卟啉、酞菁与富勒烯及碳纳米管给受体体系的构筑及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了模拟光合作用,实现太阳能的有效利用,近年来,给受体系统的光诱导电子转移成为研究的热点。卟啉、酞菁以及富勒烯和碳纳米管由于其独特的结构和优良的光电化学性质,是人工模拟光合作用首选的给受体,由它们构筑的给受体体系在光电转换和分子器件中具有潜在的应用价值。本文利用卟啉和酞菁作为电子给体,富勒烯与单壁碳纳米管作为电子受体,构筑了多种给受体体系,并对其结构进行了表征,研究了其光物理和电化学性质,并取得了长寿命的电荷分离态。具体内容如下:
     合成和表征了酰胺键共价连接的酞菁—富勒烯二元体系。紫外可见吸收光谱和荧光光谱研究表明,二元体系内部给受体之间在基态下存在弱的而在激发态下存在较强的相互作用。时间分辨荧光、瞬时吸收光谱和电化学研究证实这种作用主要来自酞菁和富勒烯之间的光诱导电子转移。通过开孔z-扫描的方法研究了酞菁—富勒烯二元体系的非线性吸收性质。相对于富勒烯和酞菁前体,酞菁—富勒烯二元体系有着更好的光学非线性效应。说明这种通过酰胺键相连的扩大的π电子共轭体系以及酞菁与富勒烯给受体之间的光诱导电子转移,在一定程度上有助于体系非线性光学性质的提高,基于此可以设计宽带的光限幅材料。
     利用共价键连接的二茂铁—酞菁二元体系与带有吡啶或咪唑基的富勒烯吡咯烷衍生物轴向配位,成功构筑了二茂铁—酞菁—富勒烯超分子三元体系。通过紫外—可见光谱滴定法确定了其配位稳定性。稳态和时间分辨荧光光谱研究表明,在该超分子三元体系中发生了快速的光诱导电子转移,并具有较高的电荷分离态量子产率。循环伏安法数据表明其电荷分离驱动力△Gcs为负值,说明酞菁和富勒烯之间容易形成电荷分离态。
     制备了共价连接的二茂铁—卟啉—单壁碳纳米管(Fc-H2P-SWNTs)三元复合物,通过FT-IR.Raman.AFM和TEM对其结构进行了详尽的表征。用TGA和XPS方法估算了复合物中二茂铁键连卟啉的相对含量(51-57%)。通过光物理方法估算了单壁碳纳米管复合物在DMF溶液中的溶解度(234 mg·L-1)。紫外可见吸收、稳态和时间分辨荧光光谱实验表明复合物中二茂铁、卟啉和碳纳米管之间发生了光诱导电子转移。用纳秒激光闪光光解的方法观察了复合物的瞬态吸收光谱,证明产生了64.5μs长寿命的电荷分离态(Fc+-H2P)m-x-SWNTs(m-x)·-(Fc-H2P)n-m+x.
     构筑了卟啉和酞菁同时共价修饰的SWNTs复合物,并对其进行了详尽的表征。与参照化合物相比,复合物中卟啉和酞菁的荧光几乎被键连的碳纳米管全部猝灭,说明卟啉和酞菁与单壁碳纳米管之间发生了电子或能量转移。该复合物溶解性相对较高(309 mg·L-1),并且具有较宽的吸光范围,这有利于其在电极表面较好地成膜及对太阳光的有效利用,从而改善光电器件的性能。
     合成了主链含有卟啉和富勒烯的聚酰胺,通过FT-IR,UV-Vis、固体碳谱以及AFM和TEM对其进行详尽的表征。用凝胶渗透色谱GPC确定了聚酰胺的分子量,并通过热失重TGA研究了聚合物的热稳定性。稳态和时间分辨荧光光谱研究表明,在聚酰胺中发生了卟啉和富勒烯之间快速的光诱导电子转移,并具有较高的电荷分离态量子产率(≥85%)。瞬时吸收光谱进一步证实,通过激发单线态卟啉和富勒烯之间的多步光诱导电子转移,产生约100μs长寿命的电荷分离态。电荷分离与电荷重组速率之比kCS/kCR-10000,表明在光诱导电子转移中具有较高的电荷分离态稳定性。
     这些结果说明制备的上述给受体体系在光电转换材料等领域具有潜在的应用前景。
Much attention has been paid to the studies on photoinduced electron transfer (PET) in donor-acceptor systems recently mainly to develop artificial photosynthetic systems, in which porphyrin (Por)/phthalocyanine (Pc) and [60]fullerene (C60)/ carbon nanotube (CNT) are considered as attractive molecular components due to their unique structures and rich photoelectronic properties. The Por/Pc—60/CNT system has been proved to be a potential candidate for solar energy conversion materials and molecular devices. Here, a series of ensembles based on the donor Por/Pc and acceptor C60/CNT were constructed and fully characterized. The photophysical and electrochemical properties of the novel donor-acceptor ensembles were studied, and the long-lived charge separated states have been achieved. The important results obtained are described as follows:
     1. A new amide-linked phthalocyanine-fullerene dyad (ZnPc-C60) is reported. Steady-state, time-resolved fluorescence and transient absorption measurements showed the occurrence of PET from the singlet excited phthalocyanine to fullerene with large driving force(△GCS).The larger nonlinear absorption of ZnPc-C60,better than fullerene (C60) and the control sample, was observed by the Z-scan experiments, which indicated the synergistic effect of two active moieties in the dyad.
     2. Ferrocene-phthalocyanine-fullerene supramolecular triads have been constructed with pyridine-or imidazole-appended fulleropyrrolidine and covalently linked zinc phthalocyanine-ferrocene dyad via axial coordination. The stablilities of the triads (Kassoc-8.58×104 mol-1·L) were studied by optical absorption methods. Steady-state and time-resolved fluorescence measurements suggested that the occurrence of efficient PET (kCS-109 s-1) from excited phthalocyanine to fullerene entity in the triads with high charge-separation quantum yields (ΦCS-0.88). The redox potentials were determined by cyclic voltammetric, and the driving forces (△GCS--0.60 eV) were estimated to be exothermic, which favored the forming of charge-separation state.
     3. Novel covalent-linked ferrocene-porphyrin-SWNTs triads hybrid have been synthesized and fully characterized by IR, Raman, AFM and TEM. The amount of functional groups in the triads hybrid were roughly estimated to be around 51-57% by TGA and XPS analysis. The considerable porphyrin attachment significantly improved the solubility (234 mg-L-1) and dispersion stability of the SWNTs in organic solvents. The UV-Vis absorption and fluorescence spectra of the nanohybrid indicated the weak in ground state and strong in excited state electronic interaction between donors (porphyrin containing ferrocene) and the extendedπ-system of SWNTs acceptors. The PET reactions from porphyrin to C60 in the triads hybrid were observed in fluorescence lifetime and nanosecond laser-flash photolysis experiments, which confirmed to form long-lived (64.5μs) charge separated state (Fc+-H2P)m-x-SWNTs(m-x)·-(Fc-H2P)n-m+x.
     4. Novel covalently functionalized SWNTs simultaneity with two kinds of chromophores (porphyrin and phthalocyanine) have been synthesized and characterized. The UV-Vis absorption and fluorescence spectra of the nanohybrid indicated the weak in ground state and strong in excited state electronic interaction between donors (porphyrin and phthalocyanine moieties) and the extendedπ-system of SWNTs acceptors. This novel nanohybrid material exhibited wider spectral region and more excellent solubility (309 mg-L-1) compared to those of either porphyrin or phthalocyanine functionalized SWNTs, which was favorable for the good film formation on the electrode and the effective utilization of solar energy, hence the performance of devices might be improved greatly.
     5. Conjugated polyamides containing porphyrin and C6o in the main chain were prepared and characterized. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight of about 2.37×104. The temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216℃. Atomic force microscopy (AFM) images displayed the flat round-shaped aggregation structure of the polyamides. The photophysical properties were studied by UV-Visible, fluorescence spectroscopy, and fluorescence lifetime. The PET reactions from porphyrin to C6o in the polyamides were observed in nanosecond laser-flash photolysis experiments, which confirmed to form charge separated state (porphyrin radical cation-C60 radical anion pair) with a lifetime about 100μs. The calculated ratio of kcs/kcR was found to be-10000 indicating the high charge stabilization in the PET process.
     The results showed that all above donor-acceptor systems were potential solar energy conversion materials.
