理化因子诱导的CP43和CP47结构与功能变化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CP43和CP47是PSII中位于类囊体膜上的两种内周天线色素蛋白复合体,它们都是由六个跨膜的α-螺旋和五个膜外环组成。CP43和CP47的主要功能是把光系统II(PSII)外周天线色素蛋白复合体(LHCII)吸收的能量传给反应中心(RC),从而引起光化学反应。因此,研究CP43和CP47的结构与功能对于揭示植物光合作用高效吸能、传能的分子机理具有重要意义。由于CP43和CP47的分离纯化比较困难,所以相对于其它的光合膜蛋白来说,人们对CP43和CP47的研究比较少。在本文中,我们在分离、纯化CP43和CP47的基础上,采用多种光谱学和波谱学技术对CP43和CP47在GuHCl和高温作用下的变性过程及其结构与功能的变化规律进行了比较深入的研究,获得了如下结果:
     1. CP43和CP47膜外区的结构特点及盐酸胍(GuHCl)引起的变性研究
     我们用荧光光谱、园二色(CD)光谱研究了GuHCl引起CP43和CP47的变性过程及其膜外区的结构特点。研究发现:CP43和CP47的膜外区具有一定的有序结构,而不是一种没有规则的伸展状态;和CP43相比,CP47的三级结构及Chl a的微环境对GuHCl更敏感。在GuHCl作用下,从β-Car到Chl a的能量传递变化和三级结构的变化密切相关,而与二级结构变化的相关性则较小;和大多数水溶性蛋白不一样,CP43和CP47对GuHCl变性有一定的抵抗力,而且其变性过程不表现为二态过程,这些都是膜蛋白的特点。
     2 CP43和CP47中与芳香族氨基酸有关的能量传递研究
     我们用吸收光谱、荧光光谱并参照PSII的3.5 ?的晶体结构分析结果研究了CP43和CP47中与芳香族氨基酸有关的能量传递。发现:和水溶性蛋白不一样,CP43和CP47中的酪氨酸(Tyrs)并不能有效的把其能量传给色氨酸(Trps);CP43和CP47中的芳香族氨基酸能通过F?ster机制和Dexter机制把其能量传给Chl a,并且CP47中的传递效率要大于CP43;在CP47中F?ster机制是芳香族氨基酸和Chl a之间能量传递的主要方式,而在CP43中Dexter机制则是主要方式。这些结果也暗示了,太阳光中的紫外辐射对植物来说除了其伤害作用以外也有一定的益处。
     3 GuHCl诱导CP43和CP47变性的太赫兹(THz)光谱研究
     THz时域光谱技术(THz-TDS)是研究分子构型状态的一个新工具。近年来,
CP43 and CP47 are the core antenna subunits of photosystem II (PSII). Both CP43 and CP47 have six transmembraneα-helices, which are separated by five extrinsic loop domains. The main function of CP43 and CP47 are to accept excitation energy that is harvested by the light-harvesting complex II (LHC II) and then transfer it directly to the PSII reaction center (RC). So, it plays a key role to study the structure and function of CP43 and CP47 for elucidating the mechanism of the efficient energy absorption and transfer in plants. Because of the difficulties in purification, relative to the other membrane proteins, few studies were focused on CP43 and CP47. In this dissertation, using some spectroscopy techniques, we further studied the structure and function changes of CP43 and CP47 by the denaturation induced by GuHCl and high temperature. The results are as follows:
     1 The structural characteristics of the extramembrane domains and guanidine hydrochloride-induced denaturation of Photosystem II Core antenna complexes CP43 and CP47
     The structure characteristics of the extramembrane domains and guanidine hydrochloride-induced denaturation of Photosystem II (PSII) core antenna complexes CP43 and CP47 were investigated using fluorescence emission and circular dichroism (CD) spectra. It was found that the extramembrane domains of CP43 and CP47 do possess a certain degree of secondary and tertiary structure and not a complete random coil conformation. The tertiary structure and the Chl a microenvironment of CP47 are more sensitive to GuHCl than that of CP43. Changes in energy transfer fromβ-Car to Chl a corresponded well to changes in the tertiary structure while their correlation with changes in the secondary structure was rather poor. Unlike most of
引文
Akabori K, Tsukamoto H, Tsukihara CP47 et al. 1988. Disintegration and reconstitution of photosystem Ⅱ reaction center core complex Ⅰ . preparation and characterization of three different types of subcomplex. Biochim Biophys Acta, 932: 345-357
    Alfonson M, Montoya G, Cases R, et al. 1994. Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry, 33: 10494–10500
