干旱胁迫下长白落叶松家系变异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白落叶松(Larix olgensis Henry)是我国北方主要速生针叶用材树种,在我国东北地区的造林面积所占比重较大。本研究对22个4年生长白落叶松种内控制授粉家系在干旱胁迫条件下的生长、光合、生理和差异表达蛋白进行研究。每15天进行一次测量,共四次。对苗高、净光合速率、蒸腾速率、气孔导度、MDA、POD、可溶性蛋白和叶绿素共8个指标进行了综合分析。同时对胁迫第30天的长白落叶松针叶样品和对照进行旱胁迫下差异蛋白表达的研究
     研究表明:长白落叶松家系间存在着丰富的变异,在生长、光合、生理等各项指标中家系间差异显著,有利于优良抗旱家系的选择。不同家系在不同指标的表现能力有所不同,说明每个家系在干旱胁迫的条件下以不同的新陈代谢反应来抵抗外界环境造成的影响。
     长白落叶松家系内也存在着丰富的变异。家系间气孔导度变异系数最高为103.79%,不同家系间气孔导度的变异系数范围为28.72%-76.64%;叶绿素含量变异系数最低为12.86%,不同家系的叶绿素含量的变异系数范围为4.8%-27.5%,差异最小。POD不同家系的变异系数从40.3%-130.8%,差异最大。家系2×1不同指标的变异系数从10.8%(苗高)-130.8%(POD含量),变化幅度最大
     家系34×1的苗高生长旺盛.比最低的2×2高出57.8%.比家系平均值高出18.5%。14x3,34x1,1×14,14x34家系在整个胁迫过程中苗高一直高于对照,尤其是在胁迫后期表现稳定,4个家系在旱胁迫末期的苗高平均值高于所有家系苗高平均值17.5%,高于对照3.7%,高于在整个旱胁迫期间均生长较差的4个家系在胁迫末期苗高平均值50.09%。胁迫开始前生长最好的家系比最差的家系高出132.06%,高于对照35.49%,胁迫末期最好的家系比最差的家系高出135.91%,高于对照仅0.25%。说明即使是苗高生长表现优良的家系,在干旱胁迫的条件下也受到了很大程度的影响。家系母本为73-14的情况最好,比母本为73-3的苗高高出28.18%,比平均值高出10.32%
     与对照相比,净光合速率、气孔导度、蒸腾速率、POD叶绿素在干旱胁迫的条件下呈下降趋势,MDA显著增加,可溶性蛋白先增加后降低。且不同家系在对于旱胁迫的响应出现在胁迫前期、中期或者后期,有所不同。苗高,净光合速率,气孔导度,POD含量在母本不同、父本不同的家系间均差异显著,MDA含量,蒸腾速率,可溶性蛋白在父本不同的家系间差异显著,叶绿素含量在母本不同的家系间差异显著。
     在长白落叶松家系干旱胁迫和对照的样品中提取蛋白质组,经过双向电泳分析后找到23个差异表达的蛋白点,最终鉴定了18个差异蛋白点。根据生物学功能,将这18个鉴定蛋白质分为信号转导相关蛋白、ATP相关酶、光合调控相关蛋白、代谢相关蛋白、降解有害物质相关酶、其他蛋白六类。
     苗高与各项指标的相关性均不显著。净光合速率与苗高为正相关,但是相关不显著,与POD和蒸腾速率均为极显著正相关。MDA与可溶性蛋白为显著正相关,与其他指标为负相关,其中与POD,净光合速率和蒸腾速率都达到显著负相关水平。
     通过隶属函数综合评定各项指标,长白落叶松22个家系的抗旱能力各有不同。34×2,2×1和34×34家系的抗旱能力最强,2×2,3×1和3×14家系的抗旱能力最差。第1名34×2家系比最后1名2×2的隶属函数平均值高出32.49%,比平均值高出10.99%。其中苗高占比例最大为18.37%,在隶属函数中为最可靠鉴定指标。
Larix olgensis Henry is one of the most important conifer species in China. It is a fast-growing timber species and shares the largest afforestation area in northeast China. The study take22L. olgensis control pollinated families of4-years-old as the materials and the experiment materials were divided into control group and drought stress treatment group, then studied on the growth, photosynthesis, physiology and drought stress-responsive protein expression, finally made a comprehensive evaluation of height, photosynthesis, transpiration, MDA, POD, soluble protein and chlorophyll. And the conifer of day-30and control were also used for research of differentially expressed proteins.