引文
[1]Adler A D, Longo F R. Shergalis W. Mechanistic investigations of porphyrin syntheses.1. preliminary studies on ms-tetraphenylporphin. J Am Chem soc,1964,86:3145~3149
    [2]Adler A D, Longo F R, Finarelli J D. et al. A simplified synthesis for msso-tetraphenylporphin. J Org Chem,1967,32:476
    [3]Lindsey J S, Schreiman I C. Hsu H C. et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions.J Org Chem,1987,52. 827-836
    [4]Arsenault G P, Bullock E, MacDonald S F. Pyrromethanes and porphyrins therefrom. J Am Chem Soc,1960,82:4384-4389
    [5]Alben J O. Fuchsman W H, Beaudreau C A. et al. Substituted deuteroporphyrins. III. Iron(Ⅱ) derivatives. Reactions with oxygen and preparations from chloro-and methoxohemins. Biochem.1968,7:624-635
    [6]Alder A D. Longo F R, Kampas F, et al. On the preparation of metallo-porphyrins. J Inorg Nucl Chem.1970,32:2443-2445
    [7]Fuhrhop J H. Mauzerall D. One-electron oxidation of metalloporphyrin. J Am Soc.1969.91: 4147-4181
    [8]Tsutsui M, Hrung C P, Ostfeld D, et al. Unnusual metalloporphyrins.Unnusual metalloporphyrin complexes of rhenium and technetiuim. J Am Chem Soc,1975,97: 3952-3965
    [9]Buchler J W, Habets H, Foiz M, et al. Metallkomplexe mit tetrapyrrol-liganden. Chem Ber, 1976,109:1477-1485
    [10]Tsutsu M, Ichikawa M, Vohwinkel F, et al. Unusual metalloporphyrins.Ⅰ.Preparation of chromium mesoporphyrin dimethyl ester. J Am Chem Soc,1966,88:854-855
    [11]Cheng G, Peng X, Hao G, et al. Synthesis, photochemistry, and electrochemistry of a series of phthalocyanines with graded steric hindrance. J Phys Chem A,2003,107:3503-3514
    [12]Leznoff C C, Lever A B P, eds. Phthalocyanines:Porperties and Aplications. Weinheim: Wiley-VCH,1989,1993,1996, vol.1-4
    [13]Mckeown N B. Phthalocyanine Materials:Synthesis, Structure and Function.Cambridge: Cambridge University Press,1998 14
    [14]Poon K W, Liu W, Chan P K, et al. Tetrapyrrole derivatives substituted with ferrocenylethynyl moieties. Synthesis and electrochemical studies. J Org Chem,2001,66: 1553-1559
    [15]Guldi D M, Rahman G M A, Sgobba V, et al. Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem.Soc Rev,2006,35:471-487
    [16]Liddll P A, Kuciauskas D, Sumida J P, et al. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad.J Am Chem Soc,1997, 119:1400-1405
    [17]Kuciauskas D, Liddell P A, Moore A L, et al. Magnetic switching of charge separation lifetimes in artificial:photosynthetic reaction centers. J Am Chem Soc,1998,120: 10880-10886
    [18]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    [19]Mickelson E T, Huffman C B, Margrave J L, et al. Fluorination of single-wall carbon nanotubes. Chem Phys Lett,1998,296:188-194
    [20]Gu Z, Peng H, Hauge R H, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett,2002,2:1009-1013
    [21]Hattori Y, Kanoh H, Okino F, et al. Direct thermal fluorination of single wall carbon nanohorns.J Phys Chem B,2004,108:9614-9618
    [22]Tsang S C, Chen Y K, Green ML H, et al. A simple chemical method of opening and filling carbon nanotubes. Nature,1994,372:159-162
    [23]Lago R M, Tsang S C, Green ML H, et al. Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups. Chem. Commu.,1995,1355-1356
    [24]Liu J,Rinzler A G, Dai H J, et al. Fullerene pipes.Science,1998,280:1253-1256
    [25]Holzinger M, Vostrowsky O, Hirsch A, et al.Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed,2001,40:4002-4005
    [26]Dyke C A, Tour J M. Solvent-free functionalization of carbon nanotubes. J Am Chem Soc, 2003,125:1156-1157
    [27]Umek P, Seo J W, Hernadi K, et al. Addition of carbon radicals generated from organic peroxides to single wall carbon nanotubes. Chem Mater,2003,15:4751-4755
    [28]Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc,2002,124:760-761
    [29]Holzinger M, Abraham J, Whelan P, et al. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc,2003,125:8566-8580
    [30]Coleman K S, Bailey S R, Fogden S, et al. Functionalization of single-walled carbon nanotubes via the bingel reaction. J Am Chem Soc,2003,125:8722-8723
    [31]Graupner R, Abraham J, Wunderlich D, et al. Nucleophilic-alkylation-reoxidation:A functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc,2006,128: 6683-6689
    [32]Stephenson J, Sadana A K, Higginbotham A L, et al. Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation:The billups reaction. Chem Mater,2006,18:4658-4661
    [33]Zhu J.Yudasaka M, Zhang M F, et al. Binary nanomaterials based on nanocarbons:A case for probing carbon nanohorns'biorecognition properties. Nano Letters,2003,3:1033-1036
    [34]Star A, Stoddart J F, Steuer D. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed,2001,40:1721-1725
    [35]Balavoine F, Schultz P, Richard C, et al. Helical crystallization of proteins on carbon nanotubes:A first step towards the development of new biosensors. Angew Chem Int Ed, 1999,38:1912-1915
    [36]Zhang J, Lee J K, Wu Y, et al. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Letters,2003,3: 403-407
    [37]Guldi D M, Illescas B M, Atienza C M, et al. Fullerene for organic electronics. Chem Soc Rev,2009,38:1587-1597
    [38]MacMahon S, Fong Ⅱ R, Baran P S, et al. Synthetic approaches to a variety of covalently linked porphyrin-fullerene hybrids. J Org Chem 2001,66:5449-5455
    [39]Wedel M, Montforts F P. A facile synthetic access to porphyrin fullerene dyads and their optical properties. Tetrahedron Lett.1999,40,7071-7074
    [40]Guldi D M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev,2002,31:22-36
    [41]Gust D, Moore T A, Moore A L, et al. Mimicking the photosynthetic triplet energy-transfer relay. J Am Chem Soc,1993,115:5684-5691
    [42]Carbonera D M, Valentin D, Corvaja C, et al. EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene-porphyrin-fullerene triad. J Am Chem Soc, 1998,120:4398-4405
    [43]Bahr J L, Kuciauskas D, Liddell P A,et al. Driving force and electronic coupling effects on photoinduced electron transfer in a fullerene-based molecular triad. Photochem Photobiol, 2000,72:598-611
    [44]Imahori H, Tamakia K, Yamadaa H, et al. Photosynthetic electron transfer using fullerenes as novel acceptors. Carbon 2000,38:1599-1605
    [45]Imahori H, Tamaki K, Guldi D M, et al. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads:marcus-normal versus inverted region. J Am Chem Soc,2001,123:2607-2617
    [46]Armaroli N, Marconi G, Echegoyen L, et al. Charge-transfer interactions in face-to-face porphyrin-fullerene systems:Solvent-dependent luminescence in the infrared spectral region. Chem Eur J,2000,6:1629-1645
    [47]Kim H J, Park K M, Ahn T K, et al. Novel fullerene-porphyrin-fullerene triad linked by metal axial coordination:Synthesis, X-ray crystal structure,and spectroscopic characterizations of trans-bis([60]fullerenoacetato)tin(IV) porphyrin. Chem-Commun 2004, 2594-2595
    [48]Lee J L, Lee S J, Kim H J, et al. Conformations and electronic structures of axially coordinated fullerene-porphyrin-fullerene triad (C60CHCOO)(2)-Sn(IV) porphyrin.J Phys Chem B,2006,110:5337-5342
    [49]Guldi D M, Imahori H, Tamaki K, et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A,2004,108:541-548
    [50]Imahori H, Sekiguchi Y, Kashiwagi Y, et al. Long-lived charge-separated-state generated in a ferrocene-meso,meso-linked porphyrin trimer-fullerene pentad with a high quantum yield. Chem Eur J 2004,10:3184-3196
    [51]Fukuzumi S. Bioinspired electron-transfer systems and applications Bull Chem Soc Jpn, 2006,79:177-195
    [52]Bonifazia D, Accorsic G, Armaroli N, et al. Oligoporphyrin arrays conjugated to [60]fullerene:preparation, NMR analysis, and photophysical and electrochemical properties. Helvetica Chimica Acta,2005,88:1839-1884
    [53]Armaroli N, Accorsi G, Song F, et al. Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem, 2005,6:732-743
    [54]Kuciauskas D, Liddell P A, Lin S, et al. An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc,1999,121:8604-8614
    [55]Lu F S, Xiao S Q, Li Y L, et al. Synthesis and chemical properties of conjugated polyacetylenes having pendant fullerene and/or porphyrin units. Macromolecules,2004,37: 7444-7450
    [56]樊美工.光化学基本原理与光子学材料科学.北京:科学出版社,2001.65
    [57]Giacalone F, Segura J L, Martin N, et al. Probing molecular wires:synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chem Eur J.2005,11:4819-4834
    [58]Nakamura T, Ikemoto J, Fujitsuka M, et al. Control of photoinduced energy-and electron-transfer steps in zinc porphyrin-oligothiophene-fullerene linked triads with solvent polarity. J Phys Chem B,2005,109:14365-14374
    [59]Oswald F, Shafiqul I D M, Araki Y, et al. High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chem Commun,2007, 4498-4500
    [60]Vail S A, Tome J P C, Krawczuk P J, et al. Synthesis and fluorescence properties of a porphyrin-fullerene molecular wire. J Phys Org Chem,2004,17:814-818
    [61]Vail S A, Krawczuk P J, Guldi D M, et al. Energy and electron transfer in polyacetylene-linked zinc-porphyrin-[60]fullerene molecular wires. Chem Eur J,2005,11: 3375-3388
    [62]Guldi D M. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications. Phys Chem Chem Phys,2007,9:1400-1420
    [63]Lembo A, Tagliatesta P, Guldi D M. Synthesis and photophysical investigation of new porphyrin derivatives with beta-pyrrole ethynyl linkage and corresponding dyad with [60] fullerene. J Phys Chem A,2006,110:11424-11434
    [64]Winters M U, Dahlstedt E, Blades H E, et al. Probing the efficiency of electron transfer through porphyrin-based molecular wires. J Am Chem Soc,2007,129:4291-4297
    [65]Olmstead M M, Costa D A, Maitra K, et al. Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc,1999,121:7090-7097
    [66]Boyd P D W, Hodgson M C, Chaker L, et al. Selective supramolecular porphyrin/fullerene interactions. J Am Chem Soc 1999,121:10487-10495
    [67]Sun D Y, Tham F S, Reed C A, et al. Porphyrin-fullerene host-guest chemistry. J Am Chem Soc,2000,122:10704-10705
    [68]Dudic M, Lhotak P, Stibor I, et al. (Thia)calix[4]arene-porphyrin conjugates:novel receptors for fullerene complexation with C70 over C60 selectivity. New J Chem,2004,28:85-90
    [69]Kubo Y, Sugasaki A, Ikeda M, et al. Cooperative C6o binding to a porphyrin tetramer arranged around a p-terphenyl axis in 1:2 host-guest stoichiometry. Org Lett,2002,4: 925-928
    [70]Tashiro K, Aida T, Zheng J Y, et al. A Cyclic dimer of metalloporphyrin forms a highly stable Inclusion complex with C60. J Am Chem Soc,1999,121:9477-9478
    [71]Zheng J Y, Tashiro K, Hirabayashi Y, et al. Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes:A remarkable effect of rhodium(III). Angewandte Chemie-International. Angew Chem Int Ed,2001,40:1858-1861
    [72]D'Souza F, Deviprasad G R, Zandler M E, et al. Spectroscopic, electrochemical, and photochemical studies of self-assembled via axial coordination zinc porphyrin-fulleropyrrolidine dyads. J Phys Chem A,2002,106:3243-3252
    [73]D'Souza F, Smith P M, Gadde S, et al. Supramolecular triads formed by axial coordination of fullerene to covalently linked zinc porphyrin-ferrocene(s):Design, syntheses, electrochemistry,and photochemistry.J Phys Chem B,2004,108:11333-11343.
