半导体纳米晶体CdSe及ZnSe的绿色合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米晶体(量子点)由于其半径小于或接近于激子玻尔半径,具有特有的量子尺寸效应和表面效应,使其在高效太阳能电池、量子点激光器、生物标签以及发光二极管等方面具有极大的研发吸引力和应用前景。其中II-VI族CdSe纳米晶体作为一种重要的半导体纳米材料因其具有优良的可见光区荧光发射性质引起了人们极大的兴趣。探求一种安全、无污染、成本低、操作简单、重复性好的制备高质量纳米晶体的合成路线成为许多学者的关注的重点。基于无膦制备CdSe纳米晶体的路线,本文采用绿色、低成本、可操作性强的合成技术合成出CdSe、ZnSe两种II-VI族半导体纳米晶体,并对其光学性质、晶体结构及形貌进行了表征。
     基于前人提出的油酸-液体石蜡体系制备CdSe纳米晶体的合成路线在开放的条件下(空气中)合成出CdSe纳米晶体,并对制备的CdSe纳米晶体的紫外-可见光吸收谱、光致发光谱、粉末X射线衍射谱及透射电子显微镜等进行了表征。通过与在N2气中合成结果的对比,分析了该路线在空气中合成CdSe纳米晶体的可行性。
     采用硬脂酸作为Cd的配体,提出了一种新的CdSe纳米晶体的绿色无膦合成体系——硬脂酸-液体石蜡体系,并分别在N2及在空气中合成出CdSe纳米晶体。分析、讨论了在不同的生长环境、不同的反应温度下纳米晶体的质量,还对测试溶剂对测试结果的影响进行了研究。结果表明硬脂酸-液体石蜡合成体系更适合在较低的温度下制备CdSe纳米晶体,并且在空气中合成的CdSe纳米晶体的质量不亚于在N2气中的合成结果。分别选择油酸及硬脂酸作为Cd的配体,对其在空气中、生长温度为230℃条件下的合成结果进行了对比。结果表明硬脂酸为配体合成的CdSe纳米晶体具有更小的Stocks频移及半高宽,更高的荧光量子产率和更好的结晶度。研究中还发现,无论是油酸还是硬脂酸作为Cd的配体,在较低的合成温度下(220℃-260℃)合成的CdSe纳米晶体均为在三辛基氧化膦-三辛基膦合成路线中不常见的立方相结构。
     研究了表面活性剂十六胺(HDA)对液体石蜡反应体系中CdSe纳米晶体合成的影响,同时还对实验的可重复性进行了研究。结果表明,在合成体系中加入十六胺可加速纳米晶体的成核过程,降低其生长速度,获得尺寸小的晶粒,同时可提高晶体的单分散性及荧光量子产率,并且实验的可重复性好。通过研究十六胺的注入方式对合成结果的影响,发现将十六胺加入到Cd前驱体中制备的CdSe纳米晶体的质量优于将十六胺加入到Se前驱体中制备的纳米晶体。
     提出了利用月桂酸在液体石蜡中进行另一种可替代有毒的CdSe纳米晶体作为生物荧光标记物的ZnSe纳米晶体的绿色合成路线。对比了多种从反应基质中分离ZnSe纳米晶体的方法,成功地合成出单分散性好、尺寸可调的ZnSe纳米晶体。虽然实验的可重复性不是很理想,但是为ZnSe纳米晶体的绿色合成开辟了一条新途径。
Colloidal semiconductor nanocrystals (quantum dots) show quantum confinement effects due to the size of them on the order of the Bohr radius and hence have attracted broad attention in recent years for usage in a variety of applications such as solar cell, lasers, biological labels and light-emitting diodes. Among the colloidal semiconductor nanocrystals, II-VI CdSe has shown almost full range visible light emission within a reasonable size range and attracted a great deal of interest. It is important to develop safe, low-cost, green, fast, and mass-production routes for the synthesis of CdSe NCs with high quality. Here, we present a much cheaper and greener non- tri-n-octylphosphine (TOP)-based route for the syntheses of CdSe and ZnSe nanocrystals. The optical properties, structures and appearances of CdSe nanocrystals were charactered. The main contents are listed below:
     Based on oleic acid - paraffin liquid route, CdSe nanocrystals were prepared in open air. The CdSe nanocrystals were charactered by UV-vis absorption and photoluminescence (PL) spectroscopy, powder X-ray diffraction (P-XRD) and transmission electron microscopy (TEM). The data obtained in air were compared with those obtained under N2. The feasibility to synthesize CdSe nanocrystals in air was discussed.
