藻胆体结构多样性研究及黄海绿潮早期形成过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藻胆体是蓝藻和红藻体内主要的捕光蛋白-色素复合物,它是与细菌叶绿素、叶绿素蛋白-色素复合物同时存在的放氧光合生物的两大捕光蛋白-色素复合物。藻胆体与叶绿素蛋白的区别是1藻胆体通过连接多肽锚定在类囊体外,并与反应中心相连,2其主要的光能吸收范围在450-650nm范围,与叶绿素、细菌叶绿素的吸收光谱不同,3其光合色素(藻胆色素)与蛋白通过共价键连接,而叶绿素分子则通过氢键、范德华力等分子间弱相互作用与蛋白质骨架相连。
     对于藻胆体的结构的研究始于上世纪70年代,主要利用电子显微镜进行观察,但由于技术条件所限,其分辨率非常之低,只能反映其复合体的轮廓。随着针对生物样品的电子显微镜的发展以及冷冻电子显微镜技术的建立与成熟,生物大分子的高分辨率的结构解析成为了可能。因此,我们通过透射电子显微镜技术对现存已知的所有类型藻胆体进行了结构观察,得到更高质量的半椭球形、半圆盘形(三核六杆、二核六杆、五核八杆)、束状、块状藻胆体的负染结果,这为获得高质量的电镜三维结构提供非常坚实的基础。在此之上,我们对嗜热蓝藻Thermosynechococcus vulcanus和盐泽红藻Porphyridium aerugineum的藻胆体进行了更为深入的研究。通过对Thermosynechococcus vulcanus的负染二维平均的单颗粒分析,我们发现其三核六杆的核部分的两肩各存在两个蛋白,推测其为含有色素的蛋白。通过冷冻电镜的观察,发现藻胆体颗粒多呈错位排列在气-液界面上,这种极性-非极性界面的排布方式可能与细胞内膜内-膜外的排列类似。对盐泽红藻Porphyridium aerugineum的二维平均,使得为通过冷冻电镜深入揭示其三维结构提供了很重要的结构信息和技术基础。
     作为国家应急科技攻关的一部分,基于以往科学家所获得的遗传学研究基础,我们采用几个分子遗传学标记对黄海绿潮进行了研究,提示其可能为同一种群,同时因早期卫星又监测不到绿潮的位置和规模,我们提出在春季黄海存在一个暂时稳定的栖息地,为浒苔提供营养、适宜温度供其迅速生长繁殖的假说。经过MODIS的SSH和SST数据分析,我们发现在春季黄海存在一个直径在100km左右的冷涡,其旋转过程可能将海底的营养“泵”到上层水体中供浒苔生长,这揭示其可能的一种时空动态过程,也为揭示世界范围内的绿潮爆发的整个生物-物理-化学偶联的动态过程提供了新线索和新思路。
Phycobilisomes are cyanobacteria and red algae’s the main light-harvesting protein-pigment complexes. It exists with bacterial chlorophyll, chlorophyll-protein-pigmentcomplex at the same time, the oxygen-evolving photosynthetic organisms, twolight-harvesting protein-pigment complex. Phycobilisomes and chlorophyll-proteinare different:1phycobilisomes are connected with reaction center by peptide linkerproteins,2the absorption of phycobilisome’s light absorption range is450-650nm,and chlorophyll and bacteriochlorophyll have different spectra since red algae can livein a nearly200-meter-deep ocean, so it can be very efficient to capture low-light450-550nm light,3photosynthetic pigments (phycobilin) connect with proteincovalently while chlorophyll molecules connect with protein backbone throughintermolecular hydrogen bonds, van der Waals and other weak interactions.
     For phycobilisomes structure, the research began in the1970s. The technology ofelectron microscopy was applied, but limited due to technical conditions, theresolution is very low. As for the development of electron microscopy of biologicalsamples and cryo-electron microscopy techniques, it is possible to establish andmature, high-resolution structural analysis of biological macromolecules. Therefore,by transmission electron microscopy, existing known all types of phycobilisomesstructure was observed. Higher-quality of semi-ellipsoidal, semi-disc, bundle andblock phycobilisome were obtained. Moreover, we conducted a more in-depth studyof the thermophilic cyanobacterium Thermosynechococcus vulcanus and red algaPorphyridium aerugineum phycobilisomes. Thermosynechococcus vulcanusresurgence of two-dimensional average single particle analysis, we found that on itstriple-core shoulders, there are two proteins, presumably as a protein containingpigment on each shoulder. Frozen electron microscopy (cryo-EM) observationsfound that phycobilisomes particles mostly were dislocation arrangement in the gas- liquid interface, this polarity-the arrangement of non-polar interface may be similarto the intracellular membranes-outer membrane arrangement. Marine red algaPorphyridium aerugineum’s two-dimensional average was obtained, making a veryimportant structure to reveal its three-dimensional structure by cryo-EM in-depthinformation and technical basis.