    [74]Li W S, Kim K S, Jiang D L, et al. Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold:remarkable dendrimer effects on photoinduced charge separation. J Am Chem Soc,2006,128:10527-10532
    [75]Trabolsi A, Elhabiri M, Urbani M, et al. Supramolecular click chemistry for the self-assembly of a stable Zn(Ⅱ)-porphyrin-C6o conjugate. Chem Commun,2005,5736-5738
    [76]Sanchez L, Sierra M, Martin N, et al.Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. Angew Chem Int Ed,2006,45:4637-4641
    [77]Watanabe N, Kihara N, Forusho Y, et al. Photoinduced intrarotaxane electron transfer between zinc porphyrin and [60]fullerene in benzonitrile. Angew Chem Int Ed,2003,42: ,681-683
    [78]Sasabe H, Kihara N, Furusho Y,et al. End-capping.of a pseudorotaxane via.Diels-Alder reaction for the construction of C60-terminated [2]rotaxanes. Org. Lett.,2004,22:3957-3960
    [79]Solladie N, Walther M-E., Herschbach H, et al. Supramolecular complexes obtained from porphyrin-crown ether conjugates and a fullerene derivative bearing an ammonium unit. Tetrahedron,2006,62:,1979-1987
    [80]Sessler J L, Jayawickramarajah J, Gouloumis A, et al. Synthesis;and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding.Chem Commun,2005,1892-1894
    [81]Balbinot D, Atalick S, Guldi D M, et al. Electrostatic assemblies of fullerene-pdrphyrin hybrids:toward long-lived charge separation. J Phys Chem B,.2003,107:13273-13279
    [82]Yamaguchi T, Ishii N, Tashiro K, et al.Supramolecular peapods composed of a metalloporphyrin nanotube and fullerenes.J Am Chem Soc,2003,125:13934-13935
    [83]Shirakawa M, Fujita N, Shinkai S. [60]fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites.J Am Chem Soc,2003, 125:9902-9903
    [84]Wu Z Q, Shao X B, et al. Hydrogen-bonding-driven preorganized zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives.J Am Chem Soc, 2005,127: 17460-17468
    [85]Hou J L, Yi H P, Shao X B, et al. Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. Angew Ghem Int Ed,2006,45: 796-800
    [86]D'Souza F, Deviprasad G R, El-Khouly M E, et al. Photoinduced electron transfer in "two-point" bound supramolecular triads composed of N,N-dimethylaminophenyl-fullerene-pyridine coordinated to zinc porphyrin. J Phys Chem A,2003,107:4801-4807
    [87]D' Souza F, El-Khouly M E, Gadde S,et al. Supramolecular triads bearing porphyrin and fullerene via two-point'binding involving coordination and hydrogen bonding. Tetrahedron, 2006.62:1967-1978
    [88]D'Souza F, Chitta R. Gadde S, et al. Supramolecular porphyrin-fullerene via'two-point' binding strategy:Axial-coordination and cation-crown ether complexation. Chem Commun, 2005,1279-1281
    [89]D'Souza F, Chitta R, Gadde S, et al. Effect of axial ligation or π-π-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates. Chem Eur J,2005,11:4416-4428
    [90]Konarev D V, Litvinov A L, Neretin I S, et al. Formation of coordination porphyrin pentamers in new supramolecular complex of fullerene:{(ZnTPP)4·4-TPyP}·(C60)2· (C6H5CN)3.5. Crystal Growth & Design,2004,4:643-646
    [91]Li K, Schuster D I, Guldi D M, et al. Convergent synthesis and photophysics of [60]fullerene/porphyrin-based rotaxanes. J Am Chem Soc,2004,126:3388-3389
    [92]Li K, Bracher P J, Guldi D M, et al. [60]fullerene-stoppered porphyrinorotaxanes: pronounced elongation of charge-separated-state lifetimes. J Am Chem Soc,2004,126: 9156-9157
    [93]Schuster D I, Li K, Guldi D M, Novel porphyrin-fullerene assemblies:From rotaxanes to catenanes. Org Lett,2004,6:1919-1922
    [94]Ooyama Y, Harima Y. Molecular designs and syntheses of organic dyes for dye-densitized solar cells. Eur J Org Chem,2009,2903-2934
    [95]Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater,2006,18:572-576
    [96]Reyes-Reyes M, Kim K, Carroll D L. High-effciency photovoltaic devices based on annealed poly(3-hexylthiophene) and l-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6)C61 blends. Appl Phys Lett,2005,87:083506-1-083506-3
    [97]Xue J, Rand B P, Uchida S, et al. A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv Mater,2005,17:66-71
    [98]Kim K, Liu J, Namboothiry M A G, et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett,2007,90: 163511-1-163511-3
    [99]Guldi D M, Zilbermann I, Anderson G, et al. Multicomponent redox gradients on photoactive electrode surfaces. Chem Commun,2004,726-727
    [100]Hasobe T, Kamat P V, Absalom M A, et al. Supramolecular photovoltaic cells based on composite molecular nanoclusters:dendritic porphyrin and C60, porphyrin dimer and C60, and porphyrin-C60 dyad. J Phys Chem B,2004,108:12865
    [101]Hasobe T, Kamat P V, Troiani V, et al. Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. J Phys Chem B,2005,109:19-23
    [102]Hasobe T, Saito K, Kamat P V, et al. Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J Mater Chem,2007,17:4160-4170
    [103]Hasobe T, Imahori H, Fukuzumi S, et al. Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J Am Chem Soc,2003,125:14962-14963
    [104]Hasobe T, Imahori H, Kamat P V, et al. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles.J Am Chem Soc,2005,1271216-1228
    [105]Kang S, Umeyama T, Ueda M, et al. Ordered supramolecular assembly of porphyrin-fullerene composites on nanostructured SnO2 electrodes. Adv Mater,2006,18: 2549-2552
    [106]Straight S D, Andre'asson J, Kodis G, et al. Photochromic control of photoinduced electron transfer. Molecular double-throw switch. J Am Chem Soc,2005,127:2717~2724
    [107]Liddell P A, Kodis G, Andreasson J, et al. Photonic switching of photoinduced electron transfer in a dihydropyrene-porphyrin-fullerene molecular triad. J Am Chem Soc,2004,126: 4803-4811
    [108]Oike T, Kurata T, Takimiya K, et al. Polyether-bridged sexithiophene as a complexation-gated molecular wire for intramolecular photoinduced electron transfer. J Am Chem Soc,2005,127:15372-15373
    [109]O'Regan B C, Lopez-Duarte I, Martinez-Diaz M V, et al. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J Am Chem Soc,2008,130:2906-2907
    [110]Sastre A, Gouloumis A, Vazquez P, et al. Phthalocyanine-azacrown-fullerene multicomponent system:synthesis, photoinduced processes, and electrochemistry. Org. Lett, 1999,1:1807-1810
    [111]Gouloumis A, Liu S G, Sastre P A, et al. Synthesis and electrochemical properties of phthalocyanine-fullerene hybrids. Chem Eur J,2000,6:3600-3607
    [112]Guldi D M, Gouloumis A, Vazquez P, et al. Charge-transfer states in strongly coupled phthalocyanine fullerene ensembles. Chem Commun,2002,2056-2057
    [113]Guldi D M, Zilberman I, Gouloumis A, et al. Metallophthalocyanines:Versatile Electron-Donating Building Blocks for Fullerene Dyads. J Phys Chem B,2004,108: 18485-18494
    [114]Loi M A, Neugebauer H, Denk P, et al. Long-lived photoinduced charge separation for solar cell applications in phthalocyanine-fulleropyrrolidine dyad thin films. J Mater Chem,2003, 13:700-704
    [115]Guldi D M, Gouloumis A, Vazquez P, et al. Nanoscale organization of a phthalocyanine-fullerene system:remarkable stabilization of charges in photoactive 1-D nanotubules. J Am Chem Soc,2005,127:5811-5813
    [116]Quintiliani M, Kahnt A, Wofle T, et al. Synthesis and photoinduced electron-transfer properties of phthalocyanine-[60]fullerene conjugates.Chem Eur J,2008,14:3765-3775
    [117]Kahnt A, Guldi D M, de la Escosura A, et al. [2.2]Paracyclophane:a pseudoconjugated spacer for long-lived electron transfer in phthalocyanine-C60 dyads. J Mater Chem,2008, 18:77-82
    [118]Sukeguchi D, Yoshiyama H, Shibata N, et al. Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine linked with fullerene. Journal of Fluorine Chemistry 2009,130:361-364
    [119]Niemi M, Tkachenko N V, Efimov A, et al. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads. J Phys Chem A,2008,112: 6884-6892
    [120]Kahnt A, Quintiliani M, Vazquez P, et al. A Bis(C60)-bis(phthalocyanine) nanoconjugate: synthesis and photoinduced charge transfer. ChemSusChem,2008,1:97-102
    [121]Quintiliani M, Kahnt A, Vazquez P, et al. J Mater Chem,2008,18:1542
    [122]Martin-Gomis L, Ohkubo K, Fernandez-Lazaro F, et al. Synthesis and photophysical studies of a new nonaggregated C60-silicon phthalocyanine-C60 triad. Org Lett,2007,9: 3441-3444
    [123]El-Khouly M E, Kim J H, Kay K Y, et al. Synthesis and photoinduced intramolecular processes of light-harvesting silicon phthalocyanine-naphthalenediimide-fullerene connected systems. Chem Eur J,2009,15:5301-5310
    [124]El-Khouly M E, Kang E S, Kay K Y, et al. Silicon-phthalocyanine-cored fullerene dendrimers:synthesis and prolonged charge-separated stateswith dendrimer generations. Chem Eur J,2007,13:2854-2863
    [125]Guldi D M, Ramey J, Martinez-Diaz M V, et al. Reversible zinc phthalocyanine fullerene ensembles. Chem Commun,2002,2774-2775
    [126]Torres T, Gouloumis A, Sanchez-Garcia D, et al. Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem. Commun.2007, 292-294
    [127]El-Khoulya M E, Arakia Y, Ito O, et al. Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. J Porphyr Phthalocya 2006,10:1156-1164
    [128]Gouloumis A, de la Escosura A, Vazquez P, et al. Photoinduced electron transfer in a new bis(C6o)-phthalocyanine triad. Org. Lett.2006,8:5187-5190
    [129]de la Escosura A, Martínez-Diaz M V, Torres T, et al. New donor-acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units. Chem Asian J,2006,1-2:148-154
    [130]Zhu P, Wang P, Qiu W, et al. Appl Phys Lett, Optical limiting properties of phthalocyanine-fullerene derivatives.2001,78:1319-1321
    [131]Chen Y, El-Khouly M E, Sasaki M, et al. Synthesis of the axially substituted titanium Pc-C60 dyad with a convenient method. Org Lett,2005,7:1613-1616
    [132]Doyle J J, Ballesteros B, de la Torre G, et al. Combination of phthalocyanine and fullerene moieties for optical limiting. Chem Phys Lett,2006,428:307-311
    [133]Li H, Martin R B, Sun Y P. Singel-walled carbon nanotubes tethered with porphyrin: synthesis.and photophysicall porpererties.Adv Mater 2004,16:896-900
    [134]Baskaran D, WMays J.Carbon nanotubes with covalently linkedd porphyrin antennae
    photoinduced electron transfer.J Am Chem Soc,2005,127:6916-6917
    [135]Jin J, Dong Z, He J, et al. Synthesis of novel porphyrin and its complexes covalently Linked to multi-walled carbon nanotubes and study of their spectroscopy.Nanoscale Res Lett,2009,4:578-583
    [136]许兰兰,赵鸿斌,徐勇军,等.氨基卟啉共价化学修饰多壁碳纳米管.化学学报,2008,66(10):1228-1234
    [137]Xu H B, Chen H Z, Shi M M, et al A novel donor-acceptor heterojunction from single-walled carbon nanotubes functionalized by erbium bisphthalocyanine.Materials Chemistry and Physics 2005,94:342-346
    [138]Guo Z, Du F, Ren D, et al. Covalently porphyrin-functionalized";single-walled carbon nanotubes:a novel photoactive and optical limiting donor-acceptor nanohybrid.J Mater Chem,2006,16:3021-3030
    [139]Ballesteros B, de la Torre G, Ehli C et al. Single-wall carbon nanotubes bearing covalently linked phthalocyanines-photoinduced electron transfer. J Am Chem Soc,2007,129: 5061-5068
    [140]Ballesteros B, Campidelli S,de la Torre G et al. Synthesis,characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chem Commun,2007, 2950-2952
    [141]Campidelli S, Ballesteros B, Filoramo:A, et al. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "click chemistry". J Am Chem Soc, 2008,130:11503-11509
    [142]Giordani S, Colomer J F,Cattaruzza F, et al. Multifunctional hybrid materials composed of [60]fullerenebased functionalized-single-walled carbon nanotubes.Carbon,2009,47: 578-588
    [143]Campidelli S, Sooambar C,Diz E L, et al.Dendrimer-functionalized single-wall carbon nanotubes:synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc, 2006,128:12544-12552
    [144]Palacin T, Khanh H L, Jousselme B, et al Efficient functionalizatiori of carbon nanotubes with porphyrin dendrons via click.chemistry. J Am Chem Soc,2009,131,15394-15402
    [145]Guldi D M, Taieb H, Rahman G M A, et al. Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps:efficient and long-lived intracomplex charge.separation. Adv Mater,2005,17:871-875.