    Anderson JM, Waldron JC, Thorne SW 1978. chlorophyll-protein complexes of spinach and barley thylakoids. Spectroal characteristics of six complexes resolved by an improved electrophoretic procedure. FEBS lett 92: 227-233
    Arnon D.I. 1984, Copper enzymes in isoloted chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 35: 15-44
    Aro E. M., Hundal T., Carlberg I. et al. 1990. In vitro studies on light-induced inhibition of Photosystem II and D1-protein degradation at low temperatures. Biochimica et Biophysica Acta 1019: 269-275
    Arrndo JLR, Mantsch HH 1993. Biomembrane structure from FTIR spectroscopy. Spectrochimica Acta Rev, 15: 53-69
    Averitt R. D., Rodriguez G., Siders J. L. W. et al. 2000. Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7 ,J. Opt. Soc. Am. B 17: 327-331
    Barbarto R, Race HL, Friso G et al. 1991 Chlorophyll levels in the pigment binding proteins of Photosystem II. A study based on chlorophyll to cytochrome ratio in different Photosystem II preparations. FEBS Lett 286: 86-90
    Barber J., Chapman D. J., Telfer A. 1987. Characterisation of a PS II reaction centre isolated from the chloroplasts of Pisum sativum. FEBS Lett., 220: 67-73
    Barber J, Morris E, Büchel C 2000. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta, 1459: 239–247
    Barrow C.J., Yasuda A., Kenny P.T.M.et al. 1992. Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer disease analysis of circular dichroism spectra. J Mol Biol, 225: 1075-1093
    Barry B. A., Boerner. R. J., de Paula J. C. 1994. In: The Molecular Biology of cyanobacteria. Bryant D. A. eds. Dordrecht: Kluwer Academic, 217-257
    Bassi R, Hoyer-Hansen G, Barbato R et al. 1987. Chlorophyll-proteins of the photosystem II antenna system J. Biol. Chem. 262: 13333-13341
    Beard M. C., Turner G. M., Schmuttenmaer C. A. 2000. Transient Photoconductivity in GaAs as Measured by Time-Resolved THz Spectroscopy. Phys. Rev. B. 62: 15764-15777
    Beard M. C., Turner G. M., Schmuttenmaer C. A. 2002. THz Spectroscopy. J. Phys. Chem. B, 106: 7146-7159
    Berthold D. A., Babcock G.T., Yocum C.F. 1981. A hightly-resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron transprot activities. FEBS Lett 134: 231-234
    Bhuyan A.K. 2002. Protein stabilization by urea and guanidine hydrochloride. Biochemistry, 41: 13386-13394
    Bian W., Wong R., Sun S., et al. 2000. Study on unfolding process of neo-trichosanthin in the presence of GdnHCl. Spectros. Spect. Ana., 20: 492-494
    Booth P.J., Templer R.H., meijbeng W. et al. 2001. In vitro studies of membrane protein folding. Crit. Rev. Bioche. Mo. Biol., 36: 501-603
    Bricker TM 1992. Oxygen evolution in the absence of the 33-Kilodalton manganese-stabilizing protein. Biochemistry, 31: 4623-4628
    Bricker TM 1990 The structure and function of Cpa-1 and Cpa-2 in photosystem II. Photosynthesis Res, 24: 1–13
    Bricker TM, Frankel LK 2002 The structure and function of CP47 and CP43 in photosystem II. Photosynth Res, 72: 131–146
    Brucherseifer M, Nagel M, Haring P et al. 2000 Label-free probing of the binding state of DNA by time domain terahertz sensing. Appl Phys Lett, 77: 4049–4051.