     Green tide in the Yellow Sea as part of a national emergency scientific andtechnological multi-level genetic research suggests may be the same population. Weproposed a temporary existence in the spring, the Yellow Sea stable habitat, providenutrition for Ulva prolifera, the optimum temperature for rapid growth andreproduction hypothesis. After the MODIS SSH and SST data analysis, we found thatthe existence of a cold eddy diameter of about100km in the spring of the Yellow Sea,and rotation transfer process may be nutrition "pump" of the seabed to the upper watercolumn for the growth of Ulva prolifera, which reveals the possible kinds ofspace-time dynamic process, also provides new clues to reveal the dynamic process ofthe outbreak of the green tide in the world within the scope of the entire biological-physical-chemical coupling.
引文
匡廷云.光合作用原初光能转化过程的原理与调控.江苏科学技术出版社;2003.
    尹长城.第4章电子显微镜和图像三维重构与膜蛋白结构及功能的研究. In:杨福愉, editor.生物膜.北京:科学出版社;2005. p.39-49.
    李良璧,唐崇钦,李淑芹,匡廷云.第10章光合膜蛋白光系统II超分子复合物的结构与功能. In:杨福愉, editor.生物膜.北京:科学出版社;2005. p.112-26.
    Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing agiant. Photosynth Res.2005;85:15-32.
    Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M. Assembly and Disassembly ofPhycobilisomes. In: Shively JM, editor. Complex intracellular structures in prokaryotes: Springer-Verlag Berlin Heidelberg;2006.
    Adir N, Dobrovetsky Y, Lerner N. Structure of c-phycocyanin from the thermophilic cyanobacteriumSynechococcus vulcanus at2.5angstrom: Structural implications for thermal stability inphycobilisome assembly. J Mol Biol.2001;313:71-81.
    Adir N, Lerner N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possibleconnector between cores and rods in phycobilisomes. J Biol Chem.2003;278:25926-32.
    Adir N, Vainer R, Lerner N. Refined structure of c-phycocyanin from the cyanobacteriumSynechococcus vulcanus at1.6angstrom: insights into the role of solvent molecules in thermalstability and co-factor structure. Bba-Bioenergetics.2002;1556:168-74.
    Anderson LK, Toole CM. A model for early events in the assembly pathway of cyanobacterialphycobilisomes. Mol Microbiol.1998;30:467-74.
    Apt KE, Collier JL, Grossman AR. Evolution of the Phycobiliproteins. J Mol Biol.1995;248:79-96.
    Arteni AA, Ajlani G, Boekema EJ. Structural organisation of phycobilisomes from Synechocystis spstrain PCC6803and their interaction with the membrane. Bba-Bioenergetics.2009;1787:272-9.
    Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ. Structure and organization ofphycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res.2008;95:169-74.
    Awramik SM. The Oldest Records of Photosynthesis. Photosynth Res.1992;33:75-89.
    Back S, Lehvo A, Blomster J. Mass occurrence of unattached Enteromorpha intestinalis on the FinnishBaltic Sea coast. Ann Bot Fenn.2000;37:155-61.
    Bailey S, Grossman A. Photoprotection in Cyanobacteria: Regulation of Light Harvesting. PhotochemPhotobiol.2008;84:1410-20.
    Barber J. Photosynthetic energy conversion: natural and artificial. Chem Soc Rev.2009;38:185-96.
    Barber J, Morris EP, da Fonseca PCA. Interaction of the allophycocyanin core complex withphotosystem II. Photoch Photobio Sci.2003;2:536-41.
    Baumeister W, Steven AC. Macromolecular electron microscopy in the era of structural genomics.Trends Biochem Sci.2000;25:624-31.
    Behrenfeld M. Uncertain future for ocean algae. Nature Climate Change.2011;1:33-4.
    Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature.2003;426:630-5.
    Bennett A, Bogorad L. Complementary Chromatic Adaptation in a Filamentous Blue-green-alga. J CellBiol.1973;58:419-35.
    Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, et al. Characterization of theActivities of the CpeY, CpeZ, and CpeS Bilin Lyases in Phycoerythrin Biosynthesis in Fremyelladiplosiphon Strain UTEX481. J Biol Chem.2011;286:35509-21.
    Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends BiochemSci.1998;23:94-7.
    Blomster J, Back S, Fewer DP, Kiirikki M, Lehvo A, Maggs CA, et al. Novel morphology inEnteromorpha (Ulvophyceae) forming green tides. Am J Bot.2002;89:1756-63.
    Blot N, Wu XJ, Thomas JC, Zhang J, Garczarek L, Bohm S, et al. Phycourobilin in TrichromaticPhycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a PhycoerythrobilinLyase-Isomerase. J Biol Chem.2009;284:9290-8.
    Boisset N, Penczek PA, Taveau JC, You V, de Haas F, Lamy J. Overabundant single-particle electronmicroscope views induce a three-dimensional reconstruction artifact. Ultramicroscopy.1998;74:201-7.
    Brejc K, Ficner R, Huber R, Steinbacher S. Isolation, crystallization, crystial-structure analysis andrefinement of allophycocyanin from the cyanobacterium Spriulina platensis at2.3angstromresolution. J Mol Biol.1995;249:424-40.
    Brown SB, Houghton JD, Vernon DI. Biosynthesis of Phycobilins-Formation of the Chromophore ofPhytochrome, Phycocyanin and Phycoerythrin. J Photoch Photobio B.1990;5:3-23.