    [146]Satake A, Miyajima Y, Kobuke. Y. Porphyrin-carbon nanotube composites fonned by noncovalent polymer wrapping. Chem Mater,2005,17:716-724
    [147]Qin'S. Qin D, Ford W T. Solubilization and purification of single-wall carbon'nanotubes in water by in situ radical polymerization of sodium 4-styrenesulf6nate. Macromolecules, 2004,37:3965-3967
    [148]Rahman G M A, Troeger A, Sgobba V, et al. Improving photocurrent generation: supramolecularly and covalently functionalized single-Wall carbon nanotubes-polymer/porphyrin donor-acceptor nanohybrids. Chem Eur J,2008,14, 8837-8846
    [149]Murakami H, Nomura T, Nakashima N, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites Chem Phys Lett,2003,378:481-485
    [150]Chen J, Collie C P. Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B,2005,109:7605-7609
    [151]Valentini L, Trentini M, Mengoni F, et al. Synthesis and photoelectrical properties of carbon nanotube-dendritic porphyrin light harvesting molecule systems. Diamond & Related Materials,2007,16:658-663
    [152]Guldi D M, Rahman G M A, Jux Norbert, et al. Multiwalled carbon nanotubes in donor-acceptor nanohybrids-towards long-lived electron transfer products. Chem Commun, 2005,2038-2040
    [153]Ehli C, Rahman G M A, Jux N, et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc,2006,128:11222-11231
    [154]Guldi D M, Rahman G M A, Jux N, et al. Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc,2005,127:9830-9838
    [155]Sandanayaka A S D, Chitta R, Subbaiyan N K, et al. Photoinduced charge separation in ion-paired porphyrin-single-wall carbon nanotube donor-acceptor hybrids. J Phys Chem C, 2009,113:13425-13432
    [156]D'Souza F, Chitta R, Sandanayaka A S D, et al. Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. Chem Eur J,2007,13:8277-8284
    [157]Yu J, Mathew S, Flavel B S, et al. Ruthenium Porphyrin Functionalized Single-Walled Carbon Nanotube ArrayssA Step Toward Light Harvesting Antenna and Multibit Information Storage. J Am Chem Soc,2008,130:8788-8796
    [158]Chitta R, Sandanayaka A S D, Schumacher A L. et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C,2007,111:6947-6955
    [159]Liang P, Zhang H Y, Yu Zhi Lin, et al. Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes. J Org Chem,2008,73:2163-2168
    [160]Hasobe T, Fukuzumi S, Kamat P V. Organized Assemblies of Single Wall Carbon Nanotubes and Porphyrin for Photochemical Solar Cells:Charge Injection from Excited Porphyrin into Single-Walled Carbon Nanotubes. J Phys Chem B,2006,110:25477-25484
    [161]Umeyama T, Fujita M, Tezuka N, et al. Electrophoretic deposition of single-walled carbon nanotubes covalently modified with bulky porphyrins on nanostructured SnO2 electrodes for.photoelectrochemical devices. J Phys Chem C,2007,111:11484-11493
    [162]Arai T, Nobukuni S, Sandanayaka A S D, et al. Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds:photoinduced electron transfer in polar solvent. J Phys Chem C,2009,113:14493-14499
    [163]Hecht D S, Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett,2006,6: 2031-2036
    [164]Tu W, Lei J, Ju H. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid:direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J,2009,15:779-784
    [165]Huang C Zi, Liao Q G, Li Y F. Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection.Talanta,2008,75: 163-166
    [166]Zhang W, Shaikh A U, Tsui E Y, et al. Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem Mater,2009,21:3234-3241
    [167]邓选英,章冬云,王昕,等.碳纳米管负载金属卟啉电催化剂制备及其催化活性.催化学报,2008,29(6):519-523
    [168]Peng X, Komatsu N, Kimura T, et al. Simultaneous enrichments of optical purity and (n,m) abundance of SWNTs through extraction with 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano,2008,2:2045-2050
    [169]Peng X, Wang F, Kimura T, et al. Optical resolution and diameter-based enrichment of single-walled carbon nanotubes through simultaneous recognition of their helicity and diameter with chiral monoporphyrin. J Phys Chem C,2009,113:9108-9113
    [170]Fox M A, Chanon M. Photoinduced Electron Transfer. Amsterdam:Elsevier,1988
    [171]Kadish K M, Smith K M, Guilard R. The Porphyrin Handbook. New York:Academic Press, 2003
    [172]Dresselhaus M S, Dresselhaus G, Avouris P. Carbon Nanotubes:Synthesis, Structure, Properties, and Applications. Berlin, Germany:Springer:2001
    [173]Senge M O, Fazekas M, Notaras E G A, et al. Nonlinear optical properties of porphyrins. Adv. Mater,2007,19:2737-2774
    [174]de la Torre G, Vazquez P, Agulló-López F, et al. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds.Chem. Rev,2004,104: 3723-3750
    [175]Webster S, Reyes-Reyes M, Pedron X, et al. Enhanced nonlinear transmittance by complementary nonlinear mechanisms:A reverse-saturable absorbing dye blended with nonlinear-scattering carbon nanotubes. Adv. Mater,2005,17:1239-1243
    [1]Armaroli N, Balzani V. The future of energy supply:challenges and opportunites. Angew Chem Int Ed,2007,46:52-66
    [2]Fox M A, Chanon M. Photoinduced Electron Transfer. Amsterdam:Elsevier,1988
    [3]Kadish K M, Smith K M, Guilard R. The Porphyrin Handbook. New York:Academic Press, 2003
    [4]Leznoff C C, Lever A B P, eds. Phthalocyanines:Porperties and Aplications. Weinheim: Wiley-VCH,1989,1993,1996, vol.1-4
    [5]Mckeown N B. Phthalocyanine Materials:Synthesis,Structure and Function. Cambridge: Cambridge University Press,1998.14
    [6]Liddll P A, Kuciauskas D, Sumida J P, et al. Liddll P A, Kuciauskas D, Sumida J P, et al. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. J Am Chem Soc,1997,119:1400-1405
    [7]Kuciauskas D, Liddell P A, Moore A L, et al. Magnetic switching of charge separation lifetimes in artificial photosynthetic reaction centers. J Am Chem Soc,1998,120: 10880-10886
    [8]Liddell P A, Sumida J P, MacPherson A N, et al. Preparation and photophysical studied of porphyrin-C60 dyads. Photochem Photobiol,1994,60:537-541
    [9]Imahori H, Hagiwara K, Akiyama T, et al. Synthesis and photophysical property of porphyrin-linked fullerene. Chem Lett,1995,265-266
    [10]Imahori H, Sakata Y, Synthesis of closely spaced porphyrin-fullerene. Chem Lett,25:1996, 199-200
    [11]Gouloumis A, Liu S, Vazquez P, et al. Synthesis and electrochemical properties of phthalocyanine-fullerene hybrids. Chem Eur J,2000,6:3600-3607
    [12]Drovetskaya T, Reed C A, Boyd P D W, et al. A Fullerene Porphyrin Conjugate. Tetrahedron Lett,1995,36:7971-7974
    [13]Nierengarten J F, Eckert J F, Felder D, et al. Synthesis and electronic properties of donor-linked fullerenes towards photochemical molecular devices. Carbon,2000,38: 1587-1598
    [14]Hartnagel U, Balbinot D, Jux N, et al. Electrophoresis of electrostatically assembled fullerene-porphyrin conjugates. Org Biomol Chem,2006,4:1785-1795
    [15]Dudic M, Lhotak P, Stibor I. et al. (Thia)calix[4]arene-porphyrin conjugates:novel receptors for fullerene complexation with C70 over C60 selectivity. New J Chem,2004,28:85-90
    [16]Kubo Y, Sugasaki A, Ikeda M, et al. Cooperative C60 binding to a porphyrin tetramer arranged around a p-terphenyl axis in 1:2 host-guest stoichiometry.Org Lett,2002,4:925
    [17]Da Ros T, Prato M, Guldi D M, et al. A noncovalently linked, dynamic fullerene porphyrin dyad. Efficient formation of long-lived charge separated states through complex dissociation. Chem Commun,1999,635-636
    [18]Wilson S R, MacMahon S, Tat FT, et al. Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad. Chem Commun,2003,226-227
    [19]Tat F T, Zhou Z G, MacMahon S, et al. A new fullerene complexation ligand: N-pyridylfulleropyrrolidine. J Org Chem,2004,69:4602-4606
    [20]D'Souza F, Deviprasad G R, El-Khouly M E, et al. Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads:"Tail-On" and "Tail-Off' binding ppproach.J Am Chem Soc.2001,123:5277-5284
    [21]D'Souza F, Deviprasad G R, Zandler M E. et al. Electronic interactions and photoinduced electron transfer in covalently linked porphyrin-C60(pyridine) diads and supramolecular triads formed by self-assembling the diads and zinc porphyrin. J Phys Chem B,2002,106: 4952-4962
    [22]D'Souza F. Gadde S. Zandler M E. et al. Supramolecular complex composed of a covalently linked zinc porphyrin dimer and fulleropyrrolidine bearing two axially coordinating pyridine entities. Chem Commun,2004,2276-2277
    [23]D'Souza F, Chitta R, Gadde S, et al. Design, syntheses, and studies of supramolecular porphyrin-fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes.J Phys Chem B.2006.110:5905-5913
    [24]Imahori H, Yamada H. Guldi D M, et al. Comparison of reorganization energies for intra-and intermolecular electron transfer. Angew Chem Int Ed.2002,41:2344-2347
    [25]Schuster D I. Li K, Guldi D M. et al. Azobenzene-linked porphyrin-fullerene dyads. J Am Chem Soc,2007,129:15973-15982
    [26]Guldi D M, Illescas B M, Atienza C M, et al. Fullerene for organic electronics. Chem Soc Rev,2009,38:1587-1597
    [27]Sastre A, Gouloumis A, Vazquez P, et al. Phthalocyanine-azacrown-fullerene multicomponent system:synthesis, photoinduced processes, and electrochemistry. Org. Lett, 1999,1:1807-1810
    [28]Guldi D M, Gouloumis A, Vazquez P, et al. Charge-transfer states in strongly coupled phthalocyanine fullerene ensembles. Chem Commun,2002,2056-2057
    [29]Guldi D M, Zilberman I, Gouloumis A, et al. Metallophthalocyanines:Versatile Electron-Donating Building Blocks for Fullerene Dyads. J Phys Chem B,2004,108: 18485-18494
    [30]Loi M A, Neugebauer H, Denk P, et al. Long-lived photoinduced charge separation for solar cell applications in phthalocyanine-fulleropyrrolidine dyad thin films. J Mater Chem,2003, 13:700-704
    [31]Guldi D M, Gouloumis A, Vazquez P, et al. Nanoscale organization of a phthalocyanine-fullerene system:remarkable stabilization of charges in photoactive 1-D nanotubules. J Am Chem Soc,2005.127:5811-5813
    [32]Quintiliani M, Kahnt A, Wofle T. et al. Synthesis and photoinduced electron-transfer properties of phthalocyanine-[60]fullerene conjugates. Chem Eur J,2008,14:3765-3775
    [33]Kahnt A. Guldi D M, de la Escosura A, et al. [2.2]Paracyclophane:a pseudoconjugated spacer for long-lived electron transfer in phthalocyanine-C60 dyads. J Mater Chem,2008,18: 77-82
    [34]Sukeguchi D, Yoshiyama H, Shibata N, et al. Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine linked with fullerene. Journal of Fluorine Chemistry 2009,130:361-364
    [35]Niemi M, Tkachenko N V. Efimov A, et al. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads. J Phys Chem A.2008,112:6884-6892
    [36]Kahnt A. Quintiliani M, Vazquez P. et al. A Bis(C60)-bis(phthalocyanine) nanoconjugate: synthesis and photoinduced charge transfer. ChemSusChem,2008.1:97-102
    [37]Quintiliani M, Kahnt A, Vazquez P, et al. Implementing a tripodal relay station in a phthalocyanine-[60]fullerene conjugate. J Mater Chem,2008,18:1542-1546
    [38]Martin-Gomis L. Ohkubo K. Fernandez-Lazaro F. et al. Synthesis and photophysical studies of a new nonaggregated C60-silicon phthalocyanine-C60 triad. Org Lett,2007,9:3441-3444
    [39]El-Khouly M E, Kim J H. Kay K Y, et al. Synthesis and photoinduced intramolecular processes of light-harvesting silicon phthalocyanine-naphthalenediimide-fullerene connected systems. Chem Eur J,2009,15:5301-5310
    [40]El-Khouly M E, Kang E S, Kay K Y. et al. Silicon-phthalocyanine-cored fullerene dendrimers:synthesis and prolonged charge-separated stateswith dendrimer generations. Chem Eur J,2007,13:2854-2863
    [41]Gouloumis A, de la Escosura A, Vazquez P, et al. Photoinduced electron transfer in a new bis(C60)-phthalocyanine triad. Org. Lett.2006.8:5187-5190
    [42]de la Escosura A. Martinez-Diaz M V, Torres T, et al. New donor-acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units. Chem Asian J. 2006,1-2:148-154
    [43]Guldi D M, Ramey J, Martinez-Diaz M V, et al. Reversible zinc phthalocyanine fullerene ensembles. Chem Commun,2002,2774-2775
    [44]Torres T, Gouloumis A, Sanchez-Garcia D, et al. Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem. Commun,2007, 292-294
    [45]El-Khoulya M E, Arakia Y, Ito O, et al. Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. J Porphyr Phthalocya 2006.10:1156-1164
    [46]Kadish K M. Smith K M, Guilard R. The Porphyrin Handbook, vols.15-20. San Diego: Academic Press,2003
    [47]de la Torre G, Vazquez P, Agulló-López F, et al. Phthalocyanines and related compounds: organic targets for nonlinear optical applications. J Mater Chem,1998,8:1671-1683
    [48]de la Torre G, Vazquez P, Agulló-López F, et al. Role of structural factors in the nonlinear optical properties of phthalocyanines and pelated compounds. Chem. Rev.2004,104: 3723-3750.