    Buchel C., Morris E., Barber J. 2000. Crystallisation of CP43, a Chlorophyll Binding Protein of Photosystem II: An Electron Microscopy Analysis of Molecular Packing. Journal of Structural Biology, 131: 181–186
    Burstein E. A., Vedenkina N. S., Ivkova M. N. 1973. Fluorescence and the location of Trp residues in protein molecules. Photochem Photobiol, 18: 263-279
    Callahan FE, Wergin WP, Nelson N. et al. 1989. Distribution of thylakoid proteins between stromal and granal lamellae in Spirodela: dual location of photosystem II components. Plant Physiol. 91:629-635
    Chang H C, Habjiwuajm R, Yicynm C CP43, et a1. 1994. Exciton level structure and dynamics kin the CP47 antenna eomplex of photosystem I.J Phys Chem, 98: 7717-7724
    Christiane F, 1wona A, Beverley R Tyrosine, et a1. 1995. The nuclear-encoded chlorophyll-binding photosystem Ⅱ protein is stable in the absence of pigments. J Biol Chem, 270: 30141-30I47
    De Las Rivas J, Barber J 1997. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36: 8897–8903
    De Weerd F.L., van Stokkum I.H.M., van Amerongen H., et al. 2002. Pathways for Energy Transfer in the Core Light-Harvesting Complexes CP43 and CP47 of Photosystem II. Biophys. J. 82: 1586-1597
    Dubey V.K., Jagannadham M.V. 2003. Differences in the Unfolding of Procerain Induced by pH, Guanidine Hydrochl oride, Urea, and Temperature. Biochemistry 42: 12287-12297
    Dunbar J., Yennawar H.P., Banerjee S., et al. 1997. The effect of denaturants on protein structure. Protein Sci, 6: 1727–1733
    Dexter D. L. 1953. A Theory of sensitized luminescence in solids. J. Chem. Phys.21: 836-850
    Eftink M.R, Shastry M.C.R. 1997. Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol. 278: 258-286
    Enami I., Tohri A., Kamo M. et al. 1997. Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with Photosystem II complex. Biochimica et Biophysica Acta, 1320: 17-26
    Ferguson B., Zhang X.C. 2002. Materials for terahertz science and technology. Nature Materials 1: 26–33
    Ferreira K. N., Iverson T. M., Maghlaoui K. et al. 2004. Architecture of the photosynthetic oxygen-evolcing center. Science, 303: 1831-1838
    Fischer B., Walther M., Uhd Jepsen, P. 2002. Far-infrared spectroscopy of hydrogen bonding in nucleobases, nucleosides, and nucleotides, In: J.M. Chamberlain et al. (eds.), Proc. Of 2002 IEEE tenth international conference on terahertz electronics, (IEEE, Piscataway, USA), 74–76.
    Fischer B.M., Walther M, Uhd Jepsen, P. 2002. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. boil. 47, 3807–3814
    F?ster Th., 1965. In: O. Sinano?lu, (Eds.), Moden Quantum Chemistry, Part III, New York: Academic Press, 93-137
    Frank L.de W., van Stokkum I. H. M., van Amerongen H. et al. 2002. Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of Photosystem II. Biophys. J. 82: 1586-1597
    Garab G., Kieleczawa J., Sutherland J.C., et al. 1991. Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem. Photobiol. 54: 273-281
    Ghanotakis D.F., DePaula J.C., Demetriou D.M. et al. 1989. Isolation and characterization of the 47 kDa protein and the D1- D2- cytochrome b-559 complex. Biochim. Biophys. Acta, 974: 44-53
    Ghanotakis D.F., Yocum C.F. 1986. Purification and properies of an oxygen-evolving reaction center complex from photosystem II membranes. FEBS Letters, 197: 244-248
    Ghanotakis D.F., Demetriou D.M., Yocum C.F. 1987. Isolation and characterization of an oxygen-evolving Photosystem II reaction center core preparation and a 28 kDa Chl-a-binding protein, Biochimica et Biophysica Acta, 891: 15-21
    Greenfield N.J. 1996. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235: 1-10
    Groot M.L., Peterman E.J., Stokkum I.H. van, et al. 1995. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys. J. 68: 281–290
    Guo S.K., Tang C.Q., Yang Z.L. et al. 2004. Effects of acid and alkali on the light absorption, energy transfer and protein secondary structures of core antenna subunits CP43 and CP47 of Photosystem II. Photochem. Photobiol. 79: 291–296