    Bryant DA, Cohenbazire G, Glazer AN. Characterization of the Biliproteins of Gloeobacter violaceusChromophore Content of a Cyanobacterial Phycoerythrin Carrying Phycourobilin Chromophore.Arch Microbiol.1981;129:190-8.
    Bryant DA, Guglielmi G, Marsac NT, Castets AM, Cohenbazire G. The Structure of CyanobacterialPhycobilisomes: a model. Arch Microbiol.1979;123:113-27.
    Cai C, Wu LA, Li CX, He PM, Li J, Zhou JH. Purification, crystallization and preliminary X-rayanalysis of phycocyanin and phycoerythrin from Porphyra yezoensis Ueda. Acta Crystallogr F.2011;67:579-83.
    Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC. Crystal structure of R-phycoerythrinfrom Polysiphonia urceolata at2.8angstrom resolution. J Mol Biol.1996;262:721-31.
    Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, et al. Molecular interactionsin rotavirus assembly and uncoating seen by high-resolution cryo-EM. P Natl Acad Sci USA.2009;106:10644-8.
    Chen YLL, Chen HY, Lin II, Lee MA, Chang J. Effects of cold eddy on phytoplankton production andassemblages in Luzon Strait bordering the South China Sea. J Oceanogr.2007;63:671-83.
    Cheng YC, Fleming GR. Dynamics of Light Harvesting in Photosynthesis. Annu Rev Phys Chem.2009;60:241-62.
    Clegg RM, Sener M, Govindjee. From Forster resonance energy transfer to coherent resonance energytransfer and back. Optical Biopsy Vii.2010;7561.
    Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW. Rings, ellipses and horseshoes:how purple bacteria harvest solar energy. Photosynth Res.2004;81:207-14.
    Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD. Coherently wired light-harvestingin photosynthetic marine algae at ambient temperature. Nature.2010;463:644-U69.
    Crisp MD, Appels R, M. SF, S. KWM. Phylogenetic evaluation of5S ribosomal RNA gene and spacerin the Callistachys group (Fabaceae:Mirbelieae) Plant Systematics and Evolution1999;218:33-42.
    Daum B, Nicastro D, Il JA, McIntosh JR, Kuhlbrandt W. Arrangement of Photosystem II and ATPSynthase in Chloroplast Membranes of Spinach and Pea. Plant Cell.2010;22:1299-312.
    David L, Marx A, Adir N. High-Resolution Crystal Structures of Trimeric and Rod Phycocyanin. J MolBiol.2011;405:201-13.
    de Marsac NT, Cohen-bazire G. Molecular composition of cyanobacterial phycobilisomes. P Natl AcadSci USA.1977;74:1635-9.
    Debreczeny MP, Sauer K, Zhou JH, Bryant DA. Comparison of Calculated and ExperimentallyResolved Rate Constants for Excitation-Energy Transfer in C-Phycocyanin.2. Trimers. J PhysChem-Us.1995;99:8420-31.
    Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants.Bba-Bioenergetics.2005;1706:12-39.
    Des Marais DJ. Evolution-When did photosynthesis emerge on earth? Science.2000;289:1703-5.
    Doust AB, Marai CNJ, Harrop SJ, Wilk KE, Curmi PMG, Scholes GD. Developing a structure-functionmodel for the cryptophyte phycoerythrin545using ultrahigh resolution crystallography and ultrafastlaser spectroscopy. J Mol Biol.2004;344:135-53.
    Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, et al. Reconstitution, characterisationand mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacteriumAnabaena sp. PCC7120. J Mol Biol.1998;278:369-88.
    Ducret A, Sidler W, Wehrli E, Frank G, Zuber H. Isolation, characterization and electron microscopyanalysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp PCC7120.Eur J Biochem.1996;236:1010-24.
    Duerring M, Huber R, Bode W. The Structure of Gamma-N-Methylasparagine in C-Phycocyanin fromMastigocladus laminosus and Agmenellum quadruplicatum. Febs Lett.1988;236:167-70.
    Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, et al. Evidence for wavelike energytransfer through quantum coherence in photosynthetic systems. Nature.2007;446:782-6.
    Englemann TW. Farbe and assimilation. Bot Zeit1883;41:1-13.
    Englemann TW. Untersuchungen über die quantativen Beziehungen zwischen Absorption des Lichtesund Assimilation in Pflanzenzellen. Bot Zeit.1884;42:81-93,7-105.
    Fairchild CD, Jones IK, Glazer AN. Absence of Glycosylation on Cyanobacterial PhycobilisomeLinker Polypeptides and Rhodophytan Phycoerythrins. J Bacteriol.1991;173:2985-92.
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of moderneukaryotic phytoplankton. Science.2004;305:354-60.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosyntheticoxygen-evolving center. Science.2004;303:1831-8.
    Fleming GR, Cho MH. Chromophore-solvent dynamics. Annu Rev Phys Chem.1996;47:109-34.
    F rster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik.1948;437:55-75.
    Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC. Functional genomic analysis of the HY2familyof ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell.2001;13:965-78.
    Fuglistaller P, Mimuro M, Suter F, Zuber H. Allophycocyanin complexes of the phycobilisome fromMastigocladus laminosus-influence of the linker polypeptide-L-8.9C on the spectral properties ofthe phycobiliprotein subunits.. Biol Chem Hoppe-Seyler.1987;368:353-67.