     The results showed that there were rich variations among the families and family's variation was significant difference in height, photosynthesis and physiology indicator, it was helpful for the excellent family selection. Each family had a different performance under the drought stress for its self-protection mechanism is different.
     There were rich variations within the families, too. The most variation coefficient was the one of stomatal conductance and it was103.79%, the range of families were from28.72%to76.64%; the least variation coefficient was the one of chlorophyll and it was12.86%, the range of families were from4.8%to27.5%which was the smallest difference of families. The POD variation coefficient range of families was from40.3%to130.8which was the most difference among families. The variation coefficient range of family2×1was the most, it was from10.8%(height) to130.8%(POD).
     Among all families, family34×1's growth was significantly higher than the control and other families; it was57.8%more than the slowest growth family2×2and18.5%more than the average. The height of family14×3,34×1,1×14,14×34was all more than the control during the whole drought period, the height average of these4families were17.5%more than the average of all families.3.7%more than the control.50.09%more than the one of4worst families. On day0. the height of the best family was132.06%more than the worst one,35.49%more than the control, while on day45. the height of best family was135.91%more than the worst one, only0.25%more than the control. It indicated that even the better families' height was decrease under drought stress.
     Compared with the control, photosynthesis rate, stomatal conductance, transpiration rate, POD, chlorophyll were downward trend under drought stress while height increased slowly, MDA increased significant, soluble protein first increased and then decreased. The performance of families was different during the different drought period. Height, photosynthesis rate, stomatal conductance, POD was significant difference between families of different female or male parent; MDA, transpiration rate and soluble protein was significant difference between families of male parent, while chlorophyll was significant difference between families of female parent.
     Proteins were extraction from the control and drought stress samples,23differentially expressed proteins were found and18were indentified after analysis. According to biological function, these drought stress-responsive protein were classified into6groups:protein related to transduction, enzyme related to ATP synthesis, protein related to photosynthetic regulation, protein related to metabolism, enzyme to degradation hazardous substance, others.
     Height has no significant correlation with other index. Photosynthesis was positive correlation with height but no significant, significant positive correlation with POD and transpiration rate. MDA was significant positive correlation with soluble protein while negative correlation with other index, of which POD, photosynthesis rate and transpiration rate was significant.
     22L. olgensis families had different drought resistance capacity according to the membership function.34×2,2×land34×34are the best3families to drought stress,2×2,3×1and3×14were the worst3ones. Height was the most reliable index of all. The first one34×2was32.49%than the worst one2×2. and10.99%more than the average. Height had the most proportion (18.37%) among all index of membership function. so it was the most reliable indicator to identification of drought resistance.
引文
[1]杨传平.长白落叶松种群遗传变异与利用.哈尔滨:东北林业大学出版社,2001:10-12
    [2]张含国,潘本立,周显昌,等.长白落叶松良种选育研究概述.林业科技开发,1997(6):35-37
    [3]杨书文,杨传平,夏德安,等.帽儿山地区长白溶叶松种源选择的研究.东北林业大学学报,1991(19育种专刊):38-45
    [4]张含国,张成林,兰士波,等.落叶松杂种优势分析及家系选择.南京林业大学学报自然科学版,2005(3):69-72
    [5]张守攻,邱宏伟,韩素英,等.落叶松树种的体细胞胚胎发生与规模化技术体系.中国生物工程杂志,2004(6):28-33
    [6]Yoshitaka Ono, Zinaida M. Azbukina, Makoto Kakishima, Shigeru Kaneko. Distribution of the Larch Brown Rust Caused by Triphragmiopsis laricinum (Uredinales) in Russian Far East. J. For. Res.1997(2):227-231
    [7]Yannick Curnel, Dominique Jacques, Notburga Gierlinger, et al. Variation in the decay resistance of larch to fungi. Ann.For.Sci.65(2008)810:1-8