    Hayden DB, Hopkins WG 1977. A second chlorophyll-a protein complex in mesophyll chlproplasts. Can J Bot 55: 2525-2529
    Hankamer B, Barber J, 1997. Structure and membrane organization of photosystem II in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 641–671
    Han P Y, Tani M, Usami M. et al 2001 A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics, 89:2357-2359
    Haran G., Sun W.D., Wynne K. et al. 1997. Femtosecond far-infrared pump-probe spectroscopy: a new tool for studying low-frequency vibrational dynamics in molecular condensed phases. 274: 365-371
    Henderson R., Baldwin J. M., Ceska T. A. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol. 213: 899-929
    Henriques F, Park Rb. 1978. Characterization of three new chlorophyll-protein complexes. Biochem Biophys Res Comm. 81: 1113-1118
    He J. F., Wang S. C., Zhang S. et al. 2001. Energy transfer from car to chlorophyll in inner antennas, Cp43 and CP47. Acta Photonica Sinica, 30: 385-390
    He WZ, Newell WR, Haris PI et al. 1991 Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transformation infrared spectroscopy. Biochemistry, 30: 4552-4557
    Hu B.B., Zhang X.C., Auston D.H. 1991. Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs. Phys. Rev. Lett ,67: 2709-2712
    Huber R, Tauser F, Brodschelm A. et al. 2001. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Letters to nature, 414: 286-289
    Isaev-Ivanov V.V., Kozlov M.G., Baitin D.M., et al. Fluorescence and excitation escherichia coli recA protein spectra analyzed separately for Tyr and Trp residues. Arch. Biochem. Biophys. 376: 124-140, 2000
    Jankowiak R., Zazubovich V., R?tsep M. et al. 2000 The CP43 core antenna complex of photosystem II possesses two quasi-degenerate and weakly coupled Qy-trap states. J. Phys. Chem. 104: 11805–11815
    Jankowiak R., Zazubovich V., R?tsep M. et al. 2000. The CP43 core antenna complex of photosystem II possesses two quasi-degenerate and weakly coupled Qy-trap states. J. Phys. Chem. 104:11805–11815
    Jennings R. C., Garlaschi F. M., Bassi R. et al. 1993. A study of Photosystem II fluorescence emission in terms of the antenna chlorophyll-protein complexes. Biochimica et Biophysica Acta, 1183: 194-200
    Kalisky O., Feitelson J., Ottolenghi M. 1981. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band. Biochemistry 20: 205-209
    Kanervo E., Murata N., Eva-Mari A. 1998. Massive breakdown of the Photosystem II polypeptides in a mutant of the cyanobacterium Synechocystis sp. PCC 6803. Photosynthysis Research, 57: 81-91
    Kelly S.M., Price N.C. 1997. The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta 1338: 161-165
    Korter TM, Balu R, Campbell MB et al. 2005. Terahertz spectroscopy of solid serine and cysteine. Chem. Phys. Lett. 418: 65–70
    Krugh BK, Miles D 1995 Energy transfer for low temperature fluorescence in PS II mutant thylakoids. Photosynth Res, 44: 117–125
    Krimm S, Bandekar J 1986. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem. 38: 181–364
    Kuwabara T., Murata N. 1982. Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the Photosystem II particles of spinach chloroplast. Plant Cell Physiol. 23: 533-539
    Lakowicz J.R. 1983. Principles of fluorescence spectroscopy. New York and London: Plenum, 342-381
    Leamli U.K., 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227: 680-685
    Li X. P., Du L. F., Liang H. G. 1997. Purification and characterization of the core antenna CP43 of photosystem II. Acta Biochimica Sinica, 29: 449-454
    Lois Tiffany M., Krimm S. 1973. Extended conformations of polypeptides and proteins in urea and guanidine hydrochloride. Biopolymers 12: 575-587
    Loll B, Kern J, Saenger W et al.2005. Towards complete cofactor arrangement in the 3.0? resolution structure of photosystem II. Nature,438: 1040-1044
    MacDonald MG, Barry BA 1992. Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemistry, 31: 9848–9856
    Makhatadze G.I., Privalov P.L. 1992. Protein interactions with urea and guanidinium chloride: A calorimetric study. J. Mol. Biol. 226:491-505