    Gantt E. Phycobilisomes-light harvesting pigment complexes. Bioscience.1975;25:781-8.
    Gantt E. Stucture and function of phycobilisomes: Light harvesting pigment complexes in red andblue-green algae. International Review of Cytology.1980;66:45-80.
    Gantt E. Phycobilisomes. Annu Rev Plant Phys.1981;32:327-47.
    Gantt E, Conti SF. Ultrastructure of Porphyridium cruentum J Cell Biol.1965;26:365-&.
    Gantt E, Conti SF. Granules associated with chloroplast lamellae of Porphyridium cruentum. J CellBiol.1966;29:423-&.
    Gantt E, Lipschul.Ca. Phycobilisomes of Porphyridium cruentum.1. Isolation. J Cell Biol.1972;54:313-&.
    Gao S, Chen X, Yi Q, Wang G, Pan G, Lin A, et al. A strategy for the proliferation of Ulva prolifera,main causative species of green tides, with formation of sporangia by fragmentation. PLoS One.2010;5:e8571.
    Gao X, Zhang N, Wei TD, Su HN, Xie BB, Dong CC, et al. Crystal structure of the N-terminal domainof linker L(R) and the assembly of cyanobacterial phycobilisome rods. Mol Microbiol.2011;82:698-705.
    Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, et al. Phycobilisome Structure in theCyanobacteria Mastigocladus laminosus and Anabaena Sp Pcc-7120. Eur J Biochem.1992;205:907-15.
    Glazer AN. Light Harvesting by Phycobilisomes. Annu Rev Biophys Bio.1985;14:47-77.
    Glazer AN. Light Guides-Directional Energy-Transfer in a Photosynthetic Antenna. J Biol Chem.1989;264:1-4.
    Gomez-Lojero C, Perez-Gomez B, Shen G, Schluchter WM, Bryant DA. Interaction offerredoxin:NADP+oxidoreductase with phycobilisomes and phycobilisome substructures of thecyanobacterium Synechococcus sp. strain PCC7002. Biochemistry-Us.2003;42:13800-11.
    Goulielmakis E, Loh ZH, Wirth A, Santra R, Rohringer N, Yakovlev VS, et al. Real-time observation ofvalence electron motion. Nature.2010;466:739-U7.
    Groot ML, van Grondelle R. Femtosecond time-resolved infrared spectroscopy: Springer, Po Box17,3300Aa Dordrecht, Netherlands;2008.
    Grossman AR, Bhaya D, He QF. Tracking the light environment by cyanobacteria and the dynamicnature of light harvesting. J Biol Chem.2001;276:11449-52.
    Grossman AR, Schaefer MR, Chiang GG, Collier JL. The Phycobilisome, a Light-Harvesting ComplexResponsive to Environmental-Conditions. Microbiol Rev.1993;57:725-49.
    Guan XY, Qin S, Zhao FQ, Zhang XW, Tang XX. Phycobilisomes linker family in cyanobacterialgenomes: divergence and evolution. Int J Biol Sci.2007;3:434-45.
    Guglielmi G, Cohenbazire G, Bryant DA. The Structure of Gloeobacter-Violaceus and ItsPhycobilisomes. Arch Microbiol.1981;129:181-9.
    Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol.2009;16:334-42.
    Gutu A, Kehoe DM. Emerging Perspectives on the Mechanisms, Regulation, and Distribution of LightColor Acclimation in Cyanobacteria. Mol Plant.2012;5:1-13.
    Gwizdala M, Wilson A, Kirilovsky D. In Vitro Reconstitution of the Cyanobacterial PhotoprotectiveMechanism Mediated by the Orange Carotenoid Protein in Synechocystis PCC6803. Plant Cell.2011;23:2631-43.
    Harel E, Engel GS. Quantum coherence spectroscopy reveals complex dynamics in bacteriallight-harvesting complex2(LH2). P Natl Acad Sci USA.2012;109:706-11.
    Holm L, Sander C. Structural Alignment of Globins, Phycocyanins and Colicin-A. Febs Lett.1993;315:301-6.
    Huang LX, McCluskey MP, Ni H, LaRossa RA. Global gene expression profiles of the cyanobacteriumSynechocystis sp strain PCC6803in response to irradiation with UV-B and white light. J Bacteriol.2002;184:6845-58.
    Huber R. A Structural Basis of Light Energy and Electron-Transfer in Biology (Nobel Lecture).Angewandte Chemie-International Edition in English.1989;28:848-69.
    Hwang H, Rossky PJ. An analysis of electronic dephasing in the spin-boson model. J Chem Phys.2004;120:11380-5.
    Ishizaki A, Fleming GR. Theoretical examination of quantum coherence in a photosynthetic system atphysiological temperature. P Natl Acad Sci USA.2009;106:17255-60.
    Ishizaki A, Fleming GR. Quantum Coherence in Photosynthetic Light Harvesting. Annu Rev CondenMa P.2012;3:333-61.
    Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single ComplexLaser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation EnergyTransfer, and Electron-Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev.2011;111:4546-98.