    [49]Tutt LW, Kost A. Optical limiting performance of C60 and C70 solutions. Nature 1992,356: 225-226
    [50]Ebbesen T W, Tanigaki K, Kuroshima S. Excited-state properties of C6o. Chem Phys Lett, 1991,181:501-504
    [51]Palit D K, Sapre A V. Mittal.J P, et al. Photophysical properties of the fullerenes, C60 and C70. Chem Phys Lett,1992,195:1-6
    [52]Sun Y P, Lawson G E, Riggs J E. et al. Photophysical and nonlinear optical properties of [60]fullerene derivatives. J Phys Chem A,1998.102:5520-5528
    [53]Zhu P, Wang P, Qiu W, et al. Optical limiting properties of phthalocyanine-fullerene derivatives.2001,78:1319-1321
    [54]Doyle J J, Ballesteros B, de la Torre G, et al. Combination of phthalocyanine and fullerene moieties for optical limiting. Chem Phys Lett,2006,428:307-311
    [55]李在国.有机中间体制备(第二版).化学上业出版社.2000,34
    [56]Wang Y H. Cao J R. Schuster D I. et al. A superior synthesis of [6,6]-methanofullerenes:The reaction of sulfonium ylides with C60. Tetra Lett,1995,36:6843-6846
    [57]Xiao L X, Shimotani H, Ozawa M. et al. Synthesis of a novel [60]fullerene pearl-necklace polymer. poly(4.4-carbonylbisphenylene trans-2-[60]fullerenobisacetamide). J Polym Sci Part A:Polym Chem.1999,37:3632-3637
    [58]王乃兴,孙承华,刘微,等.亚甲基[6,6]-富勒(fullerene)[60]单羧酸的合成研究.有机化学,2001,21(8):611-613
    [59]Kudrevich S V. Ali H. van Lier J E. Synthesis of monosulfonated phthalocyanines, benzonaphthoporphyrazines and porphyrins via the Meerwein reaction. J Chem Soc Perkin Trans 1,1994,2767-2774
    [60]张英菊.潘玉珍.王辉.4-叔J基邻苯二甲腈的合成.染料工业.2002,39(4):27
    [61]薛金强,王世荣.刘宪峰,等.化学工业与工程,2004,21(5):317
    [62]殷焕顺,邓建成.锡酞菁及其磺化衍生物的合成与性质研究.电子元件与材料,2006,25(4):53-56
    [63]Milanesio M E, Gervaldo M, Otero L A, et al. Synthesis and photophysical properties of Zn(II) porphyrin-C60 dyad with potential use in solar cells. J Phys Org Chem.2002,15: 844-851
    [64]Gouterman M. Spectra of porphyrins. J. Mol Spectrosc,1961,6:138-163
    [65]Xu H, Zhu Y Z. Zheng J Y. Synthesis of a series of meso-substituted zinc porphyrin derivatives and their assembly dyad with fulleropyrrolidine. Supramol Chem,2007,19: 365-372
    [66]Guo Z, Du F, Ren D. et al. omplete optical resolution by differential complexation in solution between a chiral cyclic polyether and an.alpha.-amino acid. J Am Chem Soc,1973,95: 3021-3023
    [67]Laurence C. Nicolet P, Dalati M T, et al. The empirical treatment of solvent-solute interactions:15 years ofπ*, J Phys Chem,1994,98:5807-5816
    [68]张克从.王希敏.非线性光学晶体材料科学.北京:科学出版社,1996,1
    [69]Tutt L W, McCahon S W. Reverse saturable absorption in metal cluster compounds. Opt Lett, 1990,15:700-702
    [70]Liu Z B, Tian J G, Guo Z, et al. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv Mater,2008.20:511-515
    [71]Blau W. Byrne H. Dennis W M. Reverse saturable absorption in tetraphenylporphyrins. Opt Commun,1985,56(1):25-29
    [72]Senge M O. Fazekas M, Notaras E G A,et al. Nonlinear optical properties of porphyrins. Adv Mater,2007,19:2737-2774
    [73]Perry J W, Mansour K. Lee I Y S, et al. Organic optical limiter with a strong nonlinear absorptive response. Science,1996,273:1533-1536
    [74]Liu Y, Chen Y. Cai L Z, et al. Optical limiting properties of axially substituted indium phthalocyanines in the solid PMMA composite films. Mater Chem Phys,2008,107:189-192
    [75]Callaghan J. Blau WJ. Henari F Z. Picosecond reverse saturable absorption and optical limiting in fullerenes and their metal derivatives. J Nonlinear Opt Phys Mater,2000,9: 505-521
    [76]Henari F. Callaghan J, Stiel H, et al. Intensity-dependent absorption and resonant optical nonlinearity of C60 and C70 solutions. Chem Phys Lett.1992.199:144-148
    [77]Tutt L W, Boggess T F. A review of optical limiting mechanisms and devices using organics,fullerenes,semiconductors and other materials. Prog Quantum Electron,1993,17: 299-338
    [78]Sheik-bahae M, Said A A, Wei T H. et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron,1990,26(4):760-760
    [1]Pedersen C J.Cyclic polyethers and their complexes with metal salts.J Am Chem Soc,1967, 89:2495-8496
    [2]Pedersen C J.Cyclic polyethers and their complexes with metal salts.J Am Chem Soc, 1967, 89:7017-7036
    [3]Helgesen R C,Timko J M,Cram D J.Complete optical resolution by differential complexation in solution between a chiral cyclic polyether and an.alpha.-amino acid.J Am
    Chem Soc,1973,95:3021-3023
    [4]Lehn J M.Supramolecular chemistry:receptors,catalysts,and carriers.Science,1985,227: 849-856
    [5]Lehn J M.Supramolecular chemistry.Science 1993,260:1762-1763
    [6]Lehn J M.Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization.Angew Chem Int Ed Engl,1990, 29:1304-1319
    [7]D'Souza F,Smith P M,Gadde S,et al.Supramolecular triads formed by axial coordination of fullerene to covalently linked zinc porphyrin-ferrocene(s):design,syntheses, electrochemistry,and photochemistry.J Phys Chem B,2004,108:11333-11343
    [8]Guldi D M,Ⅲescas B M,Atienza C M,et al.Fullerene for organic electronics.Chem Soc Rev.2009,38:1587-1597
    [9]MacMahon S,Fong 11 R,Baran P S,et al.Synthetic approaches to a yariety of covalently linked porphyrin-fullerene hybrids.J Org Chem 2001,66:5449-5455
    [10]Wedel M,Montforts F P.A facile synthetic access to porphyrin fullerene dyads and their optical properties.Tetrahedron Lett.1999,40,7071-7074
    [11]Guldi D M.Fullerene-porphyrin architectures;photosynthetic antenna and reaction center models.Chem Soc Rey,2002,31:22-36
    [12]D'Souza F,Deviprasad G R,Zandler M E,et al.Spectroscopic,electrochemical,and photochemical studies of self-Assembled via axial coordination'zinc porphyrin-fulleropyrrolidine dyads.J Phys Chem A,2002,106:3243-3252
    [13]Sessler J L,Jayawickramarajah J,Gouloumis A,et al.Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding. Chem Commun,2005,1892-1894
    [14]Balbinot D, Atalick S, Guldi D M, et al. Electrostatic assemblies of fullerene-porphyrin hybrids:toward long-lived charge separation. J Phys Chem B,2003,107:13273-13279
    [15]D'Souza F, Deviprasad G R, El-Khouly M E, et al. Photoinduced electron transfer in "two-point" bound supramolecular triads composed of N,N-dimethylaminophenyl-fullerene-pyridine coordinated to zinc porphyrin. J Phys Chem A,2003,107:4801-4807
    [16]D'Souza F, El-Khouly M E, Gadde S, et al. Supramolecular triads bearing porphyrin and fullerene via'two-point'binding involving coordination and hydrogen bonding. Tetrahedron, 2006,62:1967-1978
    [17]D'Souza F, Chitta R, Gadde S, et al. Supramolecular porphyrin-fullerene via'two-point' binding strategy:Axial-coordination and cation-crown ether complexation. Chem Commun, 2005,1279-1281
    [18]D'Souza F, Chitta R, Gadde S, et al. Effect of axial ligation or π-π-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates. Chem Eur J,2005,11:4416-4428
    [19]Guldi D M, Imahori H, Tamaki K, et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A,2004,108:541-548
    [20]Imahori H, Tamaki K, Guldi D M, et al. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads:marcus-normal versus inverted region. J Am Chem Soc,2001,123:2607-2617
    [21]Imahori H, Sekiguchi Y, Kashiwagi Y, et al. Long-lived charge-separated state generated in a ferrocene-meso,meso-linked porphyrin trimer-fullerene pentad with a high quantum yield. Chem Eur J 2004,10:3184-3196
    [22]Fukuzumi S. Bioinspired electron-transfer systems and applications. Bull Chem Soc Jpn, 2006,79:177-195
    [23]Leznoff C C, Lever A B P, eds. Phthalocyanines:Porperties and Aplications. Weinheim: Wiley-VCH,1989,1993,1996, vol.1-4
    [24]Mckeown N B. Phthalocyanine Materials:Synthesis, Structure and Function. Cambridge: Cambridge University Press,1998.14
    [25]Sastre A, Gouloumis A, Vazquez P, et al. Phthalocyanine-azacrown-fullerene multicomponent system:synthesis, photoinduced processes, and electrochemistry. Org. Lett, 1999,1:1807-1810
    [26]Gouloumis A, Liu S G, Sastre P A, et al. Synthesis and electrochemical properties of phthalocyanine-fullerene hybrids. Chem Eur.J,2000,6:3600-3607
    [27]Guldi D M, Gouloumis A, Vazquez P, et al. Charge-transfer states in strongly coupled phthalocyanine fullerene ensembles. Chem Commun,2002,2056-2057
    [28]Guldi D M, Zilberman 1, Gouloumis A, et al. Metallophthalocyanines:versatile electron-donating building blocks for fullerene dyads. J Phys Chem B,2004,108: 18485-18494
    [29]Loi M A, NeugebauerH, Denk P,et al Long-lived photoinduced charge separation for solar cell applications in phthalocyanine-fulleropyrrolidine dyad thin films. J Mater Chem,2003, 13:700-704
    [30]Guldi D M, Gouloumis A; Vazquez P, et al.Nanoscale organization of a phthalocyanine-fullerene system.remarkable stabilization of charges in photoactive 1-D nanotubules. J Am Chem Soc,2005,127:5811-5813
    [31]Quintiliani M, Kahnt A, Wofle T, et al.Synthesis and photoinduced electron-transfer properties of phthalocyanine-[60]fullererie conjugates.-Chem Eur J,2008,14:3765-3775
    [32]Kahnt A, Guldi D M, de la Escosura A, et al.{2.2]Paracyclophane:a pseudococonjugated spacer for long-lived electron transfer in phthalocyanine-C60 dyads. J Mater Chem,2008,18: 77-82
    [33]Sukeguchi D, Yoshiyama H, Shibata N, et al. Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine linked with fullerene Jourrnal of Fluorine Chemistry 2009,130:361-364
    [34]Niemi M, Tkachenko N V, Efimov A,et al. Exciplex mediated,photoinduced electron transfer reactions of phthalocyanine-fullerene dyads. J Phys Chem A,2008,112;6884-6892