     Using stearic acid as ligand, a new, green, non-TOP system -was proposed. CdSe nanocrystals were synthesized under N2 and in air respectively. The quality of CdSe nanocrystals prepared at different conditions and temperatures, and the effects of different testing solvents were investigated. The results show that CdSe nanocrystals are suitable to be synthesized at lower growth temperature in stearic acid - paraffin liquid system and the quality of CdSe nanocrystals prepared in air is as better as that obtained under N2. Choosing oleic acid and stearic acid as ligands, the data obtained at 230℃growth temperatures in air were compared. The results show that the CdSe nanocrystals prepared by stearic acid ligands have smaller Stokes shift, narrower full widths at half-maximum, higher photoluminescence quantum efficiency and crystallinity. The results also show CdSe nanocrystals in the less common zinc blende crystal structure in TOPO (tri-n-octylphosphine oxide)-TOP routes have been obtained in the systems with oleic acid or stearic acid ligands at lower growth temperatures (220℃-260℃).
     The effects of surfactant n-hexadecylamine (HDA) on the synthesis of CdSe nanocrystals and the reproducibility of the synthesis in liquid paraffin system were investigated. The results show that the nucleation rates are faster and the growth rates are slower in presence of hexadecylamine and the use of hexadecylamine generally can produce highly homogeneous CdSe NCs with higher photoluminescence quantum efficiency and smaller sizes and the system is reproducible. The study on the effects of injection ways of hexadecylamine shows that higher quality CdSe NCs can be obtained by adding HDA to Cd precursor rather than to Se precursor.
     A green route using dodecanoic acid to synthesize ZnSe nanocrystals who will replace toxic, biological labeling CdSe nanocrystals in liquid paraffin matrix is proposed. Highly homogeneous and size-tunable ZnSe nanocrystals were finally obtained by comparing different methods to separate ZnSe nanocrystals from the reaction mixture. Although reproducibility of experiment is not well enough, it provides a new approach to the green synthesis of ZnSe nanocrystals.
引文
1 Y. Wang and N. Herron. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95: 525-532.
    2 T. Takagahara. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B. 1993, 47:4569-4584.
    3 L. Bayai, P. Gillot, Y. Z. Hu and S.W. Koch. Surface-polarization instabilities of electron-hole pairs in semiconductor quantum dots. Phys. Rev. B. 1992, 45: 14136-14142.
    4 S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng and H. L. Wang. Two-color quantum dot laser with tunable wavelength gap. Appl. Phys. Lett. 2009, 95: 251111- 251113.
    5 S.–H. Kang, C. K. Kumar, Z. Lee, K.–H. Kim, C. Huh and E.–T. Kim. Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO2 thin film. Appl. Phys. Lett. 2008, 93: 191116- 191118.
    6 W. C. W. Chan and S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998, 281: 2016-2018.
    7 M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998, 281: 2013-2016.
    8 X.Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003, 21(1): 41-46.
    9 S. J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. M. Bride, Y. Q. Wang, L. J. DeFelice, and R. D. Blakely. Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 2002, 124(17): 4586–4594.
    10 R. Mahtab, H. H. Harden and C. J. Murphy. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of ?inorganic protein‘–DNA interactions. J. Am. Chem. Soc. 2000, 122(1):14–17.