    Jiang P, Wang JF, Cui YL, Li YX, Lin HZ, Qin S. Molecular phylogenetic analysis of attachedUlvaceae species and free-floating Enteromorpha from Qingdao coasts in2007. Chin J OceanolLimn.2008;26:276-9.
    Jonas DM. Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem.2003;54:425-63.
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure ofcyanobacterial photosystem I at2.5angstrom resolution. Nature.2001;411:909-17.
    Kamiya N, Shen JR. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcusvulcanus at3.7-angstrom resolution. P Natl Acad Sci USA.2003;100:98-103.
    Kehoe DM. Chromatic adaptation and the evolution of light color sensing in cyanobacteria. P NatlAcad Sci USA.2010;107:9029-30.
    Kehoe DM, Gutu A. Responding to color: The regulation of complementary chromatic adaptation.Annu Rev Plant Biol.2006;57:127-50.
    Kirchhoff H, Tremmel I, Haase W, Kubitscheck U. Supramolecular photosystem II organization ingrana thylakoid membranes: Evidence for a structured affangement. Biochemistry-Us.2004;43:9204-13.
    Kirilovsky D, Kerfeld CA. The orange carotenoid protein in photoprotection of photosystem II incyanobacteria. Bba-Bioenergetics.2012;1817:158-66.
    Klotz AV, Leary JA, Glazer AN. Posttranslational methylation of asparaginyl residues-identification ofbeta-71, gamma-N-methylasparagine in allophycocyanin. J Biol Chem.1986;261:5891-4.
    Kondo K, Geng XX, Katayama M, Ikeuchi M. Distinct roles of CpcG1and CpcG2in phycobilisomeassembly in the cyanobacterium Synechocystis sp PCC6803. Photosynth Res.2005;84:269-73.
    Kresge N, Simoni RD, Hill RL. Phycobilisome Architecture: the Work of Alexander N. Glazer. J BiolChem.2009;284.
    Kurisu G, Zhang HM, Smith JL, Cramer WA. Structure of the cytochrome b(6)f complex of oxygenicphotosynthesis: Tuning the cavity. Science.2003;302:1009-14.
    Kuzminov FI, Karapetyan NV, Rakhimberdieva MG, Elanskaya IV, Gorbunov MY, Fadeev VV.Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp.PCC6803mutant using non-linear laser fluorimetry. Bba-Bioenergetics.2012.
    Lee H, Cheng YC, Fleming GR. Coherence dynamics in photosynthesis: Protein protection of excitoniccoherence. Science.2007;316:1462-5.
    Liberton M, Austin JR, Berg RH, Pakrasi HB. Unique Thylakoid Membrane Architecture of aUnicellular N(2)-Fixing Cyanobacterium Revealed by Electron Tomography. Plant Physiol.2011;155:1656-66.
    Lin A, Shen S, Wang J, Yan B. Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol.2008;50:622-9.
    Lin H, Jiang P, Zhang J, Wang J, Qin S, Sun S. Genetic and Marine Cyclonic Eddy Analyses on theLargest Macroalgal Bloom in the World. Environmental Science&Technology.2011;45:5996-6002.
    Liu DY, Keesing JK, Xing QU, Shi P. World's largest macroalgal bloom caused by expansion ofseaweed aquaculture in China. Mar Pollut Bull.2009;58:888-95.
    Liu JJ, Zhang XC, Sui ZH, Zhang XH, Mao YX. Cloning and characterization of c-phycocyaninoperon from the cyanobacterium Arthrospira platensis FACHB341. J Appl Phycol.2005a;17:181-5.
    Liu JY, Jiang T, Zhang JP, Liang DC. Crystal structure of allophycocyanin from red algae Porphyrayezoensis at2.2-angstrom resolution. J Biol Chem.1999;274:16945-52.
    Liu L, Zhang Y, Zhou B, Aartsma T. Supramolecular architecture of hemiellipsoidal phycobilisome andthylakoid membrane in Porphyridium cruentum. Photosynth Res.2007;91:168-.
    Liu LN, Chen XL, Zhang YZ, Zhou BC. Characterization, structure and function of linker polypeptidesin phycobilisomes of cyanobacteria and red algae: An overview. Bba-Bioenergetics.2005b;1708:133-42.
    Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD. The antenna system of photosystem IIfrom Thermosynechococcus elongatus at3.2angstrom resolution. Photosynth Res.2005;86:175-84.
    Lundell DJ, Glazer AN. Molecular architecture of a light-harvesting antenna-structure of the18-Score-rod subassembly of the Synechococcus-6301phycobilisome.. J Biol Chem.1983;258:894-901.
    MacColl R. Cyanobacterial phycobilisomes. J Struct Biol.1998;124:311-34.
    MacColl R. Allophycocyanin and energy transfer. Bba-Bioenergetics.2004;1657:73-81.
    MacColl R, Eisele LE, Menikh A. Allophycocyanin: Trimers, monomers, subunits, and homodimers.Biopolymers.2003;72:352-65.
    MacDonald TM, Dubois L, Smith LC, Campbell DA. Sensitivity of cyanobacterial antenna, reactioncenter and CO2assimilation transcripts and proteins to moderate UVB: Light acclimation potentiatesresistance to UVB. Photochem Photobiol.2003;77:405-12.