    [35]Kahnt A, Quintiliani M, Vazquez P, et al. A Bis(C60)-bis(phthalocyanine)nanoconjugate:
    synthesis.and photoinduced charge transfer. ChemSusChem,2008,1:97-102
    [36]Quintiliani M, Kahnt A, Vazquez P,et al. Implementing a tripodal relay station in a phthalocyanine-[60]fullerene conjugate.J Mater Chem,2008,18:1542-1546
    [37]Martin-Gomis L, Ohkubo K, Fernandez-Lazaro F, et al. Syntheeis and photophysical studies of a new nonaggregated C60-silicon phthal6cyanine-C60triad. Org Lett;.2007,9:3441~3444
    [38]El-Khouly M E, Kim J H, Kay K Y, et al. Synthesis and photoinduced intramolecular processes of light-harvesting silicon phthalocyanine-naphthalenediimide-fullerene connected systems. Chem Eur J,2009,15:5301-5310
    [39]El-Khouly M E, Kang E S, Kay K Y, et al. Silicon-phthalocyanine-cored fullerene dendrimers:synthesis and prolonged charge-separated stateswith dendrimer generations. Chem Eur J,2007,13:2854-2863
    [40]Guldi D M, Ramey J, Martinez-Diaz M V, et al. Reversible zinc phthalocyanine fullerene ensembles. Chem Commun,2002,2774-2775
    [41]Torres T, Gouloumis A, Sanchez-Garcia D, et al. Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem. Commun.2007, 292-294
    [42]El-Khoulya M E, Arakia Y, Ito O, et al. Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. J Porphyr Phthalocya 2006,10:1156-1164
    [43]Gouloumis A, de la Escosura A, Vazquez P, et al. Photoinduced electron transfer in a new bis(C60)-phthalocyanine triad. Org. Lett.2006,8:5187-5190
    [44]de la Escosura A, Martinez-Diaz M V, Torres T, et al. New donor-acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units. Chem Asian J, 2006,1-2:148-154
    [45]Zhu P, Wang P, Qiu W, et al. Appl Phys Lett, Optical limiting properties of phthalocyanine-fullerene derivatives.2001,78:1319-1321
    [46]Chen Y, EI-Khouly M E, Sasaki M, et al. Synthesis of the axially substituted titanium Pc-C60 dyad with a convenient method. Org Lett,2005,7:1613-1616
    [47]Doyle J J, Ballesteros B, de la Torre G, et al. Combination of phthalocyanine and fullerene moieties for optical limiting. Chem Phys Lett,2006,428:307-311
    [48]薛金强,王世荣,刘宪峰,等.二羟基硅酞菁合成方法的研究.化学工业与工程,2004,21(5):317-320
    [49]殷焕顺,邓建成.锡酞菁及其磺化衍生物的合成与性质研究.电子元件与材料,2006,25(4):53-56
    [50]Prato M, Maggini M, Giacometti C, et al. Synthesis and electrochemical properties of substituted fulleropyrrolidines. Tetrahedron,1996,52:5221-5234
    [51]XIE Zhao-Yang(谢朝阳),OUYANG Qin(欧阳勤),ZHU Yi-Zhou(朱义州),et al. Synthesis of a novel bisimidazolium branched zinc metalloporphyr in and its recognition for halide anion. Chem J Chinese Universities(高等学校化学学报),2009,30(7):1332-1336
    [52]Schneider H J, Rudiger K, et al. Host-guest chemistry.14. Solvent and salt effects on binding constants of organic substrates in macrocyclic host compounds. A general equation measuring hydrophobic binding contributions. J Am Chem Soc,1988,110:6442-6448
    [53]Guo Y M, Oike H, Saeki N. et al. One-Pot Optical Resolution of Oligopeptide Helices through Artificial Peptide Bundling Angew Chem Int Ed,2004,43:4915-4918
    [1]Dresselhaus M S, Dresselhaus G, Avouris P. Carbon Nanotubes:Synthesis. Structure, Properties, and Applications. Berlin, Germany:Springer:2001
    [2]Chae H G. Sreekumar T V, Uchida T, et al. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer,2005,46(24): 10925-10935
    [3]Cao Q, Rogers J A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors:a review of fundamental and applied aspects. Adv Mater,2009,21:29-53
    [4]Kam N W S, Dai H. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J Am Chem Soc,2005,127:6021-6026
    [5]Imahori H, Umeyama T. Donor-acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion. J Phys Chem C.2009,113:9029-9039
    [6]Zhou X, Zifer T, Wong B M, et al. Color detection using chromophore-nanotube hybrid devices. Nano Lett,2009,9:1028-1033
    [7]Kadish K M. Smith K M. Guilard R. The Porphyrin Handbook. New York:Academic Press, 2003
    [8]Li H, Martin R B, Harruff B A, et al. Singel-walled carbon nanotubes tethered with porphyrin:synthesis and photophysical porperties. Adv Mater,2004,16:896-900
    [9]Baskaran D, Mays J W, Zhang X P, et al. Carbon nanotubes with covalently linked porphyrin antennae photoinduced electron transfer. J Am Chem Soc,2005,127:6916-6917
    [10]Jin J, Dong Z, He J, et al. Synthesis of novel porphyrin and its complexes covalently Linked to multi-walled carbon nanotubes and study of their spectroscopy. Nanoscale Res Lett,2009. 4:578-583
    [11]许兰兰,赵鸿斌,徐勇军,等.氨基卟啉共价化学修饰多壁碳纳米管.化学学报,2008,66(10):1228-1234
    [12]Giordani S, Colomer J F, Cattaruzza F, et al. Multifunctional hybrid materials composed of [60]fullerenebased functionalized-single-walled carbon nanotubes. Carbon,2009,47: 578-588
    [13]Campidelli S, Sooambar C, Diz E L, et al. Dendrimer-functionalized single-wall carbon nanotubes:synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc, 2006,128:12544-12552
    [14]Palacin T, Khanh H L, Jousselme B, et al. Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc,2009,131,15394-15402
    [15]Guldi D M, Taieb H, Rahman G M A, et al, Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps:efficient and long-lived intracomplex charge separation. Adv Mater,2005,17:871-875
    [16]Satake A, Miyajima Y, Kobuke Y. Porphyrin-carbon nanotube composites formed by noncovalent polymer wrapping. Chem Mater,2005,17:716-724
    [17]Qin S, Qin D, Ford W T. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules,2004, 37:3965-3967
    [18]Rahman G M A, Troeger A, Sgobba V, et al. Improving photocurrent generation: supramolecularly and covalently functionalized single-Wall carbon nanotubes-polymer/porphyrin donor-acceptor nanohybrids. Chem Eur J,2008,14, 8837-8846
    [19]Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites Chem Phys Lett,2003,378:481-485
    [20]Chen J, Collie C P. Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B.2005,109:7605-7609
    [21]Valentini L, Trentini M,Mengoni F, et al. Synthesis and photoelectrical properties of carbon nanotube-dendritic porphyrin light harvesting molecule systems. Diamond & Related Materials,2007,16:658-663
    [22]Guldi D M. Rahman G M A,lux N, et al. Multiwalled carbon nanotubes in donor-acceptor nanohybrids-towards long-lived electron transfer products. Chem Commun,2005, 2038-2040
    [23]Ehli C. Rahman G M A. Jux N, et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc.2006,128:11222-11231
    [24]Guldi D M. Rahman G M A, Jux N. et al. Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc, 2005,127:9830-9838
    [25]Sandanayaka A S D. Chitta R. Subbaiyan N K. et al. Photoinduced charge separation in ion-paired porphyrin-single-wall carbon nanotube donor-acceptor hybrids. J Phys Chem C, 2009,113:13425-13432
    [26]D'Souza F, Chitta R, Sandanayaka A S D, et al. Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. Chem Eur J.2007,13:8277-8284
    [27]Yu J, Mathew S, Flavel B S, et al. Ruthenium porphyrin functionalized single-walled carbon nanotube arrayss a step toward light harvesting antenna and multibit information storage. J Am Chem Soc.2008,130:8788-8796
    [28]Chitta R, Sandanayaka A S D, Schumacher A L, et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C,2007, 111:6947-6955
    [29]Liang P, Zhang H Y, Yu Zhi Lin, et al. Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes. J Org Chem,2008,73:2163-2168
    [30]Hasobe T, Fukuzumi S, Kamat P V. Organized assemblies of single Wall carbon nanotubes and porphyrin for photochemical solar cells:charge injection from excited porphyrin into single-walled carbon nanotubes. J Phys Chem B.2006,110:25477-25484
    [31]Umeyama T, Fujita M. Tezuka N. et al. Electrophoretic deposition of single-walled carbon nanotubes covalently modified with bulky porphyrins on nanostructured SnO2 electrodes for photoelectrochemical devices. J Phys Chem C,2007, 111:11484-11493
    [32]Arai T, Nobukuni S, Sandanayaka A S D, et al. Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds:photoinduced electron transfer in polar solvent. J Phys Chem C,2009,113:14493-14499
    [33]Guo Z, Du F, Ren D, et al. Covalently porphyrin-functionalized single-walled carbon nanotubes:a novel photoactive and optical limiting donor-acceptor nanohybrid. J Mater Chem,2006,16:3021-3030
    [34]Guldi D M, Imahori H, Tamaki K, et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A,2004,108:541-548
    [35]Imahori H, Tamaki K, Guldi D M, et al. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads:marcus-normal versus inverted region.J Am Chem Soc,2001,123:2607-2617
    [36]Imahori H, Sekiguchi Y, Kashiwagi Y, et al. Long-lived charge-separated state generated in a ferrocene-meso,meso-linked porphyrin trimer-fullerene pentad with a high quantum yield. Chem Eur J 2004,10:3184-3196
    [37]Fukuzumi S. Bioinspired electron-transfer systems and applications. Bull Chem Soc Jpn. 2006,79:177-195
    [38]凡素华,杨森根,吴振奕,等.共价键连卟啉-富勒烯化合物的合成与表征.无机化学学报,2006,22(7):1329-1302
    [39]杨森根,刘见永.吴振奕,等.新型共价键连的富勒烯-卟啉化合物的合成与表征.高等学校化学学报,2005.26(7):1202-1205
    [40]齐红蕊.赵鸿斌.罗和安,等.Meso-四(烷氧基苯基)卟啉及其金属络合物的波谱研究.分析化学.2004.32(12):1608-1612
    [41]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95-98
    [42]Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes. Science,1998,280:1253-1256
    [43]成会明.纳米碳管——制备、结构、物性及应用.北京:化学工业出版社,2002
    [44]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B,2000,61:14095-14107