    Manavalan P., Johnson W.C. 1983. Sensitivity of circular dichroism to protein tertiary structure class. Nature 305: 831-832
    Markelz A, Whitmire S, Hillebrecht J et al. 2002. THz time domain spectroscopy of biomolecular conformational modes. Phys. Med. Biol. 47: 3797–3805
    Markelz AG, Roitberg A and Heilweil EJ 2000 Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320: 42–48
    Mayers S. R. et al. 1993. Further characterization of the Psbh locus of synechosystis SP. PCC 6803: inactivation of PsbH impairs QA to QB electron transport in photosystem 2. Biochemistry 32: 1454-1465
    Michel H., Deisenhofer J. 1998. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27: 1-7
    Morris J, Herrmann R. G. 1984. Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein of the photosystem.. Nucl. Acids Res. 12: 2837-2850
    Mullet JE, Burke JJ and Arnezen CJ 1980. Chlorophyll proteins of photosystem I. Plant Physiol. 65: 814–822
    Nagel M., Bolivar P. H. 2002. Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. Applied Optics 41: 2074-2078
    Nanba O, Satoh K, 1987. Isolation of a photosystem reaction center consisting of D1 and D2 polypeptides and cytochrome b-559. Pro Natl Acad Sci USA, 84:109~116
    Nishizawa J., Suto K., Sasaki T. et al. 2003 Spectral measurement of terahertz vibrations of biomolecules using a Gap terahertz-wave generator with automatic scanning control. J. Phys. 36: 2958–2961
    Nozaki Y. 1972. The preparation of guanidine hydrochloride. Methods Enzymol. 26: 43–51
    Oikawa K., Lieberman D.M., Reithmeier, R.A.F. 1985. Conformation and stability of the anion transport protein of human erythrocyte membranes.Biochemistry 24: 2843-2848
    Pace C. N. 1986. Determination and analysis of urea and guanidine hydrochloridedenaturation curves. Methods Enzymol. 131: 266-280
    Paula J.C. de, Liefshitz A., Hinsley S. et al. 1994. Structure-function relationship in the 47-kDa antenna protein and its complex fluorescence decay kinetics and resonance Raman spectroscopy. Biochemistry 33: 1455–1466
    Petersen J., Dekker JP, Bowlby NR et al. 1990 EPR characterization of the CP47–D1–D2–cytochrome b-559 complex of photosystem II. Biochemstry 29: 3226–3231
    Psylinakis E., Fritzsch G., Ghanotakis D.F. 2002. Isolation and crystallization of CP47, a Photosystem II chlorophyll binding protein. Degradation of CP47 upon dissociation from the core complex. Photosynthesis Research 72: 211
    Rhee K.-H. 1998. Three-dimensional stucture of photosystem Ii reaction center by electron cryo-microscopy. Thesis, Univ. Heidelberg,
    Rhee K.-H., Morris E. P., J. Barber et al. 1998 Three-dimensional stucture of Photosystem Ii reaction center at 8? resolution. Nature 396: 283-286
    Robinson D.R., Jencks W.P. 1965.The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J. Am. Chem. Soc. 87: 2462-2470
    Rogner M., Chisholm DA, Diner BA 1991 Site-directed mutagenesis of psbC gene of photosystem II: isolation and functional characterization of CP43-less photosystem II core complexes. Biochemistry 30: 5387–5395
    Salter A. H., Virgin I., Hagman A.1992. On the molecular mechanism of light-induced D1 protein degradation in photosystem II core particles. Biochemistry, 31: 3990 - 3998
    Santini C, Tidu V, Tognon G, et al. 1994. Three dimensional structure of the higher-plant photosystem Ⅱ reaction center and evidence for its dimeric organization in vivo. European Journal of Biochemistry, 221: 307~315
    Sathish H. A., Cusan M., Aisenbrey C., et al. 2002. Guanidine hydrochloride inducede quilibrium unfolding studies of colicin B and its channel-forming fragment. Biochemistry, 41: 5340-5347
    Sayre R.T., Wrobel-Boerner E.A. 1994. Molecular topology of the Photosystem II chlorophyll a binding protein, CP 43: Topology of a thylakoid membrane protein, Photosynthysis Research, 40: 11-19
    Schubert W.-D, et al. 1998. Acommol/Lon ancestor for oxygenic and anoxygenic photosynthetic systems: acomparison based on the structureal model of photosystem I. J. Mol. Biol. 280: 297-314