    Migita CT, Zhang XH, Yoshida T. Expression and characterization of cyanobacterium heme oxygenase,a key enzyme in the phycobilin synthesis-Properties of the heme complex of recombinant activeenzyme. Eur J Biochem.2003;270:687-98.
    Miller CA, Leonard HS, Pinsky IG, Turner BM, Williams SR, Harrison L, et al. Biogenesis ofphycobiliproteins-III. CpcM is the asparagine methyltransferase for phycobiliprotein beta-subunitsin cyanobacteria. J Biol Chem.2008;283:19293-300.
    Millian JD, Meade RH. World-wide delivery of river sediment to the oceans. Journal of Geology.1983;91:1-21.
    Montgomery BL, Casey ES, Grossman AR, Kehoe DM. AplA, a member of a new class ofphycobiliproteins lacking a traditional role in photosynthetic light harvesting. J Bacteriol.2004;186:7420-8.
    Nagayama K, Danev R. Phase contrast electron microscopy: development of thin-film phase plates andbiological applications. Philos T R Soc B.2008;363:2153-62.
    Nelissen B, Vandepeer Y, Wilmotte A, Dewachter R. An Early Origin of Plastids within theCyanobacterial Divergence Is Suggested by Evolutionary Trees Based on Complete16sRibosomal-Rna Sequences. Mol Biol Evol.1995;12:1166-73.
    Nelson TA, Nelson AV, Tjoelker M. Seasonal and spatial patterns of "Green tides"(Ulvoid algalblooms) and related water quality parameters in the coastal waters of Washington state, USA. BotMar.2003;46:263-75.
    Nield J, Rizkallah PJ, Barber J, Chayen NE. The1.45angstrom three-dimensional structure ofC-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol.2003;141:149-55.
    Orlova EV, Saibil HR. Structure determination of macromolecular assemblies by single-particleanalysis of cryo-electron micrographs. Curr Opin Struc Biol.2004;14:584-90.
    Orlova EV, Saibil HR. Structural Analysis of Macromolecular Assemblies by Electron Microscopy.Chem Rev.2011;111:7710-48.
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S. Crystal structure of alight-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Bioph Res Co.2001;282:893-8.
    Pang SJ, Liu F, Shan TF, Xu N, Zhang ZH, Gao SQ, et al. Tracking the algal origin of the Ulva bloomin the Yellow Sea by a combination of molecular, morphological and physiological analyses. MarEnviron Res.2010;69:207-15.
    Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen JZ, et al. Long-lived quantumcoherence in photosynthetic complexes at physiological temperature. P Natl Acad Sci USA.2010;107:12766-70.
    Panitchayangkoon G, Voronine DV, Abramavicius D, Caram JR, Lewis NHC, Mukamel S, et al. Directevidence of quantum transport in photosynthetic light-harvesting complexes. P Natl Acad Sci USA.2011;108:20908-12.
    Pedersen MO, Borch J, Hojrup P, Cox RP, Miller M. The light-harvesting antenna of Chlorobiumtepidum: Interactions between the FMO protein and the major chlorosome protein CsmA studied bysurface plasmon resonance. Photosynth Res.2006;89:63-9.
    Piven I, Ajlani G, Sokolenko A. Phycobilisome linker proteins are phosphorylated in Synechocystis spPCC6803. J Biol Chem.2005;280:21667-72.
    Pizarro SA, Sauer K. Spectroscopic study of the light-harvesting protein C-phycocyanin associatedwith colorless linker peptides. Photochem Photobiol.2001;73:556-63.
    Porter G, Tredwell CJ, Searle GFW, Barber J. Picosecond Time-Resolved Energy-Transfer inPorphyridium-Cruentum.1. Intact Alga. Biochim Biophys Acta.1978;501:232-45.
    Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, et al. Improved analyses ofchanges and uncertainties in sea surface temperature measured in situ sice the mid-nineteenthcentury: The HadSST2dataset. J Climate.2006;19:446-69.
    Read EL, Lee H, Fleming GR. Photon echo studies of photosynthetic light harvesting. Photosynth Res.2009;101:233-43.
    Reuter W, Wiegand G, Huber R, Than ME. Structural analysis at2.2angstrom of orthorhombic crystalspresents the asymmetry of the allophycocyanin-linker complex, AP center dot L-C(7.8), fromphycobilisomes of Mastigocladus laminosus. P Natl Acad Sci USA.1999;96:1363-8.
    Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rogner M, Koenig F. The Plasma Membrane of theCyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains. Plant Cell.2011;23:2379-90.
    Rippka R, Waterbury J, Cohen-bazire G. A cyanobacterium which lacks thylakoids. Arch Microbiol.1974;100:419-36.
    Rochaix JD. Regulation of photosynthetic electron transport. Bba-Bioenergetics.2011;1807:375-83.
    Saha S, Moorthi S, Pan HL, Wu XR, Wang JD, Nadiga S, et al. The Ncep Climate Forecast SystemReanalysis. B Am Meteorol Soc.2010;91:1015-57.
    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, et al. Isolated single-cycleattosecond pulses. Science.2006;314:443-6.