    11 S. Pathak, S. K. Choi, N. Arnheim and M. E. Thompson. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 2001, 123(17): 4103–4104.
    12 M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau and A. Triller.Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 2003, 302(5644): 442-445.
    13 B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaberl. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Sciences. 2002, 298(5599):1759-1762.
    14 B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, A. S. Waggoner. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004, 15(1): 79-86.
    15 S. Kim, Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, A. J. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. J. Bawendi and J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004, 22(1): 93-97.
    16 R. Kubo. Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17: 975-986.
    17 A. Kawabata and R. Kubo. Electronic properties of fine metallic particles. II. plasma resonance absorption. J. Phys. Soc. Jpn. 1966, 21: 1765-1772.
    18 R. Kubo, A. Kawabata and S. Kobayashi. Electronic properties of small particles. Annu. Rev. Mater. Sci. 1984, 14: 49-66.
    19 J. Buttet, R. Car and C. W. Myles. Size dependence of the conduction- electron- spin-resonance g shift in a small sodium particle: Orthogonalized standing-wave calculations. Phys. Rev. B. 1982, 26: 2414-2431.
    20朱静等.纳米材料和器件.北京:清华大学出版社. 2003年: 8-9, 17-19.
    21 W. P. Halperin. Quantum size effects in metal particles. Rev. Mod. Phys. 1986, 58: 533-606.
    22 P. Ball and L. Garwin. Science at the atomic scale. Nature, 1992, 355: 761-766.
    23张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2001年: 51-65, 112-141.
    24张立德,牟季美.开拓原子和物质的中间领域—纳米微粒与纳米固体.物理,1992,21,167-173。
    25李玲,向航.功能材料与纳米技术.北京:化学工业出版社. 2002年: 41-57.
    26 N. Sanz, P. L. Baldeck and A. Ibanez. Organic nanocrystals embedded in sol-gel glasses for optical applications. Synth. Met. 2000, 115: 229-234.
    27 E. Lifshitza, I. Daga, I. Litvina, G. Hodesb, S. Gorerb, R. Reisfeldc, M. Zelnerc and H. Mintic. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chem. Phys. Lett. 1998, 288: 188-196.
    28 Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng and Q. L. Wang. Preparation of InN nanocrystals by solvo-thermal method. J. Cryst. Growth.2002, 241: 189-192.
    29 A. Narayanaswamy, H. F. Xu, N. Pradhan, M. Kim and X. G. Peng. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc. 2006, 128: 10310-10319.
    30 N. R. Jana, Y. F. Chen and X. G. Peng. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16: 3931-3935.
    31 J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B.Johnson and X. G. Peng. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125: 12567-12575.
    32 N. Pradhan, H. F. Xu and X. G.Peng. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006, 6: 720-724.
    33 Z. H. Zhang, W. S. Chin, J. J. Vittal. Water-soluble CdS quantum dots prepared from a refluxing single precursor in aqueous solution. J. Phys. Chem. B. 2004, 108: 18569-18574.
    34 S. Kim, B. Fisher, H. J. Eisler and M. Bawendi. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125(38): 11466-11467.
    35 L. Liu, Z. Zhuang, T. Xie, Y.–G. Wang, J. Li, Q. Peng and Y. Li. Shape Control of CdSe Nanocrystals with Zinc Blende Structure. J. Am. Chem. Soc. 2009, 131 (45): 16423-16429.
    36 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997, 101 (46): 9463-9475.
    37 C.B. Murray, D.J. Norris and M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem.Soc. 1993, 115 (19): 8706-8715.
    38 C. A. Leatherdale, W.-K. Woo, F. V. Mikulec and M. G. Bawendi. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B. 2002, 106(31):7619-7622.
    39 X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons and S. M. Nie. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16: 63–72.
    40 Al. L. Efros and A. L. jfefros. Interband absorption of light in a semiconductorsphere. Sov. Phys. Semicond. 1982, 16: 772-775.