    [8]马常耕.国外制浆材树种遗传改良研究.世界林业研究.1999,6(12):13-17
    [9]沈熙环.种子园优质高产技术.北京:中国林业出版社,1994:1-9
    [10]Shelboutne C J A. Genetic gains from different kinds of breeding population and seed or plant production population. S Afr For,1991(160):49-60
    [11]Squillace A E. Tree improvement accomplishment in the south. Southern Forest Tree Improvement Committee. Proceeding of 20th southern forest tree improvement conference. Charleston, South Carolina,1989:9-20
    [12]Wright J A, Osorio L F, Dvorak W S. Realised and predicted gain in the Pinus patula breeding programme of Smurfit carton de Colombia. South African Forestry Journal, 1996(175):19-27
    [13]彭方仁.新西兰辐射松遗传改良研究新进展.世界林业研究,1992(4):45-52
    [14]Neale DB, Kremer A. Forest tree genomics:growing resources and applications. Nat Rev Genet.2011,12(2):111-122
    [15]J.J.Zhu, Z.G.Liu, H.X. Wang, et al. Effects of site preparation on emergence and early establishment of Larix olgensis in montane regions of northeastern China. New Forests, 2008(36):247-260
    [16]Feng Yulong, Wang Wenzhang, Zhu Hong. Comparative study on drought resistance of Larix olgensis Henry and Pinus sylvestris var. mongolica(I). Journal of Forestry Research, 1996(7):1-5
    [17]G.L.Li, Y.Liu, Y.Zhu, et al. Influence of initial age and size on the field performance of Larix olgensis seedlings. New Forests,2011(42):215-226
    [18]冯玉龙,王文章,敖红.长白落叶松无性系选择生理指标的研究.林业科学,2000,36(1):80-85
    [19]赵溪竹,姜海凤,毛子军.长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性比较研究.植物研究,2007(3):361-366
    [20]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响.林业科学,2005,41(4):31-36
    [21]魏红旭,徐程扬,马履一,等.长白落叶松幼苗对铵态氮和硝态氮吸收的动力学特征.植物营养与肥料学,2010,16(2):407-412
    [22]冷文芳,贺红士,布仁仓,等.东北落叶松属植物潜在分布对气候变化的影响.辽宁工程大学学报,2007(2):289-292
    [23]Rossignol M. Analysis of the plant proteome. Current Opinion in Biotechnology,2001(12): 131-134
    [24]石碧,狄莹.植物多酚.北京:科学出版社,2000:16-19
    [25]Elena A. Vasyutkina, Irina Yu. Adrianova, Marina M. et al. Genetic differentiation of larch populations from the larix olgensis range and their relationships with larches from Siberia and Russian Far East. Forest Science and Technology,2007,3(2):132-138
    [26]Egert M, Tevini M. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany,2002(48):43-49
    [27]Franca M C, Thi A T, Pimentel C, et al. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany,2000,43(3):227-237
    [28]杨强胜,唐晓蓉,邬晓红等.林木耐旱技术研究进展.内蒙古农业科技,2006(5):26-28
    [29]唐罗忠,黄选瑞,李彦慧.水分胁迫对白杨杂种无性系生理和生长的影响.河北林果研究,1998,22(2):99-102
    [30]王淼,代力民,姬兰柱,等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究.应用生态学报,2001,12(4):496-450
    [31]胡晓建,欧阳献,喻方圆.干旱胁迫对不同种源马尾松苗木生长及生物量的影响.江西农业大学学报,2010,32(3):0510-0516
    [32]朱教君,康宏樟,李智辉,等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响.生态学报,2005,25(10):2527-2533
    [33]谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响.山东林业科技,2004,151(2):6-7
    [34]McMillin J D, WagnerM R. Effects of water stress on biomass partitioning of ponderosa pine seedlings during primary root growth and shoot growth periods. Forest Science,1995, 41 (3):594-610
    [35]Dobbertin Matthias, Brunner Ivano, Egli Simon, et al. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest. Geophysical Research Abstracts Vol.12 EGU2010-3917,2010, EGU General Assembly 2010
    [36]Giorgio Vacchiano, Matteo Garbarino, Enrico Borgogno Mondino. Evidences of drought stress as a predisposing factor to Scots pine decline in Valle d'Aosta(Italy). Eur J Foresr Res,2011,0570-0579
    [37]Vicente Rozas, Rafael Zas, Ignacio Garci a-Gonza'lez. Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain. Eur J Forest Res,2011(130):959-970
    [38]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应.植物生态学报,2005,29(3):394-402
    [39]敖红,张羽.水分胁迫对云杉光合特性的影响.植物研究,2007,27(4):445-448
    [40]刘淑明,工得祥,孙长忠.干旱胁迫下雪松土壤水分及生理特性的研究.西北植物学报,2004,24(11):78-82
    [41]工晓江.库布齐沙漠几种沙生灌木光合、耗水及耐旱生理生态特性研究.北京林业大学博士论文,2008
    [42]Amaia Mena-Petite, Alberto Mun-oz-Rueda, Maite Lacuesta. Effect of cold storage reatments and transplanting stress on gas exchange, chlorophyll fluorescence and survival under water limiting conditions of Pinus radiata stock-types. Eur J Forest Res 2005(124):73-82
    [43]F. J. Baquedano, F. J. Castillo. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 2006(20):689-700