    Shan J. X., Wang J. S., Li L. B. et al. 2000. The excitation energy transfer between β-Car and Chl a molecules in PSII core antenna complexes CP43 and CP47. Chin. Sci. Bull. 45: 1579–1583
    Shan J.X., Yang K.Y., Feng, L.J. et al. 1999 Resonance Raman spectra of purified PSII core antenna complexes CP43 and CP47. Acta Bot. Sin. 41: 280–284
    Shen Y.C., Upadhya P.C., Linfield E.H. et al.2003 Temperature-dependent low-frequency vibrational spectra of purine and adenine. Appl. Phys. Lett. 82: 2350–2352
    Shi H, Xiong L, Yang KY et al.1998. Protein secondary structure and conformational changes of photosystem II during heat denaturation studied by Fourier transform-infrared spectroscopy. J.Mol.Struct. 446: 137–147
    Shi L. X., Kim S. J., Marchant A. et al. 1999. Characterisation of the PsbX protein from photosystem II and light regulatin of its gene expression in higher plants. Plant. Mol. Biol. 40:737-744
    Shutova T., Deikus G., Irrgang K. D. et al. 2001. Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex. – Biochim. Biophys. Acta 1504: 371-378
    Smye S.W., Chamberlain J.M., Fitzgerald, A.J. et al. 2001. The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46: R101–R112
    Sreerama N., Woody R.W. 1993. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209: 32-44
    Stefka G Taneva, José MM Caaveiro, Arturo Muga et al.1995. A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Letters 367: 297–300
    Summoler E. J., Schmid B. H., Bruns B. U. et al. 1997. Requirement for the H phosphoprotein in photosystem II of Chl amydomonas reinhardtii. Plant Physiol. 113: 1359-1368
    Surewicz WK and Mantsch HH 1988. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys.Acta 952: 115–130
    Svensson B, et al. 1998. A model for the photosystem II reaction center core including the structure of the primary donor P680. Biochemistry 35: 14486-14502
    Taday PF, Bradley IV and Arnone DD 2003. Terahertz pulse spectroscopy of biological materials: L-glutamic acid. J. Biol. Phys. 29: 109–115
    Tanaka N., Kajimoto S., Mitani D. et al. 2002. Effects of guanidine hydrochloride and high pressure on subsite flexibility of β-amylase. Biochim. Biophys. Acta 1596: 318-325
    Tremolieres A., Dainese P., Bassi R. 1994. Heterogenous lipid distribution among chlorophyll-binding proteins of photosystem II in maize mesophyll chloroplasts. Eur. J. Biochem. 221: 721-730
    Tomo T., Enami I., Satoh K. 1993. Orientatin and nearest neighbor analysis of PsbI gene product in the photosystem II reaction center complex using bifunctinal cross-linkers. FEBS Lett. 323: 15-18
    Upadhyal PC, Shen YC, Davies AG et al. 2003 Terahertz time-domain spectroscopy of glucose and uric acid. J. Biol. Phys. 29: 117–121
    van Grondelle R. 1985. Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta, 811: 147-195
    Van Grondelle R., Dekker J. P., Gillbro T., et al. 1994. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187: 1-65
    Vermaas WFJ,Williams JGK, Arntzen CJ, 1987. Sequencing and modification of psbB, the gene encoding the CP-47 protein of photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol., 8: 317-326
    Vermaas W. F. J., Styring S., Schr?der W. P.et al. 1993. Photosynthetic water oxidation: The protein framework Photosynthesis Reasearch, 38: 249-263
    Virgin I., Ghanotakis D. F., Andersson B. 1990. Light-induced D1-protein degradation in isolated photosystem II core complexes. FEBS Lett., 269: 45-48
    Walther M, Plochocka P, Fischer B et al. 2002. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers 67: 310–313
    Walther M., Fischer B.M. and Uhd Jepsen, P. 2003 Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem. Phys. 288: 261–268
    Walther M., Plochocka P., Fischer B. et al. 2002 Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy, Biopolymers 67: 310–313
    Walther, M., Fischer B., Schall,M. et al. 2000. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chem. Phys. Lett. 332, 389–395.