    41 L. Brus. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. J. Phys. Chem. 1986, 90: 2555-2560.
    42 Y. Kayauuma. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 1988, 38: 9797-9805.
    43 C. D. Dushkin, U, S. Saita, K. Yoshie and Y. Yamaguchi. The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. Adv. Colloid Interface Sci. 2000, 88: 37-78.
    44 X. G. Peng, J. Wickham and A. P. Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:―focusing‖of size distributions. J. Am. Chem. Soc. 1998, 120: 5343-5344.
    45 T. Sugimoto. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28: 65-108.
    46 I. M. Lifshitz and V.V. Slyozov. J. Phys. Chem. Solids. The kinetics of precipitation from supersaturated solid solutions. 1961, 19: 35-50.
    47 B. Dadyburjor and E. Ruckenstein. Kinetics of Ostwald ripening. J. Cryst. Growth. 1977, 40: 279-290.
    48 S. Sasaki and H. Maeda. Ostwald ripening of KNO3 grains in acrylamide gel. J. Phys. Chem. 1995, 99: 16128-16135.
    49 Z. A. Peng and X. Peng. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as Precursor. J. Am. Chem. Soc. 2001, 123: 183-184.
    50 L. Qu and X. Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124: 2049-2055.
    51 M. A. Hines and P. G. Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100: 468-471.
    52 Y. -M Sung, K. -S Park, Y.–J. Lee and T. -G. Kim. Facile synthesis of photoluminescent ZnS and ZnSe nanopowders. J. Phys. Chem. C. 2007, 111 (3): 1239–1242.
    53 J. van Embden and P. Mulvaney. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir. 2005, 21: 10226–10233.
    54 R. E. Bailey and S. Nie. Alloyed semiconductor quantum Dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125: 7100-7106.
    55 X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White and W. Knoll. Composition- tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am.Chem. Soc. 2003, 125: 8589-8594.
    56 X. H. Zhong, Y. Y. Feng, W. Knoll and M. Y. Han. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125: 13559-13563.
    57 S.–W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni and M. G. Bawendi. Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J. Am. Chem. Soc. 2005, 127: 10526-10532.
    58 Y.–M. Sung, Y.–J. Lee and K.–S. Park. Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals. J. Am. Chem. Soc. 2006, 128: 9002-9003.
    59 L. S. Li, N. Pradhan, Y. J. Wang and X. G. Peng. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4: 2261-2264.
    60 J. Jasieniak, C. Bullen, J. van Embden and P. Mulvaney. Phosphine-free synthesis of CdSe nanocrystals. J. Phys. Chem. B. 2005, 109: 20665-20668.
    61 B. D. Dickerson, D. M. Irving, E. Herz, R. O. Claus and W. B. Spillman. Synthesis kinetics of CdSe quantum dots in trioctylphosphine oxide and in stearic acid. App. Phys. Lett. 2005, 86: 171915-171917.
    62 M. Tomasulo, I. Yildiz and F. M. Raymo. PH-sensitive quantum dots. J. Phys. Chem. B. 2006, 110: 3853-3855.
    63 D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. NanoLett. 2001, 1: 207-211.
    64 H. Seo and S.–W. Kim. In Situ Synthesis of CdTe/CdSe core?shell quantum dots. Chem. Mater. 2007, 19 (11): 2715–2717
    65 Y.–M. Sung, K.–S. Park and Y.–J. Lee. Ripening Kinetics of CdSe/ZnSe core/shell nanocrystals. J. Phys. Chem. C. 2007, 111 (3): 1239–1242.
    66 H.–S. Chen, B. Lo, J.–Y. Hwang, G.–Y. Chang, C.–M. Chen, S.–J. Tasi and S.–J. J. Wang. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J. Phys. Chem. B. 2004, 108: 17119-17123.
    67 E. Jang, S. Jun, Y. Chung and L. Pu. Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals. J. Phys. Chem. B. 2004, 108: 4597-4600.