    [44]Frida I. Piper. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science,2011(68):415-424
    [45]Frida I. Pipera, Luis J. Corcueraa, Miren Alberdib, et al. Differential photosynthetic and survival responses to soil drought in two evergreen Nothofagus species. Ann. For. Sci., 2007(64):447-452
    [46]Rosana Lopez, Jesus Rodriguez-Calcerrada, Luis Gil. Physiological and morphological response to water deficit in seedlings of five provenances of Pinus canariensis:potential to detect variation in drought-tolerance. Trees,2009(23):509-519
    [47]喻方圆,刘建兵,胡晓建.马尾松苗木中松醇的分布及其对干旱胁迫的响应.南京林业大学学报,2009,33(2):13-16
    [48]孙国荣,姜丽芬,等.干旱胁迫下白桦(Betula plathphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001(3):413-415
    [49]刘正刚.辐射松、油松幼苗抗旱性研究.四川农业大学,2007,硕士论文
    [50]胡学俭.10树种苗期抗旱特性及抗旱评价指标体系的研究.山东农业大学硕士论文,2005
    [51]Ngugen A, Lamant A. Pinitol and myo-inositol accumulation in water-stressed seedlings of maritime pine. Phytochemistry,1998,27:3423-3427
    [52]Erja Taulavuori, Marjaana Tahkokorpi, Kari Laine et al. Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment. PROTOPLASMA,2010(241):19-27
    [53]Gebre GM, Tschaplinski TJ, Tuskan GA, et al. Clonal and seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions. Tree Physiol.,1998.18(10):645-652.
    [54]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with Gene-Product Mapping of the Mollicutes-Mycoplasma-Genitalium. Electrophoresis,1995,16:1090-1094
    [55]O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem,1975,250(10):4007-4021
    [56]Haiying Li, Hongxiang Cao, Yuguang Wang, Qiuying Pang, Chunquan Ma, Sixue Chen. 2009. Proteomic analysis of sugar beet apomictic monosomic addition line M14. Journalof Proteomics,73(2):297-308
    [57]罗秋香.碳酸盐逆境下虎尾草叶片蛋白质组学研究.东北林业大学,2006,博士学位论义
    [58]Yates JR, Eng JK, Mccormack AL, et al. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem.,1995, 67(8):1426-1436
    [59]魏琳.卷柏干旱生理基础及差异蛋白质组学研究.福建师范大学硕士论文,2006
    [60]Costa P, Bahrman N, Frigerio J M, Kremer A, Plomion C. Water-deficit responsive proteins in maritime pine. Plant Mol Biol,1998,39:587-596
    [61]Jorge I, Navarrro RM, Lenz C, Ariza D, Jorrin. Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics,2006,6(s1), S207-S214
    [62]袁坤,王明麻,黄敏仁.林木蛋白质组学研究进展.中国生物工程杂志,2006,26(6):88-92
    [63]Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S.R. Bhadra Chaudhuri. Roll of Membership functions in Fuzzy Logic for prediction of shoot length of mustard plant based on residual analysis. World Academy of Science. Engineering and Technology. 2008(38):378-384
    [64]陈德明,俞人培,等.盐渍下小麦抗盐性的隶属函数值评价.土壤学报,2002(3):368-374
    [65]周广生,周青竹,等.用隶属函数法评价小麦的耐湿性.麦类作物学报,2001(4):34-37
    [66]苏国兴.桑品种耐盐性的隶书函数法之评价.苏州农业学报,2002(1):42-47
    [67]韩瑞宏,卢欣石.高桂娟,等.紫花苜蓿抗旱性主成分及隶属函数分析.草地学报,2006(2):142-146
    [68]李庆.几种胡枝子的旱盐逆境生理学研究.北京林业大,2004,硕士论文
    [69]杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析.林业科学,2002,38(6):36-42
    [70]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学,1994,30(1):53-57
    [71]皑妍.天然幼龄兴安落叶松光合特征研究.呼和浩特:内蒙古农业大学,2004,硕士论文
    [72]Lassoie, J.P, D.J.Salo. Physiological response of large Douglas fir to natural and induced soil water deficits. Can. J. For. Res.1982,11(3):139-144
    [73]李吉跃,Terence JB.多重复干旱循环对苗木气体交换和水分利用率的影响.北京林业大学学报,1999,21(3):1-8
    [74]Kramer, PJ. Changing concepts regarding plant water relations. Plant Cell Environ.1988,11:565-569
    [75]杨模华,李志辉,黄丽群,等.银杏光合特性的日变化.经济林研,2004,4:15-18
    [76]陆钊华,徐建民,陈儒香,等.桉树无性系苗期光合作用特性研究.林业科学研究,2003,5:575-580
    [77]王晶英,敖红,张杰,等.植物生理生化实验技术与原理.哈尔滨:东北林业大学出版社,2003:23-25
    [78]徐卫红.ATP合成酶及其功能机制综述.上海师范学院学报,2004,24(3):36-40
    [79]Abbasi FM, Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics,2004,4(7):2072-2081
    [80]Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics,2006,6(8):2542-2554
    [81]Aghaei K, Ehsanpour AA, Shah AH, Komatsu S. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids,2009,36(1):91-98
    [82]Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5:3162-3172
    [83]Baginsky S, Gruissem W. Chloroplast proteomics:potentials and challenges. Journal of Experimental Botany,2004,55(400):1213-1220
    [84]David JL, Zivy M, Cardin ML, Brabant P. Protein evolution in dynamically managed populations of wheat:adaptive responses to macro-environmental conditions. Theoretical and Applied Genetics,1997,95:932-941.