    [45]Strano M S, Dyke C A, Usrey M L, et al. structure control of single-walled carbon nanotube functionalization. Science,2003.301:1519-1522
    [46]Zhao W, Song C, Pehrsson P E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc,2002,124:12418-12419
    [47]Jiang J, Cornelissen U, Arnold D P, et al. Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Polyhedron,2001,20:557-569
    [48]Woodbridge C M, Pugmire D L, Johnson R C, et al. HREELS and XPS studies of ferrocene on Ag(100). J Phys Chem B,2000,104:3085-3093
    [49]Fabre B, Hauquier F. Single-Component and Mixed Ferrocene-Terminated Alkyl Monolayers Covalently Bound to Si(111) Surfaces. J Phys Chem B,2006,110:6848-6855
    [50]Cheng F, Adronov A. Suzuki coupling reactions for the surface functionalization of single-walled carbon nanotubes. Chem Mater,2006,18:5389-5391
    [51]Worsley K A, Moonnoosawmy K R, Kruse P, et al. Long-range periodicity in carbon nanotube sidewall functionalization. Nano Lett,2004.4:1541-1546
    [52]Girifalco L A, Hodak M, Lee R S. Carbon nanotubes. buckyballs, ropes, and a universal graphitic potential. Phys rev B,2000,62:13104-13110
    [53]Bahr J L. Mickelson E T, Bronikowski M J, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun,2001,193-194
    [54]Ballesteros B, de la Torre G, Ehli C, et al. Single-wall carbon nanotubes bearing covalently linked phthalocyanines-photoinduced electron transfer. J Am Chem Soc,2007,129: 5061-5068
    [55]Kuciauskas D. Lin S. Seely G R. et al. Energy and photoinduced electron transfer in porphyrin-fullerene dyads. J Phys Chem,1996.100:15926-15932
    [56]Laurence C. Nicolet P, Dalati M T, et al. The empirical treatment of solvent-solute interactions:15 years ofπ*. J Phys Chem,1994.98:5807-5016
    [57]Han Y., Dobeck L. Gong A. et al. Millisecond long-lived charge separated state at room temperature in a flexibly linked diphenylaminopolyene-C60 dyad. Chem Commun,2005. 1067-1069
    [58]Guldi D M, Rahman G M A. Jux N, et al. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew Chem,2004,116:5642-5646
    [59]Herranz M A, Martin N, Campidelli S. et al. Control over electron transfer in tetrathiafulvalene-modified single-walled carbon nanotubes. Angew Chem,2006,118: 4590-4594
    [60]Hasobe T, Fukuzumi S, Kamat P V. Stacked-Cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem,2006,118:769-773
    [61]Guldi D M. Rahman G M A. Prato M, et al. Single-wall carbon nanotubes as integrative bbuilding blocks for solar-energy conversion. Angew Chem,2005,117:2051-2054
    [62]Zhang X F, Cui X F, Liu Q, et al. Multiple-charge separation in nanoscale artificial photosynthetic models. ChemPhysChem,2008,9:1514-1518
    [63]Luo C, Guldi D M, Imahori H, et al. Sequential energy and electron transfer in an artificial reaction center:formation of a long-lived charge-separated state..1 Am Chem Soc,2000.122: 6535-6551
    [64]D'Souza F, Smith P M. Gadde S, et al. Supramolecular triads formed by axial coordination of fullerene to covalently linked zinc porphyrin-ferrocene(s):design, syntheses. electrochemistry, and photochemistry. J Phys Chem B,2004,108:11333-11343
    [65]Xian-Fu Zhang, Xiaofeng Cui. Qiang Liu, et al. Photoinduced multi-electron transfer in the D(?)-A system consisting of multi-phthalocyanines linked to one carbon nanotube. Phys Chem Chem Phys.2009,11:3566-3572
    [66]Guldi D M, Rahman G M A, Sgobba V, et al. Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem Soc Rev,2006,35:471-487
    [1]Baskaran D, Mays J W, Zhang X P. et al. Carbon nanotubes with covalently linked porphyrin antennae photoinduced electron transfer. J Am Chem Soc,2005,127:6916-6917
    [2]Li H, Martin R B, Harruff B A, et al. Singel-walled carbon nanotubes tethered with porphyrin:synthesis and photophysical porperties. Adv Mater,2004,16:896-900
    [3]Guo Z, Du F, Ren D, et al. Covalently porphyrin-functionalized single-walled carbon nanotubes:a novel photoactive and optical limiting donor-acceptor nanohybrid. J Mater Chem,2006,16:3021-3030
    [4]Campidelli S, Sooambar C, Diz E L, et al. Dendrimer-functionalized single-wall carbon nanotubes:synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc, 2006,128:12544-12552
    [5]Cheng F, Adronov A. Suzuki coupling reactions for the surface functionalization of single-walled carbon nanotubes. Chem Mater,2006,18:5389-5391
    [6]Palacin T, Khanh H L, Jousselme B, et al. Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc,2009,131,15394-15402
    [7]许兰兰,赵鸿斌.徐勇军,等.氨基卟啉共价化学修饰多壁碳纳米管.化学学报,2008,66(10):1228-1234
    [8]Hasode T, Fukuzumi S, Kamat P V. Ordered assembly of protonated porphyrin priven by pingle-wall carbon nanotubes. J-and H-aggregates to nanorods. J Am Chem Soc,2005,127: 11884-11885
    [9]Rahman G M A, Guldi D M, Campidelli S, et al. Electronically interacting single wall carbon nanotube-porphyrin nanohybrids. J Mater Chem,2006,16:62-65
    [10]Ehli C, Rahman G M A. Jux N, et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc.2006,128:11222-11231
    [11]Cheng F, Zhang S, dronov A, et al. Triply fused ZnⅡ-porphyrin oligomers:synthesis. properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs). Chem Eur J,2006,12:6062-6070
    [12]Chitta R, Sandanayaka A D, Schumacher A L, et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C,2007, 111:6947-6955
    [13]D'Souza F, Chitta R, Sandanayaka A S D, et al. Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. Chem Eur J,2007,13:8277-8284
    [14]de la Torre G, Blau W, Torres T. A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties. Nanotechnology,2003,14:765-771
    [15]Ballesteros B. Campidelli S, de la Torre G, et al. Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chem Commun,2007, 2950-2952
    [16]Ballesteros B. de la Torre G, Ehli C, et al. Single-wall carbon nanotubes bearing covalently linked phthalocyanines-photoinduced electron transfer. J Am Chem Soc,2007,129: 5061-5068
    [17]Zhang X, Cui X, Liu Q, et al. Multiple-charge separation in nanoscale artificial photosynthetic models. ChemPhysChem,2008.9:1514-1518
    [18]Hasobe T, Fukuzumi S, Kamat P V. Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells:charge injection from excited porphyrin into single-walled carbon nanotubes. J Phys Chem B.2006,110:25477-25484
    [19]Umeyama T. Fujita M, Tezuka N. et al. Electrophoretic deposition of single-walled carbon nanotubes covalently modified with bulky porphyrins on nanostructured SnO2 electrodes for photoelectrochemical devices. J Phys Chem C,2007,111:11484-11493
    [20]Arai T. Nobukuni S, Sandanayaka A S D, et al. Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds:photoinduced electron transfer in polar solvent. J Phys Chem C,2009,113:14493-14499
    [21]Hecht D S. Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett,2006,6: 2031-2036
    [22]Tu W, Lei J, Ju H. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid:direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J,2009,15:779-784
    [23]Huang C Zi, Liao Q G. Li Y F. Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta,2008,75:163-166
    [24]Zhang W. Shaikh A U. Tsui E Y. et al. Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem Mater,2009,21:3234-3241
    [25]邓选英,章冬云,王昕,等.碳纳米管负载金属卟啉电催化剂制备及其催化活性.催化 学报,2008,29(6):519-523
    [26]Peng X, Komatsu N, Kimura T, et al. Simultaneous enrichments of optical purity and (n,m) abundance of SWNTs through extraction with 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano,2008,2:2045-2050
    [27]Peng X, Wang F, Kimura T, et al. Optical resolution and diameter-based enrichment of single-walled carbon nanotubes through simultaneous recognition of their helicity and diameter with chiral monoporphyrin. J Phys Chem C,2009,113:9108-9113
    [28]Campidelli S, Ballesteros B, Filoramo A, et al. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "click chemistry". J Am Chem Soc, 2008.130:11503-11509
    [29]Ferrari A C, Robertson J Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B,2000,61:14095-14107
    [30]Strano M S. Dyke C A, Usrey M L, et al. structure control of single-walled carbon nanotube functionalization. Science,2003,301:1519-1522
    [31]Zhao W, Song C, Pehrsson P E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc,2002,124:12418-12419
    [32]Jiang J, Cornelissen U, Arnold D P, et al. Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Polyhedron,2001.20:557-569
    [1]Guldi D M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev,2002,31:22-36
    [2]Guldi D M, Imahori H, Tamaki K, et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A,2004,108:541-548
    [3]Imahori H, Tamaki K, Guldi D M, et al. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads:marcus-normal versus inverted region. J Am Chem Soc,2001,123:2607-2617
    [4]Imahori H, Sekiguchi Y, Kashiwagi Y, et al. Long-lived charge-separated state generated in a ferrocene-meso,meso-linked porphyrin trimer-fullerene pentad with a high quantum yield. Chem Eur J 2004,10:3184-3196
    [5]Fukuzumi S. Bioinspired electron-transfer systems and applications. Bull Chem Soc Jpn,
    2006,79:177-195
    [6]Fukuzumi S, Kojima T. Photofunctional nanomaterials composed of multiporphyrins and carbon-based p-electron acceptors. J Mater Chem,2008,18:1427-1439
    [7].Hasobe T, Imahori H, Fukuzumi S, et al. Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J Am Chem Soc,2003,125:14962-14963
    [8], Hasobe T, Imahori H, Kamat P V, et al. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J Am Chem Soc,2005,127:1216-1228