    68 T. Jin, F. Fujii, E. Yamada, Y. Nodasaka and M. Kinjo. Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids. J. Am. Chem. Soc. 2006, 128: 9288-9289.
    69 H. . Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and H Mattoussi.Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127: 3870-3878.
    70 A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. Chen and J. Z. Zhang. Silica-Coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J. Phys. Chem. B. 2006, 110: 5779-5789.
    71 Hongyou Fan, Erik W. Leve, Chessa Scullin, John Gabaldon, David Tallant, Scott Bunge, Tim Boyle, Michael C. Wilson, and C. Jeffrey Brinker. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett. 2005, 5: 645-648.
    72 W. J. Parak, T. Pellegrino and C. Plank. Labelling of cells with quantum dots. Nanotechnology. 2005. 16: R9–R25.
    73 A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2004, 4: 11-18.
    74 A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 2004, 48: 669-675.
    75 C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. St?lzle, N. Fertig and W. J. Parak. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005, 5: 331-338.
    76 B. Zebli, A. S. Susha, G. B. Sukhorukov, A. L. Rogach and W. J. Parak. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir. 2005, 21: 4262-4265.
    77 F. Osaki, T. Kanamori, S. Sando, T. Sera and Y. Aoyama. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 2004, 126: 6520-6521.
    78 X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004, 22: 969-976.
    79 W. B. Cai, D.–W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, S. S. Gambhir and X. Y. Chen. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6: 669-6776.
    80 J. P. Zimmer, S.–W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni and M. G. Bawendi. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 2006, 128: 2526-2527.
    81 C. R. Bullen and P. Mulvaney. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett. 2004, 4: 2303-2307.
    82 J. Y. Ouyang, M. B. Zaman, F. J. Yan, D. Johnston, G. Li, X. H. Wu, D. Leek, C. I. Ratcliffe, J. A. Ripmeester, and K. Yu. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C. 2008, 112: 13805-13811.
    83 W. W. Yu and X. Peng. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41: 2368-2371.
    84 Z. T. Deng, L.Cao, F. Q. Tang and B. S. Zou. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J. Phys. Chem. B. 2005, 109: 16671-16675.
    85 D. J. Crouch, P. O Brien, M. A. Malik, P. J. Skabara, S. P. Wright. A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chem. Commun. 2003, Issue12: 1454-1455.
    86 U. K. Gautam, M. Rajamathi, F. Meldrum, P. Morgand and R. Seshadria. A solvo-thermal route to capped CdSe nanoparticles. Chem. Commun. 2001, Issue7: 629-630.
    87 J. Hambrock, A. Birkner and R. A. Fischer. Synthesis of CdSe nanoparticles using various organometallic cadmium precursors. J. Mater. Chem. 2001, 11: 3197-3201.
    88 L. Qu, A. Peng and X. G. Peng. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1: 333-337.
    89 P. S. Nair, K. P. Fritz and G. D. Scholes. A multiple injection method for exerting kinetic control in the synthesis of CdSe nanorods. Chem. Commun. 2004, Issue18: 2084-2085.
    90 G. Yordanov, C. Dushkin, G. Gicheva, B. Bochev and E. Adachi. Synthesis of high-quality semiconductor nanoparticles in a composite hot-matrix. Colloid Polym. Science. 2005, 284: 229–232.
    91 Z. A. Peng and X. G. Peng. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 2002, 124: 3343-3353.
    92 G. A. Crosby and J. N. Demas. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75: 991-10224.
    93 V. A. Fedorov, V. A. Ganshin and Y. N. Korkishko. Determination of the point of the zinc blende-to-wurtzite structural phase transition in cadmium selenide crystals. Phys. Status Solidi A. 1991, 126: K5-K7.
    94 M.B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine and M. Chergui. Synthesis of high quality zinc blende CdSe nanocrystals. J. Phys. Chem. B.2005, 109: 10533– 10537.