    [85]Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5:3162-3172
    [86]Gao F, Zhou Y, Huang L, He D, Zhang G. Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chinese Science Bulletin,2008,53: 3530-3537
    [87]Li H, Cao H, Wang Y, Pang Q, Ma C, Chen S. Proteomic analysis of sugar beet apomictic monosomic addition line M14. Journal of Proteomics,2009,73:297-308
    [88]Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signalling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. The Plant Cell,2004,16:241-256
    [89]Liu Y, Lamkemeyer T, Jakob A, et al. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant ruml. Proteomics,2006,6:4300-4308
    [90]Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents:the yeast salinity stress response. Molecular & Cellular Proteomics,2003,2: 1198-1204
    [91]Parida A, Das AB, Das P. NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology,2002,45:28-36
    [92]翁锦周,林江波,林加耕,等.盐胁迫对桉树幼苗的生长及叶绿素含量的影响.热带作物学报,2007(4):15-20
    [93]付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究.山地农业生物学报,2004(6):471-474
    [94]Koichi Miyashita, Shigemi Tanakamaru, Toshihiko Maitani, Kazuyoshi Kimura. Reco very responses of photosynthesis, transpiration, and stomata conductance in kidney b ean following drought stress. Environmental and experimental botany,2005,53(2):20 5-214
    [95]房江育,张仁陟.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性.甘肃农业大学学报,2001(1):89-94
    [96]Levitt J. Response of Plant to environmental stresses. Aeademic Press, New York.1980
    [97]齐明聪,等.苗木活力探讨.东北林业大学学报,1986(种苗专刊),6:18-24
    [98]张锁福.环境胁迫与植物育种.北京:农业出版社,1993
    [99]Jone, H.G. Plants and Microclimate:A quantitative approach to environmental plant physiology,2nd Edition. Cambridge University Press,1992
    [100]Miyashita K., Tlinnakamaru S., Maitani T, et al. Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress. Enviromental and Experimental Botany,2005,53:205-214
    [101]史胜青.四种树种勒木抗旱机制的研究.河北农业大学,2003,硕士论文
    [102]刘正刚.辐射松、油松幼苗抗旱性研究.四川农业大学,2007,硕士论文
    [103]吕金印,山仑,高俊凤.非充分灌溉及其生理基础.西北植物学报,2002,22(6):1512-1517
    [104]Hsiao T C. Plant responses to water stress. Ann Rev Plant Physiol,1973,24:519-570
    [105]工振镒.郭蔼光.罗淑平.水分胁迫对玉米SOD和POD活力及同工酶的影响.西北农业大学学报,1989,17(1):45-49
    [106]工宝山.生物自由基与植物膜伤害.植物生理学通讯,1989,2:12-16
    [107]陈少瑜,郎南军,贾利强,等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响.植物研究,2006,1:88-92
    [108]霍仕平,曼庆九,宋光英,等.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱区农业研究,1995,13(3):67-73
    [109]黎裕.作物抗旱鉴定方法和指标.干旱地区农业研究,1993,11(1):91-99
    [110]Rada F., Azocar A., Gonzalez J. et al. Leaf gas exchange in Espeletia shultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecologica,1998,19:73-79
    [111]Zhang S., Zhou Z., Hu H., et al. Photosynthetic performances of Quercus pannosa vary tieh altitdude in the Hengduan Moutain, southwest China. Forest Ecology and Management,2005,212:291-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700