    [9]Hasobe T, Kamat P V, Absalom M A, et al. Supramolecular photovoltaic cells based on composite molecular nanoclusters:dendritic porphyrin and C60, porphyrin dimer and C60, and porphyrin-C60 dyad. J Phys Chem B,2004,108:12865-12872
    [10]Hasobe T, Kamat P V, Troiani V, et al. Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. J Phys Chem B,2005,109:19-23
    [11]Hasobe T, Saito K, Kamat PV, et al. Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J Mater Chem,2007,17:4160-4170
    [12]Lu FS, Xiao S Q, Li Y L, et al. Synthesis and chemical properties of conjugated polyacetylenes having pendant fullerene and/or porphyrin units. Macromolecules,2004,37: 7444-7450
    [13]Cravino A. Conjugated polymers with tethered electron-accepting moieties as ambipolar materials for photovoltaics. Polym Int,2007,56:943-956
    [14]Wang N, Lu F S, Huang C S, et al. Construction of diads and triads copolymer systems containing perylene, porphyrin, and/or fullerene blocks. J Polym Sci Part A:Polym Chem, 2006,44:5863-5874
    [15]LiY J, Gan Z H, Wang N, et al. Synthesis and characterization of porphyrin-ferrocene-fullerene triads Tetrahedron,2006,62:4285-4293
    [16]Kim H J, Park K M, Ahn T K, et al. Novel fullerene-porphyrin-fullerene triad linked by metal axial coordination:Synthesis, X-ray crystal structure, and spectroscopic characterizations of trans-bis([60]fullerenoacetato)tin(IV) porphyrin. Chem Commun 2004, 2594-2595
    [17]Lee J L, Lee S J, Kim H J, et al. Conformations and electronic structures of axially coordinated fullerene-porphyrin-pullerene triad (C60CHCOO)2-Sn(Ⅳ) porphyrin. J Phys Chem B,2006,110:5337-5342
    [18]Guldi D M, Illescas B M, Atienza C M, et al. Fullerene for organic electronics. Chem Soc Rev,2009,38:1587-1597
    [19]Kuciauska D, Liddell P A, Lin S, et al. An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc,1999,121:8604-8614
    [20]Bonifazia D, Accorsic G, Armaroli N, et al. Oligoporphyrin arrays conjugated to [60]fullerene:preparation, NMR analysis, and photophysical and electrochemical properties. Helvetica Chimica Acta,2005,88:1839-1884
    [21]Armaroli N, Accorsi G, Song F, et al. Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem, 2005,6:732-743
    [22]Giacalone F, Segura J L, Martin N, et al. Probing molecular wires:synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chem Eur J,2005,11:4819-4834
    [23]Guldi D M, Rahman G M A, Sgobba V, et al. Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem Soc Rev,2006,35:471-487
    [24]Nakamura T, Ikemoto J, Fujitsuka M, et al. Control of photoinduced energy-and electron-transfer steps in zinc porphyrin-oligothiophene-fullerene linked triads with solvent polarity. J Phys Chem B,2005,109:14365-14374
    [25]Oswald F, Shafiqul I D M, Araki Y, et al. High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and Cgo connected systems. Chem Commun,2007, 4498-4500
    [26]Vail S A, Tome J P C, Krawczuk P J, et al. Synthesis and fluorescence properties of a porphyrin-fullerene molecular wire. J Phys Org Chem,2004,17:814-818
    [27]Vail S A, Krawczuk P J, Guldi D M, et al. Energy and electron transfer in polyacetylene-linked zinc-porphyrin-[60]fullerene molecular wires. Chem Eur J,2005,11: 3375-3388
    [28]Guldi D M. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications. Phys Chem Chem Phys,2007,9:1400-1420
    [29]Lembo A, Tagliatesta P, Guldi D M. Synthesis and photophysical investigation of new porphyrin derivatives with beta-pyrrole ethynyl linkage and corresponding dyad with [60] fullerene. J Phys Chem A,2006,110:11424-11434
    [30]Winters M U,sDahlstedt E, Blades H E,et al.Probing the efficiency of electron transfer through porphyrin-based molecular wires. J Am Chem Soc,2007,129:4291-4297
    [31]Li K, Schuster.D I,Guldi D M, et al.;Convergent. synthesis and photophysics of [60]fullerene/porphyrin-based rotaxanes. J Am Chem Soc,2004,-126:3388-3389
    [32]Li K, Bracher P J, Guldi D M, et al. [60]fullerene-stoppered porphyrinorotaxanes: pronounced elongation of charge-separated-state lifetimes. J Am Chem Soc,2004,126: 9156-9157
    [33]Schuster D I, Li K, Guldi D M. Novel porphyrin-fullerene assemblies:From rotaxanes to catenanes.Org Lett,2004,6:1919-1922
    [34]Xiao L X, Shimotani H, Ozawa M, et al. Synthesis of a novel.[60]fullerene pearl-necklace polymer, poly(4,4-carbonylbisphenylene trans-2-[60]fullereriobisacetamide).J Polym Sci Part A:Polym Chem,1999,37:3632-3637
    [35]Larnparth I, Hirsch A. Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure. J Chem Soc, Chem Commun,1994,1727-1728
    [36]Taki M, Sugita S, Nakamura Y, et al. Selective functionalization on [60]fullerene governed by tether length. J Am Chem Soc,1997,119:926-932
    [37]Nierengarten J F, Habicher T, Kessinger R, et al.157. Macrocyclization on the fullerene core: direct regio-and diastereoseleetive multi-functionalization of[60]fullerene,and ssynthesis of fullerene-dendrimer derivatives. Helvetica Chimica Acta,1997,80:2238-2275
    [38]Hirsch A, Lamparth I, Karfunkel H R.Fullerene chemistry in three dimensions:isolation of seven regioisomeric bisadducts and chiral trisadducts of C60 and di(ethoxycarbonyl) methylene.Angew Chem Int Ed,1994,33:437-438
    [39]Lu Q, Schuster D 1, Wilson S R Preparation and characterization of six bis(N-methylpyrrolidine)-C6o isomers:magnetic deshielding in isomeric bisadducts of C60.J Org Chem,1996,61:4764-4768
    [40]Ozawa M, Li J, Nakahara K, et al. Synthesis and properties of polyamides with [60]fullerene in the main.chain.J Polym Sci Part A:Polym Chem,1998,36:3139-3146
    [41]Imai Y,Kajiyama M, Ogata S I, et al. Preparation and properties of polymides from 3,4'and 4,4'-oxydianiline and various aliphatic and aromatic diacids. J Polym Sci, Polym Chem Ed, 1984,22:3183-3188
    [42]Hwu J R, Kuo T Y, Chang T M, et al. Amination of buckminsterfullerene C60 at low temperature:application in polyamide synthesis. Fullerene Sci & Tech 1996,3:407-422
    [43]Colthup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy. New York,1964,239-268
    [44]Chen Y, El-Khouly M E, Zhuang X D, et al. Synthesis and photoinduced.electron-transfer process of a novel'triphenylamine-substituted polyfluorene-C6o triad.Chem Eur J,,2007,13: 1709-1714
    [45]Elisa M,Silva S R, Dutra E R, et al. Preparation and therma study of polymers derived from acrylamide. PolymDedgrad Stab,2000,67:49-495
    [46]Mirkin C A, Caldwell W B. Thin film, fullerene-based materials. Tetrahedron,1996,52: 5113-5130
    [47]Nath S, Pal H, Palit D K, et al. Aggregation of fullerene, C60, in benzonitrile. J Phys Chem B, 1998,102:10158-10164
    [48]Sawamura M, Nagahama N, Toganoh M, et al. Pentaorgano[60]fullerene R5C6o-. A water soluble hydrocarbon anion. Chem Lett,2000,29:1098-1099
    [49]Imahori H, Sakata Y. Synthesis of closely spaced porphyrin-fullerene. Chem Lett,25:1996, 199-200
    [50]Imahori H, Hagiwara K, Aoki M, et al. Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin-C60 dyads. J Am Chem Soc,1996,118:11771-11782
    [51]Kuciauskas D, Lin S, Seely G R, et al. Energy and photoinduced electron transfer in porphyrin-fullerene dyads. J Phys Chem,1996,100:15926-15932
    [52]Han Y, Dobeck L, Gong A. Millisecond long-lived charge separated state at room temperature in a flexibly linked diphenylaminopolyene-C60 dyad. Chem Commun,2005, 1067-1069
    [53]Guldi D M, Rahman G M A, Jux N, et al. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew Chem Int Ed,2004,43:5526-5530
    [54]D'Souza F, Chitta R, Sandanayaka A S D, et al. Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. Chem Eur J,2007,13:8277-8284
    [55]Chitta R, Sandanayaka A S D, Schumacher A L, et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C,2007,111:6947-6955
    [56]Ballesteros B, De La Torre G, Ehli C, et al. Single-wall carbon nanotubes bearing covalently linked phthalocyanines-photoinduced electron transfer. J Am Chem Soc,2007,129: 5061-5068
    [57]Herranz M A, Martin N, Campidelli S P, et al. Control over electron transfer in tetrathiafulvalene-modified single-walled carbon nanotubes. Angew Chem Int Ed,2006,45: 4478-4482
    [58]Hasobe T, Fukuzumi S, Kamat P V. Angew Chem Int Ed,2006,45:755
    [59]Guldi D M, Taieb H, Rahman G M A, et al. Novel photoactive single-walled carbon nanbtube-porphyrin polymer wraps:efficient and long-lived intracomplex charge separation. Adv Mater,2005,17:871-875
    [60]Guldi D M, Rahman G M A, Prato M, et al. Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed,2005,44:2015-2108
    [61]Guldi D M. Biomimetic assemblies of carbon nanostructures for photochemical energy conversion. J Phys Chem B,2005,109:11432-11441
    [62]Baskaran D, Mays J W, Zhang X P,er al. Carbon nanotubes with covalently linked porphyrin antennae photoinduced electron transfer. J Am Chem Soc,2005,127:6916-6917
    [63]Imahori H, Yamada H, Nishimura Y, etal. Vectorial multistep electron transfer at the gold electrodes modified with self-assembled monolayers of ferrocene-porphyrin-fullerene triads. J Phys Chem B,2000,104:2099-2108
    [64]Luo C, Guldi D M, Imahori H, et al. Sequential energy and electron transfer in an artificial reaction center:formation of a long-lived charge-separated state. J Am Chem Soc,2000,122: 6535-6551
    [65]Schuster D 1, Li K, Guldi D M, et al. Azobenzene-linked porphyrin-fullerene dyads. J Am Chem Soc,2007,129:15973-15982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700