    95 P. Lianos and J. K. Thomas. Small CdS particles in inverted micelles. J. Colloid Interface Science. 1987, 117: 505– 512.
    96 G. Yordanov, E. Adachi and C. Dushkin. Growth kinetics and characterization of fluorescent CdS nanocrystals synthesized with different sulfur precursors in paraffin hot-matrix. Colloids Surf., A: Physicochemical and Engineering Aspects. 2006, 289: 118-125.
    97 G. Yordanov, G. Gicheva, B. Bochev, C. Dushkin and E. Adachi. The effects of temperature and carboxylic acid ligand on the growth of nanocrystalline CdSe in a hot paraffin matrix. Colloids Surf. A: Physicochemical and Engineering Aspects. 2006, 273: 10-15.
    98 B. Xing, W. W. Li, H. J. Dou, P. F. Zhang and K. Sun. Systematic study of the properties of CdSe quantum dots synthesized in paraffin liquid with potential application in multiplexed bioassays, J. Phys. Chem. C. 2008, 112: 14318-14323.
    99 G. Yordanova, H. Yoshimurab and C. Dushkin. Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids Surf. A: Physicochemical and Engineering Aspects. 2008, 322: 177-182.
    100 G. Yordanova, C. Dushkin and E. Adachib. Early time ripening during the growth of CdSe nanocrystals in liquid paraffin. Colloids Surf., A: Physicochemical and Engineering Aspects. 2008, 316: 37-45.
    101 G. Yordanova, H. Yoshimurab and C. Dushkin. Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid. Polym. Sci. 2008, 286: 813–817.
    102 L. Qu, W.W. Yu and X. G. Peng. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano lett. 2004, 4: 465–469.
    103 A. P. Alivisatos. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 1996, 100: 13226-13239.
    104 L. I. Berger. Semiconductor Materials, USA: CRC Press, 1997: 201-203.
    105 M. A. Petruska, A. P. Bartko and V. I. Klimov. An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. J. Am. Chem. Soc. 2004, 126: 714-715.
    106 X. S. Wang, T. E. Dykstra, M. R. Salvador, I. Manners, G. D. Scholes and M. A. Winnik. Surface passivation of luminescent colloidal quantum dots with poly(Dimethylaminoethyl methacrylate) through a ligand exchange process. J. Am. Chem. Soc. 2004, 126: 7784-7785.
    107 S. Kim and M. G. Bawendi. Oligomeric ligands for luminescent and stablenanocrystal quantum dots. J. Am. Chem. Soc. 2003, 125: 14652-14653.
    108 W. Zh. Guo, J. J. Li, Y. A. Wang and X. G. Peng. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater, 2003, 15: 3125-3133.
    109 W. Guo, J. Li, Y. A. Wang and X. Peng. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J. Am. Chem. Soc., 2003, 125: 3901-3909.
    110 Y. A. Wang, J. J. Li, H. Chen and X. Peng. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 2002, 124: 2293-2298.
    111 H. Skaff, M. F. Ilker, E. B. Coughlin and T. Emrick. Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and Ruthenium-based metathesis. J. Am. Chem. Soc. 2002, 124: 5729-5733.
    112 A. L. Rogach, A. Kornowski, M.Y. Gao, A. Eychmu1ller and H. Weller. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B, 1999, 103: 3065-3069.
    113 M. Wang, N. Felorzabihi, G. Guerin, J. C. Haley, G. D. Scholes and M. A. Winnik. Water-soluble CdSe quantum dots passivated by a multidentate diblock copolymer. Macromolecules. 2007, 40 (17): 6377–6384.
    114 A. L. Washington and G. F. Strouse. Microwave synthetic route for highly emissive TOP/TOP-S passivated CdS quantum dots. Chem. Mater. 2009, 21 (15): 3586–3592.
    115 P. T. K. Chin, C. de M. Donegá, S. S. van Bavel, S. C. J. Meskers, N. A. J. M. Sommerdijk and R. A. J. Janssen. Highly Luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J. Am. Chem. Soc. 2007, 129 (48): 14880–14886.
