属卟啉化合物的共振拉曼光谱与分子振动[J].光散射学报:1998,10:151-154
    [4] Groves J T,Nemo T E,Myers R. Hydroxylation and epoxidation catalyzed by iron-porphine complexes Oxygen transfer from iodosylbenzen[J], J. Am. Chem. Soc, 1979, 101(4): 1032-1033
    [5] Lai T.S,Zhang R,Cheung K.K,et al. Aerobic enantioseleetive alkene epoxidation by a chiral trans-dioxo(D4-Porphyrinato)ruthenium(VI) complex[J], Chem. Commun, 1998, 15: 1583-1584
    [6] Tsuchiya S. Novel Synthetic Method of Phenol from Benzene Catalysed by Perfluorinated Hemin[J]. Chem.Lett, 1989, 18(2):263-265
    [7] Rosenthal J,Pistorio B.J,ChngL.L,et al. Aerobic Catalytic Photooxidation of Olefins by an Eleetron-Defieient Pacman Bisiron(Ш)μ-Oxo Porphyrin[J]. J. Org. Chem, 2005, 70(5): 1885-1888 [8」Rosenthal J,Luekett T.D,Hodgkiss J.M,et al,Photoeatalytic Oxidation of Hydrocarbons by a Bis-iron(Ш)-μ-Oxo Pacman Porphyrin Using O2 and Visible Light[J]. J. Am. Chem.Soc, 2006, 128(20):6546-6547
    [9] ChanY.H,Schuekman A.E,Perez L.M,et al. Synthesis and Charaeterization of a Thiol-Tethered Tripyridyl Porphyrin on Au(Ш)[J]. J. Phys. Chem. C, 2008, 112 (15):6110-6118
    [10] Bearinger J. P,Stone G,Hiddessen A.L,et al. Phototocatalytic Lithography of Poly(propylene sulfide)Block CoPolylners: Toward High-Throughput Nanolithography for Biomolecular Arraying Applications[J]. Langmuir, 2009, 25(2):1238-1244
    [11] Wang Z.C,Li Z.Y,Medforth C.J,et al. Self-Assembly and Self-Metallization of Porphyrin Nanosheets[J]. J.Am.Chem.Soe, 2007, 129(9):2440-2441
    [12] Roehford J,Galoppini E. Zine(Ⅱ) Tetraarylporphyrins Anchored to TiO2,ZnO,and ZrO2 Nanoparticle Films through Rigid-Rod Linkers[J]. Langmuir,2008 (10):5366-5374
    [13] Kim W,Park J,Jo H,et al. Visible Light Photocatalysts Based on Homogeneous Heterogenized Tin Porphyrins[J]. J.Phys.Chem.C, 2008, 112(2):491-99
    [14] Huijse R A,Suijkerbuijk B.M,Robertus J. M, et al. Effieient Exeiton Transport in Layers of Self-Assembled Porphyrin Derivatives[J]. J.Am.Chem.Soe, 2008, 130 (8):2485-2492
    [15] Jang J H,Jeon K S,Oh S,et al. Synthesis of Sn-Porphyrin-Interealated Trititanate Nanofibers: Optoelectronic Properties and Photocatalytic Aetivities[J]. Chem.Mater, 2007, 19(8):1984-1991
    [16] Yamada Y,Nakamura T,Yano K. Optical Response of Mesoporous Synthetic Opals to the Adsorption of Chemieal Species[J]. Langmuir, 2008, 24(6):2779-2784
    [17] Ghosh S K , Patra R, Rath S P. Remarkably Bent , Ethane-Linked , Diiron(III)μ-Oxobisporphyrin: Synthesis,Structure,Conformational Switching,and Photocatalytic Oxidation[J]. Inorg.Chem, 2008, 47(22):10196-10198
    [18] Yao K S, Wang D Y, Chang C Y, et a1. Characteristics and photocatalytic activity of TiO2 thin film sensitized with a porphyrin dye[J], Nanosci. Nanotechno1, 2008, 8:2699-2702
    [19] Chang M Y, Chang C Y, Hsiel Y H, et a1. Photocatalytic degradation of Methylene blue using Porphyrin/TiO2 complexes activated by visible light[J], Adv. Mat. Res, 2008, 45-50:471-474
    [20] Wang C, Li J, Giuseppe Mele, et a1. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible light irradiation [J], Applied Catalysis B:Environmental, 2007, 76:218-226
    [21]李景泉,潘海波,黄金陵,四苯基卟啉锌/TiO2纳米复合材料的原位合成及可见光光催化[J].光谱学与光谱分析,2006,26(11):2061-2064
    [22] Cai J.H, Huang J.W, Zhao P, et al. Photodegradation of l,5-dihydroxynaphthalene catalyzed by meso-tetra(4-sulfonatoPhenyl)Porphyrin in aeratedaqueous solution[J]. J.Mol.Catal. A:Chem, 2008, 292:49-53.