    Saunee NA, Williams SR, Bryan DA, Schluchter WM. Biogenesis of phycobiliproteins-II. CpcS-I andCpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82ofbeta-phycocyanin and Cys-81of allophycocyanin subunits in Synechococcus sp PCC7002. J BiolChem.2008;283:7513-22.
    Scheer H, Zhao KH. Biliprotein maturation: the chromophore attachment. Mol Microbiol.2008;68:263-76.
    Schmidt M, Patel A, Zhao Y, Reuter W. Structural basis for the photochemistry ofalpha-phycoerythrocyanin. Biochemistry-Us.2007;46:416-23.
    Schories D, Reise K. Germination and anchorage of Enteromorpha sp. in sediments of the Wadden Sea.Helgol nder Meeresunter1993;47:275-85.
    Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, et al. Structural Insight intoNascent Polypeptide Chain-Mediated Translational Stalling. Science.2009;326:1412-5.
    Sener M, Strumpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, et al. F rster Energy TransferTheory as Reflected in the Structures of Photosynthetic Light-Harvesting Systems. Chemphyschem.2011;12:518-31.
    Shen G, Schluchter WM, Bryant DA. Biogenesis of phycobiliproteins-I. cpcS-I and cpcU mutants ofthe cyanobacterium Synechococcus sp PCC7002define a heterodimeric phyococyanobilin lyasespecific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem.2008;283:7503-12.
    Shimada S, Yokoyama N, Arai S, Hiraoka M. Phylogeography of the genus Ulva (Ulvophyceae,Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. Journal ofApplied Phycology.2008;20:979-89.
    Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, et al. Diversity and evolution ofphycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol.2007;8.
    Stadnichuk IN, Bulychev AA, Lukashev EP, Sinetova MP, Khristin MS, Johnson MP, et al. Far-redlight-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalgaGaldieria sulphuraria and photosystems-related heterogeneity of phycobilisome population.Bba-Bioenergetics.2011;1807:227-35.
    Stadnichuk IN, Lukashev EP, Elanskaya IV. Fluorescence changes accompanying short-term lightadaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp PCC6803and phycobiliprotein-impaired mutants: State1/State2transitions and carotenoid-induced quenchingof phycobilisomes. Photosynth Res.2009;99:227-41.
    Stec B, Troxler RF, Teeter MM. Crystal structure of C-phycocyanin from Cyanidium caldariumprovides a new perspective on phycobilisome assembly. Biophys J.1999;76:2912-21.
    Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR. A green light-absorbing phycoerythrin ispresent in the high-light-adapted marine cyanobacterium Prochlorococcus sp MED4. EnvironMicrobiol.2005;7:1611-8.
    Stock D, Leslie AGW, Walker JE. Molecular architecture of the rotary motor in ATP synthase. Science.1999;286:1700-5.
    Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ. The supramolecular architecture, function, andregulation of thylakoid membranes in red algae: an overview. Photosynth Res.2010;106:73-87.
    Sui S. Three-dimenstional electron microscopy in biology enters. Acta Biophysica Sinica.2007;23:228.
    Sui ZH, Zhang XC, Cheng XJ. Comparison of phycobiliproteins from Gracilaria lemaneiformis(Rhodophyceae) and its pigment mutants in spectral and molecular respects. Acta Bot Sin.2002;44:557-61.
    Sun L, Wang SM. Allophycocyanin complexes from the phycobilisome of a thermophilic blue-greenalga Myxosarcina concinna Printz. J Photoch Photobio B.2003;72:45-53.
    Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, et al. Emerging challenges: massive green algae bloomsin the Yellow Sea. Nature Procedings.2008;http://hdl.handle.net/10101/npre.2008.2266.1.
    Swanson RV, Glazer AN. Phycobiliprotein Methylation-Effect of the Gamma-N-MethylasparagineResidue on Energy-Transfer in Phycocyanin and the Phycobilisome. J Mol Biol.1990;214:787-96.
    Tian LJ, Gwizdala M, van Stokkum IHM, Koehorst RBM, Kirilovsky D, van Amerongen H.Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and MutantPhycobilisomes Isolated from the Cyanobacterium Synechocystis PCC6803. Biophys J.2012;102:1692-700.
    Tian LJ, van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, van Amerongen H. Site, Rate,and Mechanism of Photoprotective Quenching in Cyanobacteria. J Am Chem Soc.2011;133:18304-11.
    Tronrud DE, Wen JZ, Gay L, Blankenship RE. The structural basis for the difference in absorbancespectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res.2009;100:79-87.
    Tu JM, Zhou M, Haessner R, Ploscher M, Eichacker L, Scheer H, et al. Toward a Mechanism forBiliprotein Lyases: Revisiting Nucleophilic Addition to Phycocyanobilin. J Am Chem Soc.2009;131:5399-+.
    Udovicic F, McFadden GI, Ladiges PY. Phylogeny of Eucalyptus and Angophora based on5S rDNAspacer sequence data. Mol Phylogenet Evol.1995;4:247-56.
    Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at aresolution of1.9angstrom. Nature.2011;473:55-U65.
    Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K. Macroalgal blooms in shallowestuaries: Controls and ecophysiological and ecosystem consequences. Limnol Oceanogr.1997;42:1105-18.
    von Stosch H. Wirkungen von jod un arsenit auf meeresalgen in kultur. Proceedings of the InternationalSeaweed Symposium.1963;4:142-50.