    116 M. R. Kim, Y. -M. Kang and D.–J. Jang. Synthesis and characterization of highly luminescent CdS@ZnS Core?Shell nanorods. J. Phys. Chem. C. 2007, 111 (50): 18507–18511.
    117 P. Reiss, S. Carayon, J. Bleuse and A. Pron. Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies. Synthetic Metals, 2003, 139: 649-652.
    118 M. J. Murcia, D. L. Shaw, H. Woodruff, C. A. Naumann, B. A. Young and E. C. Long. Facile sonochemical synthesis of highly luminescent ZnS?shelled CdSe quantum dots. Chem. Mater. 2006, 18 (9): 2219–2225.
    119 S. Jeong, M. Achermann, J. Nanda, S. Ivanov, V. I. Klimov and J. A. Hollingsworth. Effect of the thiol?thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc.2005, 127 (29): 10126–10127.
    120 C.–T. Yuan, W.–C. Chou, Y.–N. Chen, J.–W. Chou, D.–S. Chuu, C.–A. J. Lin, J. K. Li, W. H. Chang and J.–L. Shen . Study of fluorescence enhancement of colloidal CdSe/ZnS quantum dots bound to hexadecylamine by single-molecule measurements. J. Phys. Chem. C. 2007, 111 (42): 15166–15172.
    121 D.V. Talapin, A. L. Rogacha, I. Mekisa, St. Haubolda, A. Kornowskia, M. Haasea and H. Wellera. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A: Physicochem. Eng. Aspects. 2002, 202: 145– 154.
    122 S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner and C. S. Yun. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chem. Mater. 2002, 14: 1576-1584.
    123 Z. A. Peng and X. G. Peng. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123: 1389-1395.
    124 W. W. Yu, Y. A.Wang and X. Peng. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15: 4300-4308.
    125 D. Tonti, M. B. Mohammed, A. Al-Salman, P. Pattison and M. Chergui. Multimodal distribution of quantum confinement in ripened CdSe nanocrystals. Chem. Mater. 2008, 20: 1331–1339.
    126 D. J. Norris, N. Yao, F. T. Charnock and T. A. Kennedy. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1: 3-7.
    127 T. J. Norman, J. D. Magana, T. Wilson, C. Burns, J. Z. Z. D. Cao and F. Bridges. Optical and surface structural properties of Mn2+-doped ZnSe nanoparticles. J. Phys. Chem. B. 2003, 107: 6309-6317.
    128 E. J.–M. Bonard, J.–D. Ganière, L. Vanzetti, J. J. Paggel, L. Sorba, A. Franciosi, D. Hervéand E. Molva. Combined transmission electron microscopy and cathodoluminescence studies of degradation in electron-beam-pumped Zn1–xCdxSe/ZnSe blue-green lasers. J. Appl. Phys. 1998, 84: 1263-1273.
    129 M. A. Hines and P. G.–Sionnest. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B. 1998, 102: 3655–3657.
    130 A. Shavel, N. Gaponik and A. Eychmu1ller. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. J. Phys. Chem. B. 2004, 108: 5905-5908
    131 L. S. Li, N. Pradhan, Y. J. Wang and X. G. Peng. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004,4: 2261-2264
    132 N. Pradhan, D. Goorskey, J. Thessing and X. G. Peng. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127: 17586-17587.
    133 G. N. Karanikolos, P. Alexandridis, G. Itskos, A. Petrou and T. J. Mountziaris. Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique. Langmuir. 2004, 20: 550-553.
    134 P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli and A. Agostiano. Shape and phase control of colloidal ZnSe nanocrystals. Chem. Mater. 2005, 17 (6): 1296–1306.
    135 X. Zhong, R. Xie, Y. Zhang, T. Baschéand W. Knoll. High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals. Chem. Mater. 2005, 17 (16): 4038–4042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700