    Wang J. et al. 1998. Atomic structrue of an α β T cell receptor (TCR) heterodimer in complex with an anti-TCR fav fragment derived from a mitogenic antibody. EMBO J. 17: 10-26
    Wang W.N., Yue W.W., Yan H.T. et al. 2005 THz time-domain spectroscopy of amino acids. Chinese Sci. Bull. 50: 1561–1565
    Weerd F.L. De, Stokkum I.H.M. van, Amerongen H. van et al. 2002 Pathways for Energy Transfer in the Core Light-Harvesting Complexes CP43 and CP47 of Photosystem II. Biophys. J. 82: 1586–1597
    Wessels JSC, Borchert MT 1978. Polypeptide profiles of chlorophyll-protein complexes and thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 503: 78-93
    Witt H. T. 1996. Primary reactions of oxygenic photosynthesis. Phys. Chem. 100: 1923-1942
    Wu J., Putnam-Evans C., Bricker TM 1996 Site-Directed Mutagenesis of the CP47 Protein of Photosystem II. Plant Molecular Biology 32: 1191-1195
    Xiong J., Subramaniam S., Govindjee. 1998. Aknowledge-based three dimensional model of the photosystem II reactin center of Chl amydomonas reinhardtii. Photosynth. Res. 56: 229-254
    Yamamoto Y, Akasaka T. 1995. Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of photosystem II. Biochemistry, 34: 9038-9045
    Yamamoto Y., Doi M, Namura N. et al. 1981. Release of polypeptides from highly active O2-evolving photosystem-2 preparation by Tris treatment. FEBS Letters. 133: 265-268
    Yang Z.L., Li L.B., Xu Y.N.et al. 2000. Effect of Phosphatidylglycerol on Conformationand Microenvironment of Tyrosyl Residue In Photosystem II. Science In China (Series C), 30: 330-336
    Zheleve D., Sharma J., Panico M. et al.1998, Isolation and characterization of monomeric and dimeric CP47-Rection photosystem II complexes, The Journal of Biological Chemistry, 273: 16122-16127
    Zouni A., Witt H.-T., Kern J. et al.2001. Crystal structure of Photosystem II form synechococcus elongatus at 3.8 ? resolution. Nature 409: 339-743
    葛培 根.1991.<<光合作用 :光子 、 激 子 、 电 子 、 质 子 、 离 子与 光 合 膜之 间 的相互作用>>.合肥:安徽教育出版社 56-61
    葛培 根.1991.<<光合作用 :光子 、 激 子 、 电 子 、 质 子 、 离 子 与 光 合膜 之间 的相互作用>>.合肥:安徽教育出版社 8-13
    公衍道,赵南明.2000.荧光光谱,见赵南明,周海梦,主编.<<生物物理学>>,北京:高等教育出版社 287-331
    公衍道,赵南明.2000.紫外-可见吸收光谱,见赵南明,周海梦,主编.<<生 物物理学>>,北京:高等教育出版社 275-286
    匡廷云.1998.光合作用-植物的第一生产力.北京:中国科学技术出版社,134-138
    李良璧,赵南明,单际修等.2003.光系统 II 核心天线复合物 CP43 和 CP47 的结构和功能,见匡廷云 ,主编 .<<光 合 作 用 :原 初 光 能 转 化 过 程的 原理 与调控>>,南京:科学技术出版社,167-190.
    施桦.1998.光系统 II 蛋白二级结构与功能的关系:膜结构完整性的意义:[博士学位论文].北京:清华大学
    唐运来 .2004.高 温和衰老对 光合 膜 结 构 与 功能 影 响的 研 究 :[博 士 学 位论文 ].北京:中国科学院植物研究所
    汪力,徐新龙,王秀敏等.2003.一种新型相干辐射—THz 辐射在生物学 中的应用.生命科学,15:108-112
    于振宝,匡廷云.1995.光下 D1/D2/Cytb559 复合物中氨基酸残基的破坏和多肽的降解.植物学报,37:267-273
    张 秀芳 ,赵南明 .2000.圆 二色光谱 ,见 赵 南 明 ,周 海 梦 , 主 编 .<<生 物 物理 学>>,北京:高等教育出版社 330-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700