    [23]Gao Y.N, Zhang X.M, Ma C.Q, et al. Morphology-Controlled Self-Assembled Nanos True-tures of 5,15-Di[4-(5-acetylsulfanylPentyloxy)Phenyl] Porphyrin Derivatives. Effeet of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction[J]. J.Am.Chem.Soc, 2008, 130(50):17044-17052.
    [24] Granados O G, Paez M A, Ortega F M. Degradation of atrazine using Metalloporphyrins supported on TiO2 under visible light irradiation[J].APPI.Catal.B: Environ,InPress,2009.
    [25] Mele G, Garcia L E, Palmisano L, et al. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Lanthanide Double-Decker Phthalocyanine ComPlexes[J].J.Phys.Chem.C, 2007, 111 (17):6581-6588.
    [26] Chang M.Y, Hsieh Y.H, Cheng T C. Photocatalytic degradation of 2,4-dichlorophenol waste water using porphyrin-TiO2 complexes activated by visible light[J].Thin Solid Films, In Press, 2009.
    [27]潘凯,刘兆阅,徐金杰,等.不同取代基卟啉衍生物敏化纳米TiO2多孔膜电极的光电性质研究,高等学校化学学报, 2004, 25(5): 934-937
    [28] Tu W W, Dong Y T, Lei J P, and Ju H X. Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles, Anal. Chem., 2010, 82 (20): 8711-8716
    [29] Suman Cherian and Carl C. Wamser. Adsorption and Photoactivity ofTetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2, J. Phys. Chem. B, 2000, 104 (15):3624-3629
    [30] Li W B, Naveen Gandra, Erick D. Ellis, Shavelle Courtney, Shufang Li, Ebonie Butler and Ruomei Gao. pH-Responsive, TiO2-Attached Porphyrin for Singlet Oxygen Production in an Aqueous Solution, ACS Appl. Mater. Interfaces, 2009, 1 (8): 1778-1784
    [31] Attila J. Mozer, Matthew J. Griffith, George Tsekouras, Pawel Wagner, Gordon G. Wallace, Shogo Mori, Kenji Sunahara, Masanori Miyashita, John C. Earles, Keith C. Gordon, Luchao Du, Ryuzi Katoh, Akihiro Furube and David L. Officer. Zn-Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting, J. Am. Chem. Soc., 2009, 131 (43): 15621-15623
    [32] Toshiyuki O, Akio A, Satoshi H, et al. Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation[J]. Sol. Energy, 2004, 77(5):525-532
    [33] Chen F, Deng Z G, Li X P, et al. Visible light detoxification by 2, 9, 16, 23 -tetracarboxyl phthalocyanine copper modified amorphous titania[J]. Chem. Phys. L, 2005, 415(1-3):85-88
    [34] Ranjit K.T, Winner I, Bossmann S, et al. Iron(III) Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. J. Phys. Chem. B, 1998, 102(47):9397-9403
    [35] Michikazu H, Takeshi K, Mutsuko K, et al. Cu2O as a photocatalyst foroverall water splitting under visible light irradiation[J]. Chem. Commun (Cambridge), 1998, 3: 357-358
    [36] Reddy E P, Sun B, Smirniotis P G. Transition Metal Modified TiO2-Loaded MCM-41 Catalysts for Visible- and UV-Light Driven Photodegradation of Aqueous Organic Pollutants[J]. J.Phys. Chem. B, 2004, 108(44):17198-17205
    [37] Zhao J. C, Chen C. C, Ma W. H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal, 2005, 35(3):269-278
    [38]Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J. Photochem. Photobiol. C: Photochem. Rev, 2008, 9(1):1-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700