    Wang GC, Zhou BC, Zeng CK, Tseng CK. Isolation, properties and spatial site analysis of gammasubunits of B-phycoerythrin and R-phycoerythrin. Sci China Ser C-Life Sci.1998;41:9-17.
    Wang JF, Jiang P, Cui YL, Li N, Wang MQ, Lin HZ, et al. Molecular analysis of green-tide-formingmacroalgae in the Yellow Sea. Aquat Bot.2010;93:25-31.
    Wanner G, Kost HP. Investigations on the Arrangement and Fine-Structure of Porphyridium cruentumPhycobilisomes. Protoplasma.1980;102:97-109.
    Wei Q, Zhan R, Zeng J, Li R. Distributions and influence factors of the chemical parameters in theSouthern Yellow Sea in spring. Marine Sciences.2010;34:52-60(in Chinese with English abstract).
    Wilkens S, Borchardt D, Weber J, Senior AE. Structural characterization of the interaction of the deltaand alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy.Biochemistry-Us.2005;44:11786-94.
    Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D. A soluble carotenoid proteininvolved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell.2006;18:992-1007.
    Wolf M, Garcea RL, Grigorieff N, Harrison SC. Subunit interactions in bovine papillomavirus. P NatlAcad Sci USA.2010;107:6298-303.
    Wonga GTF, Gongb G-C, Liuc K-K, Paic S-C.'Excess nitrate' in the East China Sea. Estuarine, Coastaland Shelf Science.1998;46:411-8.
    Xiong J, Bauer CE. Complex evolution of photosynthesis. Annu Rev Plant Biol.2002;53:503-21.
    Yamanaka G, Glazer AN, Williams RC. Molecular Architecture of a Light-Harvesting Antenna-Comparison of Wild-Type and Mutant Synechococcus-6301Phycobilisomes. J Biol Chem.1980;255:1004-10.
    Yamanaka G, Lundell DJ, Glazer AN. Molecular architecture of a light-harvesting antenna-isolationand characterization of phycobilisome subassembly particles. J Biol Chem.1982;257:4077-86.
    Yi ZW, Huang H, Kuang TY, Sui SF. Three-dimensional architecture of phycobilisomes from Nostocflagelliforme revealed by single particle electron microscopy. Febs Lett.2005;579:3569-73.
    Yu MH, Glazer AN. Cyanobacterial phycobilisomes-role of the linker polypeptides in the assembly ofphycocyanin. J Biol Chem.1982;257:3429-33.
    Yu MH, Glazer AN, Williams RC. Cyanobacterial phycobilisomes-phycocyanin assembly in the rodsubstrctures of Anabaena variabilis phycobilisomes.. J Biol Chem.1981;256:3130-6.
    Zhang K, Zhang Y, Hu Z, Ji G, Sun F. Development and Frontier of Electron Microscopy3DReconstruction. Acta Biophysica Sinica.2010a;26:533-59.
    Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH.3.3angstrom Cryo-EM Structure of a NonenvelopedVirus Reveals a Priming Mechanism for Cell Entry. Cell.2010b;141:472-82.
    Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, et al. Near-atomic resolutionusing electron cryomicroscopy and single-particle reconstruction. P Natl Acad Sci USA.2008;105:1867-72.
    Zhang X, Wang H, Mao Y, Liang C, Zhuang Z, Wang Q, et al. Somatic cells serve as a potentialpropagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. Journal ofApplied Phycology.2010c;22:173-80.
    Zhang XC. Diversity of phycobilisomes and phycobiliproteins in Gracilaria. InternationalSymposium on Progress and Prospect of Marine Biotechnology1999. p.273-9.
    Zhao FQ, Qin S. Evolutionary analysis of phycobiliproteins: Implications for their structural andfunctional relationships. J Mol Evol.2006;63:330-40.
    Zhao J, Jiang P, Liu Z, Wang J, Cui Y, Qin S. Genetic variation of Ulva (Enteromorpha) prolifera(Ulvales, Chlorophyta)--the causative species of the green tides in the Yellow Sea, China. Journalof Applied Phycology.2011;23:227-33.
    Zhao KH, Su P, Bohm S, Song B, Zhou M, Bubenzer C, et al. Reconstitution of phycobilisomecore-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta.2005;1706:81-7.
    Zhu Y, Chang R. Preliminary study of the dynamic origin of the distribution pattern of bottomsediments on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea. Estuar CoastShelf S.2000;51:663-80.
    Zigmantas D, Ma Y-Z, Read EL, Fleming GR. Nonlinear femtosecond optical spectroscopy techniquesin photosynthesis: Springer, Po Box17,3300Aa Dordrecht, Netherlands;2008.
    Zigmantas D, Read EL, Mancal T, Brixner T, Gardiner AT, Cogdell RJ, et al. Two-dimensionalelectronic spectroscopy of the B800-B820light-harvesting complex. P Natl Acad Sci USA.2006;103:12672-7.
    Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, et al. Crystal structure of photosystem IIfrom Synechococcus elongatus at3.8angstrom resolution. Nature.2001;409:739-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700